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Abstract−Object-oriented modeling methodology is used for encapsulating different methods and attributes of data
reconciliation (DR) in classes. Classes which are defined for DR, cover steady-state, dynamic, linear and nonlinear
DR problems. Two main classes are Constraints and DR and defined for manipulating constraints and general DR prob-
lem. The remaining classes are derived from these two classes. A class namely DDRMethod is developed for encap-
sulating all common attributes and methods needed for any DDR method. Developed DR software and the method
of performing dynamic DR are discussed in this paper. Two illustrative examples of Extended Kalman Filtering and
artificial neural networks are used for DDR and two classes of DDRByKalman and NetDDRMethod developed by in-
heritance from DDRMethod class for these two methods. Performance of the proposed method is investigated by DDR
of temperature measurements of a distillation column.
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INTRODUCTION

Measurements always contain some type of error and it is neces-
sary to adjust their values to know objectively the operating state
of the process. Two types of errors can be identified in plant data:
random and gross errors. Random errors are small errors that occur
due to the normal fluctuation of the process or random variations
inherent in instrument operation. Gross errors are larger errors which
occur due to incorrect calibration or malfunction of the instruments,
process leaks, etc. Gross errors occur occasionally, that is, their num-
ber is small when compared to the total number of instruments in a
chemical plant.

Data reconciliation (DR) is an optimization method for elimina-
tion of random errors from measured data in a processing system.
It uses process model as constraint and statistical properties of meas-
urements. DR can be performed in both steady-state and dynamic
conditions. Many works have been done within the framework of
linear and nonlinear steady-state DR (LSSDR and NSSDR) and
linear and nonlinear dynamic DR (LDDR and NDDR), and some
methods have been proposed [2-10].

Data reconciliation is commonly a complex problem for nonlin-
ear and dynamic systems, specifically for large scale systems. The
management of complexity of such problems is not easy and a frame-
work is needed to encapsulate all common properties of DR prob-
lems. Object-oriented modeling is one of the important software
development methods and has the benefits of complexity manage-
ment and code reusability. In this paper we present the object-oriented
programming methodology which is used for the definition and en-
capsulation of properties of several types of DR problems. Com-
plexity management property of object-oriented modeling makes it
possible to subdivide large scale and complex operating systems to

simple subsystems and apply DR on the simple subsystems instead
of the whole system. The concepts of object-oriented modeling are
discussed in the literature [11] and will not be discussed here. UML
modeling language [11] is used to show classes, attributes, methods
and relationships between them in a standard form.

Extended Kalman filtering (EKF) and artificial neural networks
(ANNs) are used for dynamic data reconciliation (DDR) by imple-
menting defined concepts and classes. Classes defined for these meth-
ods are applied on a case study to show the performance of the pro-
posed framework for data reconciliation.

CLASS DEFINITIONS

Data reconciliation as a concept has some attributes as measure-
ments, reconciled values, and variance-covariance matrices and can
form a class. Some methods can be defined for performing data
acquisition and reconciliation. The general DR problem can be de-
fined as:

(1)

subject to constraints.

where x and y are vectors of true values and measurements, re-
spectively, and W is a weight matrix which is usually set to the in-
verse of covariance matrix of measurement errors (y−x). Constraints
are usually mass and energy balance equations of the processing
system and can be linear or nonlinear, and steady-state or dynamic
depending on the nature of the system. It is a quadratic program-
ming optimization problem that can be solved by different optimi-
zation methods.
1. Steady-State Processes

For a steady-state system, the accumulation term of mass and
energy balance equations is zero. Thus for a linear steady state-sys-
tem, the model of the system can be written in matrix form as:

y − x( )TW y − x( )
x

limMin
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Ax=B (2)

where x is the vector of model variables and contains measured and
unmeasured variables. A and B are coefficients and constants ma-
trices, respectively.

Before defining DR classes, a class must be defined to gather
information about equality or inequality and linear or nonlinear con-
straints. The class is shown in Fig. 1 and is called Constraints class.
The class can store multitudes of constraints by using its attributes
and methods. Some methods are not appearing here in class defini-
tion.

As described before, UML modeling language  is used to show
the structure of classes. In the above figure, class name, attributes
and methods are shown in separate boxes. The −, #, and + signs
represent private, protected and public members respectively. CMa-
trix class is defined for storing matrices and manipulating matrix
operations, while CMatrixList class is used for collecting multitudes
of matrices.

A class can also be defined for optimization problems. It inher-
its members of Constraints class and is defined generally so that
any optimization method can inherit from this class. The class is
called Optimization. It has no specific attribute and has only gen-
eral methods for performing optimization. The class is made abstract
in order to prevent users from creating objects directly from it. Ab-

stract classes are shown by italic font in diagrams.
The data reconciliation class (DR) encapsulates all attributes and

methods concerning DR problem definition. A pointer to an Opti-
mization object is declared as an attribute of this class (aggregation
relationship). The structure of the class is shown in Fig. 3.

Method SetMethodOfSolution initializes pointer to optimization
class using its input arguments. The initialization method of the class
is InitializeDR which performs all required tasks before performing
DR. Because Constraints class manipulates all linear and nonlinear
equality constraints, there is no need to classes for Linear DR and
Nonlinear DR.

If some of the model variables are unmeasured, they must be re-
moved from the model before DR is performed. Then the remain-
ing measured variables can be reconciled, and observable unmeas-
ured variables can be estimated by using reconciled measured ones.
In this case Eq. (2) can be written as:

A1z+A2u=B (3)

where A=[A1 A2] and x=[zT uT]T. z and u are vectors of measured
and unmeasured variables, respectively. Matrix A2 can be decom-
posed into two orthogonal matrices of Q and R using QR decom-
position method [12].

A2=QR (4)
QTQ=I
RTR=I

The following property holds:

Q2
TA2=0 (5)

Thus the new model equations can be derived by removing unmeas-
ured variables as below:

Azz=Q2
TB (6)

Az=Q2
TA1

which contains only measured variables and has the same form of
Eq. (2). This method can also be applied for linear dynamic systems.

A class is defined for steady-state processes which inherits mem-
bers of the DR class. It is defined for generality and is called SSDR
and has no specific attributes, but has some methods for perform-
ing steady-state calculations which are common for both linear and
nonlinear systems.

Now a new class can be defined for encapsulating the above pa-
rameters together with inheriting members of SSDR class. This class,
which is called LSSDR, is shown in Fig. 4. Matrices A and B can
be implemented by using the Constraints class without any need to
include in LSSDR definition. Because the solution of Eq. (1) with

Q = Q1 Q2[ ]

R = 
R1 R2

0 0

Fig. 1. A view of Constraints class and some of its methods and at-
tributes.

Fig. 2. Optimization class.

Fig. 3. Structure of DR class. Fig. 4. Structure of LSSDR class.
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linear constrains (Eq. (2)) is straightforward [12], no more class de-
finitions are needed to handle this type of DR problems. Solution
of LSSDR problem is performed by Solve method of LSSDR class.
2. Dynamic Processes

For dynamic systems, a class, namely DDR, is defined for manip-
ulating dynamic DR problems. Its structure is shown in Fig. 5. Any
derived object from this class is initialized by calling InitializeDDR
method. SetDDRMethod method is called by InitializeDDR before
initializing DDR. This method initializes a pointer to a DDRMethod
class object which is described below. Kalman filtering (KF) and
ANNs are implemented for NDDR by inheriting from this class.
During DDR, AddNewMeasuremnt, GetCalculatedData and Rec-
onciliate methods which are inherited from DR class are called recur-
sively to perform DDR in each time step of getting measurements.
After completion of DDR, TerminateDDR method is called for ter-
minating DDR.

As the solution of linear and nonlinear DDR problems is not
straightforward and several methods are developed by different re-
searchers, a general class is needed to encapsulate common proper-
ties of these methods. For this reason, a class, namely DDRMethod
is defined which is shownin Fig. 6.

The linear attribute determines whether the DDR method is for
linear or nonlinear cases. An object of this class is defined as an
attribute of DDR class which is used for DDR by applying user-
specific methods. This class has three main methods, which are used
for DR. These methods are called by their counterparts from DDR
class for solving DR problems depending on the user’s DDR method.

These methods perform different operations depending on differ-
ent methods for DDR (polymorphism concept of OOP).

A class is defined for linear DDR (LDDR) which is derived from
DDR class and only customizes its methods for LDDR. Another
class, namely NDDR, is defined for nonlinear dynamic DR. It is
also derived from DDR class and customizes its methods.

Relationships between defined classes are shown in Fig. 7. Lines
with triangles show an inheritance relationship, while lines with dia-
monds represent an aggregation relationship.

APPLICATION OF DEVELOPED CLASSES
FOR DATA RECONCILIATION

Defined classes were coded in Visual C++ programming envi-
ronment for developing a general purpose software tool for DR.
Any types of DR can be performed with this software including
linear, nonlinear, steady-state and dynamic DR problems. The soft-
ware will be discussed later in this paper.

For linear steady-state DR the solution of problem (1) is straight-
forward and there is no need for a specific optimization method.
Therefore, no extra class definitions other than the defined ones (DR,
SSDR and LSSDR) are needed. For dynamic cases including linear
and nonlinear problems, different methods are developed [4-10].
Therefore, the DDRMethod class was defined and implemented by
DDR, LDDR and NDDR classes by using the aggregation relation-
ship to facilitate application of different methods for DDR. This
class is a general class and users can apply their specific methods
by deriving their classes from this class using the inheritance rela-
tionship and customizing methods of DDRMethod. This class is
made abstract and no instance of it can be created directly during
run-time. It requires that users inherit new classes from it and then
create objects from their-own classes.
1. Kalman Filtering Applied as a Class for Dynamic Data Re-
conciliation

As it is shown by different authors, Kalman filtering can detect
and remove noise from measurements and states [13-15] and is a
specific case of DR [12] and can be used for DDR. To illustrate the
suitability of DDRMethod class, Kalman filtering (KF) and extended
Kalman filtering (EKF) methods were classified in a class, namely
DDRByKalman, and inherited methods and attributes of DDRMethod
class. For KF the discrete state-space form of the model of the pro-
cessing system is needed. The general form of continuous state-
space model of a processing system can be written as:

y=h(x, u)+ε (7)

In the above equations, x, u, and y are vectors of state, input and
measured variables, respectively. f and h can be linear or nonlinear
functions of x and u. ε is measurement error. It is considered that
no disturbances or modeling errors are present.

Discrete EKF is used for nonlinear cases and requires that the
above model to be linearized first and then discretized recursively
in each time step. The details are not presented here. The following
equations are the linearized and discretized form of the above model.

x[k]=A.x[k−1]+B.u[k−1]+M

dx
dt
------ = f x u,( )

Fig. 5. Structure of DDR class.

Fig. 6. Structure of DDRMethod class.

Fig. 7. Relationships between defined classes.
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z[k]=Jhx[k]+ε

(8)

where  and  are Jacobian matrices of f with respect to x and u
evaluated at x1 and u1. Jh is the Jacobian matrix of h with respect
to x at x1. It is considered that no measurements of input variables
contain errors. T and k are sampling time and step, respectively.

EKF steps are just like traditional KF except that in each or some
time step, a linearization on the model equations must be done in
order to get a linear set of state-space equations for use in KF. The
recursive nature of KF makes it suitable for on-line dynamic DR.
In KF a priori and a posteriori states are obtained by using state-
space equations. For the KF method, linear state-space equations
are defined as [13]:

x[k]=Φ[k−1]x[k−1]+B[k−1]u[k−1]+w[k−1] (9)
y[k]=C[k]x[k]+v[k]

where w and v are white noise in states and measurements:

E(w[k])=0, Cov(w[k])=Q[k]
E(v[k])=0, Cov(v[k])=R[k] (10)

The initial condition of the above differential equation is shown as
x[0], where:

E(x[0])= [0], Cov (x[0])=P[0] (11)

where [0] are true values of x[0]. The KF steps are:

a. State estimate extrapolation :: [k](−)=Φ[k−1] [k−1](+)
b. Error covariance extrapolation::

P[k](−)=Φ[k−1]P[k−1](+)Φ[k−1]T+Q[k−1]
c. KF matrix gain calculation::

K[k]=P[k](−)C[k]T[C[k]P(−)C[k]T+R[k]]−1

d. State estimate observational update::
[k](+)= [k](−)+K[k](z[k]−C[k] [k](−)]

e. Error covariance update :: P[k](+)=(I−K[k]C[k])P[k](−)
f. Measurement estimation :: [k]=C [k](+)

All of the above steps are performed for k=1, 2, …. The initial
condition is:

[0](+)= [0], P[0](+)=P[0] (12)

According to the above discussion, the structure of DDRByKalman
is defined and is shown in Fig. 8.

This class has inherited and customized methods of DDRMethod
class. First, the CustomInitializeDDR method is called by Initial-
izeDDR from LDDR or NDDR class, which itself calls the Initial-
izeKalman method. Then InitializeKalman determines whether the
model is linear or nonlinear by using its input arguments. If the mod-
el is nonlinear, it calls InitializeExtendedKalman. After initialization
of the filter, KalmanStep is called repeatedly for filtering measure-
ments arrived at in each time step. If the model is nonlinear, this
method calls ExtendedKalmanStep. Then ExtendedKalmanStep calls
GenerateSysMeasTransfer for linearizing and discretizing of the
model. In next step, state_pre, state_post, cov_pre, cov_post, and
z_estimate are updated. The last result of filtering in each step is
stored in z_estimate which is then used by LDDR or NDDR ob-
jects as the reconciled values.
2. Artificial Neural Networks Applied as a Class for Dynamic
Data Reconciliation

Another method that has been developed is based on feed-for-
ward ANNs and is called NetDDR method. Advantages such as
learning and estimation capabilities and applicability characteristic
of the ANNs are the main reasons of their success in different fields
such as fault detection, signal processing, identification and control.
A complete review and discussion of the application of ANNs in
different areas of chemical engineering can be found in [16].

A feed-forward ANN is comprised of units, namely neurons simi-
lar to a brain neural network. Any neuron can have any number of
inputs. Each neuron multiplies its inputs by their weight and then
applies an operator such as summation on them and sends the out-
put to a transfer function. The output from the transfer function is
sent to other neurons. Neurons with the same inputs form a layer.
If inputs are from the surroundings, the layer is called the input
layer. The layer between outputs of ANN and the surroundings is
called the output layer. The layers between these two layers are called
hidden. Each layer can have one or more neurons. Depending on
the complexity of the process to be trained, the number of hidden
layers and neurons can change. Fig. 9 shows a feed-forward ANN
which is shown in matrix form. Commonly, each neuron has one
more input with unit value as bias. In the following figure the bias
weights are shown by b.

Training of ANN is the adjustment of weights of inputs to the
neurons such that the output of the ANN based on its inputs is very
close or equivalent to the output of the real system.

In this research a type of ANN similar to system identification
ANNs is developed and used for DDR. One standard model that
has been used to represent general discrete-time nonlinear systems
is the nonlinear auto-regressive-moving average (NARMA) model:

y(k)=G[y(k−1), y(k−2), …, y(k−n), u(k), u(k−1), …, u(k−n)] (13)

where, u(k) is the vector of system inputs, y(k) is the vector of sys-

A = e
Jf1

T
, B = A − I( )Jf1

−1Jf2
, M = I − A( ) x1− Jf1

−1f x1 u1,( )[ ] − Bu1
△ △ △

Jf1 Jf2

x̂

x̂

x̂ x̂

x̂ x̂ x̂

ẑ x̂

x̂ x̂

Fig. 8. Structure of DDRByKalman class.



Data reconciliation: Development of an object-oriented software tool 959

Korean J. Chem. Eng.(Vol. 25, No. 5)

tem outputs (measurements in here), and n is the number of delays.
For the identification phase, a neural network must be trained to
approximate the nonlinear function G. The above model was mod-
ified and used for DDR:

(k)=G[y(k), y(k−1), (k−1), …, y(k−n),
y(k)= (k−n), u(k), u(k−1), …, u(k−n)] (14)

where  is the vector of reconciled values. The problem of using
this model is that for training a neural network to estimate the func-
tion G that minimizes mean square error, dynamic back-propaga-
tion must be implemented ([17,18]), which can be quite slow. One
proposed solution is the use of approximate models to represent
the system [19]:

(k)=f[y(k), y(k−1), (k−1), …, y(k−n), (k−n), u(k−1), …, u(k−n)]
y(k)=+g[y(k), y(k−1), (k−1), …, y(k−n), (k−n),
y(k)=+u(k−1), …, u(k−n)]u(k) (15)

This model is in companion form, where the plant input u(k) is not
contained inside the nonlinearity. Fig. 10 shows the structure of the
ANN representation of the above model.

In the following figure, the ⊗ notation indicates a multiplying
neuron while the ⊕ notation shows a summation neuron. TD boxes
represent delayed inputs to the network. As indicated in the figure,
this network is comprised of one input layer, some hidden layers
for functions f and g and one output layer. The number of neurons
in the first layer is equal to the number of inputs. Then it varies lin-
early with increasing the layer number and reaches a value speci-
fied by the user for the middle layer. Then it again varies linearly

while reaching the number of outputs. If there are p inputs and m
measurements, with n number of delays, the number of inputs to
each of the ANNs will be:

p(n+1)+m(2n+1) (16)

where coefficient 2 in the second term is because of including recon-
ciled values from previous steps. Thus according to the above figure,
total number of inputs to the whole ANN will be:

p+2[p(n+1)+m(2n+1)]=p(2n+3)+2m(2n+1) (17)

The number of outputs of the whole ANN equals the number of
measurements, i.e., m.

This method is encapsulated as a class which is derived from DDR-
Method class. The class is called NetDDRMethod and its architec-
ture is shown in Fig. 11.

The CustomInitializeDDR method is called at the start of DDR
method which itself calls Initialize method for initializing attributes
of the object. In each step when measurements and plant inputs are
received, the CustomReconciliate method is called which itself calls
NetStep method.

The net attribute is also a class object and contains all attributes
and methods required for training and simulation of an ANN (not
shown here). Its most important method is the Simulate method which
takes inputs of the network and returns outputs after calculation.
The NetStep method constructs inputs to the ANN using received
plant inputs, measurements and delays, and then calls Simulate meth-
od of net attribute. At last it returns the results.
3. DCON, an Object-Oriented Software for Performing Data
Reconciliation

An academic software tool, namely DCON, is developed by cod-
ing all of the above classes and concepts using Visual C++ program-
ming environment for performing data reconciliation. As can be seen
in Fig. 12, the software has a graphical user interface (GUI) which

ŷ ŷ
ŷ

ŷ

ŷ ŷ ŷ
ŷ ŷ

Fig. 9. Different layers of neurons in an ANN shown in matrix form.

Fig. 10. ANN model for estimating nonlinear functions of f and g. Fig. 11. Structure of NetDDRMethod class.
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leads the user to the type of DR that he/she wants to do. At the left
hand side of GUI, there are four push buttons for performing LSSDR,
NSSDR, LDDR and NDDR, respectively. By clicking any of these
buttons a new window is opened and the user can enter data and
perform DR.

For example, by clicking the first button a window, which is shown
in Fig. 13, is displayed for LSSDR. As can be seen, it has five tabs.
In the first tab (LSSDR Calculation tab), the number of measured
variables, number of linear model equations and total number of
variables can be entered. Estimation of unmeasured observable vari-
ables can also be done by the software. After LSSDR is performed,
the results will be shown in two distinct tables for measured and
unmeasured variables. The other tabs (not shown here) are for enter-
ing coefficients of model equations (A), constants of model equa-
tions (B), measurements to be reconciled and covariance matrix of
measurements, respectively.

After entering required data and clicking Calculate button in first
tab, if there exist any measurements in the Measurements tab and
all data are correct, LSSDR will be performed for each column of
the measurements entered in the measurements tab and results will
be shown in two tables of LSSDR Calculation tab. The user can
import or export all entered data or results individually or together,
using Export and Import buttons located in different locations of
the window.

For performing DDR, two buttons exist in the GUI of the soft-
ware, one for linear and the other for nonlinear case. In this part,
different aspects of the NDDR module will be discussed. By click-
ing Nonlinear Dynamic Data Reconciliation button in the GUI

of the software, a window similar to Fig. 14 will appear. It is similar
to the LSSDR window with some extra data needed for DDR. Be-
cause DDR is for nonlinear cases, no coefficients or constants ma-
trices can be entered. Instead, users can write their own dynamic
simulation programs using any programming software which sup-
ports DDE or COM communication mechanism. If the On-Line
radio button is selected, the software will request measurements
from the simulation program; but if the Off-Line is selected, it will
use measurements entered in Measurements tab of Fig. 14.

After the required data are entered and Perform Calculations
button is clicked, the software will trigger the simulation program
to start running and will wait measurements to be sent from the sim-
ulation program via DDE. Other types of data communication such
as communication by component object model (COM), and via
serial and parallel ports for connecting to real plants are also consid-
ered in this software (Fig. 15). The user must add random noise to
the simulation results that DR must be done on them and then send
them to DR software by defined functions for DDE connection mech-
anism and obtain reconciled data. As the new measurements arrive,
the software performs DDR using the method selected by the user
and after reconciliation it sends reconciled data to the simulation
program for storing or plotting purposes. For terminating DDR, sim-
ulation program must send a Stop signal to the software. All aspects
of the software are completely discussed in its technical report.

CASE STUDY

Measurements can be obtained dynamically from transient sim-
ulation or from a real plant. Currently, dynamic simulation of pro-

Fig. 12. GUI of DCON software developed for DR.

Fig. 13. GUI of performing LSSDR.

Fig. 14. GUI for performing NDDR.

Fig. 15. Data communication of NDDR module with simulator/
real plant.
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cessing systems is used for DR. In order that sending measurements
from dynamic simulation is similar to a real plant, the DR software
has completely been separated from simulation programs. Currently,
two types of DDE and COM data communication mechanisms be-
tween DR software and simulation programs have been considered.
These mechanisms are embedded into DDRMethod class and DR
software in such a way that users can write their simulation pro-
grams with any programming software that supports one of DDE
or COM mechanisms and send simulated measurements to the DR
software.

To show the performance of object-oriented methodology applied
on DR and also two developed classes for NetDDR and EKF meth-
ods, DDR applied on a distillation column and the results are pres-
ented here. In each time step, simulation results are corrupted by
white noise with zero mean and a specified value of standard devia-
tion according to the type of signal, and then sent to the requesting
program. The objective is to reconcile temperature measurements.
The distillation column under study has 6 trays with one partial reboiler
and one partial condenser as shown in Fig. 16; thus there are 8 stages.

Feed with a composition of 70 mol% water and 30 mol% meth-

anol, enters on the 4th stage from the bottom of the column with
temperature of 78 oC and flow rate of 15 kgmol/min. According to
Fig. 17, trays of the column are numbered from bottom. All sym-
bols are defined in Appendix A.

MODELING AND SIMULATION
OF DISTILLATION COLUMN

For modeling and simulation of distillation column, mass and
energy balance equations must be written. Total mass balance equa-
tion based on Fig. 17 for stage n can be written as:

(18)

where volumetric liquid and vapor hold-ups are assumed constant.
Vapor holdup of a stage, vVn, is ignored compared to liquid holdup,
vLn. Thus Eq. (18) can be written as:

(19)

Stage outputs (Dn) can be represented as:

(20)

Mass balance equation for component i can also be written in the
following form, neglecting vapor holdup:

(21)

Assuming that the vapor phase is ideal and variation of liquid volume
with pressure is negligible, the equilibrium relation for i-th compo-
nent can be written as:

yiP=xiγiPi
* (22)

or

yi=Kixi (23)

where

(24)

In practice, liquid and vapor phases on stages are not in equilibrium.
In order to determine the actual rate of mass transfer, a parameter
namely plate efficiency is used. This parameter is defined as:

(25)

where the parameter xi, n+1(e) is the composition of the component i
in liquid phase at equilibrium with vapor leaving stage n+1 and can
be replaced by Eq. (23).

Differentiating the left hand side of Eq. (21) results in:

(26)

vLn
d
dt
---- ρLn( ) + vVn

d
dt
---- ρVn( ) = Ln+1− Ln − Dn + Vn−1− Vn + Fn

vLn
d
dt
---- ρLn( ) = Ln+1− Ln − Dn + Vn−1− Vn + Fn

Dn = 

Ln

R
----- n = N + 2

0 n N + 2≠⎩
⎪
⎨
⎪
⎧

vLn
d
dt
---- ρLnxi n,( ) = Ln+1xi n+1, − Lnxi n,  − Dnxi n,  + Vn−1yi n−1,

− Vnyi n,  + FnxF n,

Ki = 
γiPi

*

P
--------

En = 
xi n+1, − xi n,

xi n+1, e( ) − xi n,
-----------------------------

vLn
d
dt
---- ρLnxi n,( ) = vLn ρLn

dxi n,

dt
--------- + xi n,

dρLn

dt
----------⎝ ⎠

⎛ ⎞

Fig. 16. Implemented distillation column.

Fig. 17. The diagram used for modeling of distillation system.
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Multiplying Eq. (21) by En and using Eqs. (23) and (26), finally the
following results can be obtained:

(27)

(28)

(29)

(30)

(31)

The last term in Eq. (29) can also be replaced by the result of Eq.
(19).

An energy balance equation is needed to calculate vapor flow
rates. Neglecting the effect of mixing and generation of heat, it can
be written as:

(32)

For computing temperature variations of each stage, the column
model can be completed by the implementation of equilibrium rela-
tions. Summing Eq. (22) on number of components results in:

(33)

Differentiating the above equation with respect to time will result in:

(34)

Differentiation of vapor pressure, Pi
*, with respect to temperature

and activity coefficient, γi, with respect to temperature and molar
compositions results in:

(35)

(36)

By substituting the above equations in Eq. (34) and assuming iso-
baric conditions, the following equation can be obtained for the two
component system of methanol-water:

(37)

In this research the liquid phase activity coefficients, γi, are calculated
by Wilson equation and vapor pressures of pure components by
using the Antoine equation:

(38)

(39)

Values of Gi, j constant parameters of Antoine equation are pre-
sented in [20].

After model of the processing system is developed, the system
can be simulated. The method for the solution of the above equa-
tions is as below:

a) Set all dT/dt=0 and dρ/dt=0 for all stages,
b) Generate an initial guess for all variables such as gas and liquid

temperatures and compositions in each stage,
c) Solve the set of Eqs. (19) and (32), simultaneously for all stages

and use Eq. (20) to obtain liquid and vapor flow rates of each stage,
d) Calculate dρLN/dt for each stage from Eq. (19),
e) Calculate activity coefficients, vapor pressures, total pressure,

K-values and vapor compositions for all stages from Eqs. (38), (30),
(33), (24) and (23), respectively,

f) Calculate plate-efficiencies by Eq. (25),
g) Calculate liquid compositions and temperatures for each stage

by solving Eqs. (27) to (31),
h) Repeat from step c by new obtained values while steady-state

condition is satisfied (all derivatives with respect to time must be-
come very small) or the last specified time for simulation has reached.

SIMULATION RESULTS

According to the above algorithm, a simulation program was writ-
ten and the plant was simulated. For a reflux ratio of 3, the process
reached steady-state in less than 120 minutes. After 180 minutes, a
step change from 3 to 2 applied on reflux ratio. In this case, steady-
state condition was established in less than 60 minutes. Fig. 18 shows
temperature profiles for all stages.

dxi n,

dt
--------- = J1 n, xi n+1, − J2 n, xi n,  + J3 n, xi n−1, + J4 n,

J1 n,  = 
Ln+1

EnvLnρLn
-------------------

J2 n,  = 
En Ki n, Vn + Dn( ) + Ln − 1− En( ) Ln − Ln+1( )

EnvLnρLn
-------------------------------------------------------------------------------------------- + 

1
ρLn
------dρLn

dt
----------

J3 n,  = 
Vn−1Ki n−1,

vLnρLn
---------------------

J4 n,  = 
FnxF n,

vLnρLn
-------------

FnhF n,  + Vn−1 λiyi n−1, + SV i, yi n−1, Tn−1( ) + Ln+1 SL i, xi n+1, Tn+1
i=1

m

∑
i=1

m

∑

− Vn λiyi n,  + SV i, yi n, Tn( ) − Dn SL i, xi n, Tn − Ln SL i, xi n, Tn
i=1

m

∑
i=1

m

∑
i=1

m

∑

= vLn SL i, xi n,  + vVn SV i, yi n,  + Mc n,
i=1

m

∑
i=1

m

∑
dTn

dt
-------- + qc n,  − Qc n,

P = γixiPi
*

i=1

m

∑

dP
dt
------ = γixi

dPi
*

dt
-------- + γiPi

*dxi

dt
------- + xiPi

*dγi

dt
------⎝ ⎠

⎛ ⎞
i=1

m

∑

dPi
*

 = 
dPi

*

dT
--------dT

dγi = 
dγi

dT
------⎝ ⎠
⎛ ⎞

T xl,
dT  + 

dγi

dxj
-------⎝ ⎠
⎛ ⎞

T xl j≠,
dxj

j=1

m

∑

dT
dt
------ = − 

dx1

dt
------- γ1P1

*
 + x1P1

*dγ1

dt
------- − γ2P2

*
 + x2P2

*dγ2

dt
-------⎝ ⎠

⎛ ⎞

γixi
dPi

*

dt
-------- + xiPi

*dγi

dt
------⎝ ⎠

⎛ ⎞
i=1

2

∑
----------------------------------------------------------------------------------

γi( )ln  =1− xjGi j,
j=1

m

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

 − 
xkGk i,

xjGk j,
j=1

m

∑
-----------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

k=1

m

∑ln

Pi
*

 = Ai − 
Bi

Ci + T
-------------; Pi

* Pa[ ]; T K[ ]log

Fig. 18. Temperature profiles of the column with respect to time
for reflux ratios of 3 and 2.
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It is evident that temperature measurement is easier, faster and
more economic than the measurement of liquid and gas composi-
tions. As mentioned in the literature [21], for a distillation system,
liquid and gas compositions can be calculated based on tempera-
ture measurements, known pressure and equilibrium relations. Thus,
as the total pressure in a distillation column is assumed to be con-
stant, only temperature measurements are needed to be reconciled.
According to Eq. (32), for eight stages, there are eight measure-
ments.

y=[T1, …, TN+2]
T (40)

The reflux ratio is used as the input for the system of distillation
column. In the following tests, simulation was started at steady-state
condition for the reflux ratio of 3. Then a step change in reflux
ratio from 3 to 6 was applied at time 10. The standard deviation of
errors (SDE) for all noisy data is equal to 1.
1. DDR Using NetDDR Method

The developed class of NetDDRMethod is used for developing
a GUI for NDDR using ANNs. Fig. 19 shows the developed GUI
for training NetDDR ANN. As can be seen, it has three parts. In
the first part, parameters of ANNs for f and g such as the number
of layers and neurons can be specified. The second part is used for
generating training data by simulation of the plant. The third part is
for specifying training parameters. Before using ANN for DDR some
input-output data of the plant must be generated for training ANN.
This was done for a distillation column and 4000 input-output pairs
of data from the plant were generated. These data include random
values of reflux ratio, and true and noisy values of temperature meas-
urements obtained by simulation of the plant. After generating train-

ing data and specifying required parameters and then clicking Train
Network button, the network will be trained and prepared for DDR.

To use the trained network for NDDR, the NetDDR method must
be selected in the GUI of DCON software for NDDR (Fig. 14). By
selecting it and clicking on Perform Calculations button (Fig. 14),
DCON software will trigger the simulation program and will wait
for the simulated noisy measurements to be sent from it. During
simulation, in each time step, white noises are added to the calcu-
lated values to simulate real measurements and then sent to DR soft-
ware. When noisy measurements are received by DCON software,
it reconciles measurements using NetDDRMethod class. It has been
assumed that measurements contain no gross errors. Then the Net-
DDRMethod class uses the trained ANN for calculating reconciled
values of measurements. Eight layers and eight neurons in hidden
layers of the ANNs for f and g were considered. The Levenberg-
Marquardt  algorithm [22] was used for training.

In order to show the performance of NetDDR ANN for DDR of
multiple measurements, measurements of stages 5 to 8 were selected
for DDR. According to Eq. (17) with one delay in inputs, the num-
ber of inputs to the ANN is 29. After training the network using
available training data, the network was used for DDR. A step change
from 3 to 6 in reflux ratio was applied and measurements were re-
conciled by using the trained network. Fig. 20 shows the results of
DDR with trained network using NetDDRMethod class.
2. DDR Using EKF Method

To compare the results of NetDDR method with EKF method,
the above test was also repeated by EKF method. As mentioned
before, the EKF method is also encapsulated into a class, namely
DDRByKalman, which inherited the members of DDRMethod. Fig.
21 shows the results of NDDR using EKF method by applying
DDRByKalman class.

By comparing the results of Fig. 20 and Fig. 21 it is evident that
the NetDDR method gives better results than the EKF method. Also,
the NetDDR method does not need any information about the
model and state variables of the process. It is also faster than the
EKF method and can be used for on-line applications as the EKF
method. Table 1 compares the results of using NetDDR and EKF

Fig. 19. GUI used for training NetDDR ANN.
Fig. 20. Results of DDR on temperature of stages 5 to 8 using

trained ANN with one delay.
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methods for NDDR of temperature measurements.

CONCLUSIONS

The object-oriented method has the benefits of complexity man-
agement and code reusability and can be used to manage complex-
ity of DR problems especially on nonlinear dynamic systems. Com-
plexity management property of object-oriented method makes it
possible that large scale and complex operating systems can be di-
vided into simple subsystems, and DR can be applied on simple
subsystems instead of the whole system. In this work, object-oriented
modeling methodology is used for encapsulating different types of
DR problems in classes.

The main classes that are defined are Constraints for manipulat-
ing constraints, Optimization for defining and applying different
methods of optimization, DR the main class for all types of DR,
SSDR, LSSDR and NSSDR for steady-state DR in linear and non-
linear cases, and DDR, LDDR and NDDR for linear and nonlinear
dynamic DR.

The DDRMethod class is developed to let users to create and de-
velop their own classes and apply their methods for DDR by in-
heriting from it without any need to pay attention to other aspects
of developing a DDR software tool. Users can derive their classes
from it and customize its methods and apply their own methods
for DDR. Inheritance and aggregation mechanisms provide rela-
tionships between the above mentioned classes.

An academic software tool, DCON, is developed for perform-
ing different types of DR by coding classes declared in this paper.
Two parts of the software for performing LSSDR and NDDR are
discussed briefly. For performing NDDR, the DDE and COM data
communication mechanisms can be used between the software and
simulation programs to communicate between each other.

As an example, the class DDRByKalman was developed by ap-
plying KF and EKF methods for DDR. Another method, NetDDR,
which uses ANNs for DDR, was also implemented. A class with
the name of NetDDRMethod was inherited from DDRMethod class
and used NetDDR method for DDR.

To show the performance of the described object-oriented meth-
od and classes defined for DDR, the illustration example of DDR
on temperature measurements of a distillation column was presented
using EKF and NetDDR methods. Both methods showed high per-
formance in terms of removing noise from measurements and speed
of DDR. NetDDR method is faster and variance of errors in recon-
ciled data using NetDDR method is smaller than that of the EKF
method.

NOMENCLATURE

Dn : product flow rate from stage n [gmol/min]
En : plate efficiency for stage n
Fn : feed flow rate to stage n [gmol/min]
Gk, i : interaction parameter between components k and i, Eq. (16)
hF, n : enthalpy of feed stream entering stage n [J/gmol]
Ki : K-value of component i at system temperature and pressure
Ki, n : K-value of component i on stage n
Ln : liquid flow rate on stage n [gmol/min]
Mc, n : heat capacity of stage n [J/K]
m : total number of components=2
P : total pressure [Pa]
Pi

* : vapor pressure of component i at system temperature [Pa]
Qc, n : heat entered to stage n [J/min]
qc, n : heat loss from stage n [J/min]
SL, i : liquid heat capacity of component i [J/gmol·K]
SV, i : vapor heat capacity of component i [J/gmol·K]
T : system temperature [K]
Tn : temperature on stage n [K]
t : time [min]
Vn : gas flow rate on stage n [gmol/min]
vLn : liquid hold-up on stage n [m3]
vVn : gas hold-up on stage n [m3]
xi : molar composition of component i in liquid phase
xi, n : molar composition of component i in liquid stream on stage n
xi, n(e): molar composition of component i in liquid phase in equi-

librium with yi, n at system temperature and pressure on stage
n

xF, n : molar composition of methanol in feed stream entering to
stage n

yi : molar composition of component i in vapor phase
yi, n : molar composition of component i in vapor stream on stage n

Greek Letters
γi : activity coefficient of component i at system temperature
λi : heat of vaporization of component i [J/gmol]

Fig. 21. Results of DDR on temperature of stages 5 to 8 using EKF
method.

Table 1. Comparison of the results of NetDDR (with one input delay)
and EKF methods for NDDR of temperature measure-
ments

Method
Standard deviation of errors of

reconciled data for different stages
Running time

for each step of
DR (seconds)5 6 7 8

NetDDR 0.24 0.14 0.10 0.07 0.11
EKF 0.22 0.28 0.21 0.12 0.25
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ρLn, ρVn: liquid and vapor molar density on stage n, respectively [gmol/
m3]

Subscripts
i, j, k : component indices
n : stage index
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