
Korean J. Chem. Eng., 25(3), 402-408 (2008)
SHORT COMMUNICATION

402

†To whom correspondence should be addressed.
E-mail: wxhlee@sohu.com

Synthesis of nonsharp distillation sequences via genetic programming

Xiao-Hong Wang†, Yang-Dong Hu* and Yu-Gang Li*

College of Chemistry and Chemical Engineering, Ocean University of China, QingDao, 266100, Shandong, China
*QingDao University of Science and Technology, QingDao, 266042, Shandong, China

(Received 2 April 2007 • accepted 23 August 2007)

Abstract−This paper addresses the application of Genetic Programming (GP) to the synthesis of multicomponent
product nonsharp distillation sequences. Combined with the domain knowledge of chemical engineering, some evo-
lutionary factors are improved, and a set of special encoding method and solving strategy is proposed to deal with this
kind of problem. The system structural variable is optimized by GP and the continuous variable is optimized by the
simulated annealing algorithm simultaneously. Because GP has an automatic searching function, the optimal solution
can be found including distillation, splitting, blending and bypassing operations automatically without any super-
structures of nonsharp distillation sequences. Three illustrative examples are presented to demonstrate the effective
computational strategies.

Key words: Non-sharp Distillation Sequences, Genetic Programming, Synthesis

INTRODUCTION

The synthesis of optimal distillation sequences with pure products
has been studied very deeply over many years. Segovia-Hernan-
dez et al. [1] gave a comparative analysis of the control properties
for the Petlyuk column, and two alternate structures with unidirec-
tional interconnecting flows of the vapor or liquid interconnecting
streams were presented, which could provide better theoretical con-
trollability properties than the Petlyuk system. Kim et al. [2] devised
an industrial scale hexane process for the implementation of a fully
thermally coupled distillation column (FTCDC), and a semi-rigor-
ous material balance and Peng-Robinson equilibrium relation were
utilized in the structural design, which was good for a system of
many components found from actual field applications. Computer
modeling and some comparative works were performed to obtain
highly pure dimethyl sulfoxide (DMSO) which was used for fiber
spinning solvent for two different distillation sequences by Cho and
Kim [3]. The importance of the rigorous rate based model that was
the non-equilibrium approach was demonstrated for a typical extrac-
tive distillation process in a Glitsch V-1 valve tray column by Pradhan
and Kannan [4].

But according to the actual demand of industrial production, it is
more significative for separations of a single or several multicom-
ponent feeds into several specified multicomponent products using
distillation, splitting, blending and bypassing operations simulta-
neously. Nath [5] and Muraki [6] studied the synthesis of nonsharp
distillation sequences with one feed and multiple multicomponent
products by using the material allocation diagram (MAD). Liu et al.
[7] improved the individual material allocation diagram (IMAD)
to solve these kinds of problems with multi-feed. Bamopoulos et
al. [8] proposed a two-stage approach based on the component re-
covery matrix(R-matrix)which is an algebraic extension of MAD,
but only limited stream splitting is permitted in this study. Cheng

and Liu [9] devised some techniques for the systematic synthesis
of initial sequences for nonsharp separations with heuristics. Liu
and Xu [10] improved the separation product matrix transforming
method to solve the non-sharp distillation process with multi-feed;
then, the two-stage procedure for the synthesis of nonsharp distilla-
tion flow was brought forward [11]. Hu et al. [12] gave an ordered
heuristics method for the synthesis of nonsharp distillation sequences
with simple, sharp distillation columns. Wehe and Westerberg [13]
described an algorithmic procedure for the synthesis of sharp distil-
lation sequences with bypass. Aggarwal and Floudas [14] addressed
the process including heat integrated nonsharp columns with MINLP
method.

In this paper, a new stochastic optimization algorithm-Genetic
Programming (GP) [15] is proposed for the synthesis of multicom-
ponent product nonsharp distillation sequences. GP can express the
complex net structure of this kind of problem with its hierarchy and
can determine the feasible solving area automatically without giving
any superstructures. So, the global optimum can be searched auto-
matically in the genetic evolutionary process. Because other algo-
rithms do not possess the above features, a set of solution strategies
based on GP is suggested here.

GP is widely used in many fields as an evolutionary-computa-
tional method. An improved GP to facilitate the generation of steady-
state nonlinear empirical models for process analysis and optimiza-
tion was proposed by Grosman et al. [16], which could adjust the
complexity of the required model to accurately predict the true pro-
cess behavior. Madar et al. [17] gave a method that used GP to gen-
erate nonlinear input-output models of dynamical systems that were
represented in a tree structure, and this method resulted in more ro-
bust and interpretable models. Venkatraman et al. [18] used GP in
quantitative structure activity relationship (QSAR) analysis that re-
quired an objective variable relevance analysis step for producing
robust classifiers with low complexity and good predictive accu-
racy. Hinchliffe et al. [19] adopted multi-objective GP to evolve
dynamic process models. A modelling of hot yield stress curves
that were difficult to describe math for carbon silicon steel by GP

Synthesis of nonsharp distillation sequences via genetic programming 403

Korean J. Chem. Eng.(Vol. 25, No. 3)

was carried out by Kovacic et al. [20].
The principle and operations of GP are very similar to the genetic

algorithm (GA), which starts its calculation from initialized popu-
lations and generates new populations by using a variety of evolu-
tion operators to achieve the optimal solution according to the bio-
logical principles of natural selection. The difference between the
two methods in nature is that GA uses the length-fixed character
string to represent problems, while GP adopts the dendriform code
to express complex structure directly. So, the evolutionary operations
of GP can also proceed on its dendriform code directly. To give an
example that is illustrated in Fig. 1, the following two mathematical
expressions can be represented with particular dendriform struc-
tures of GP: (1) y=a+b×x (2) y=a×exp(b×x).

GP code is a kind of dendriform non-linear data structure, not a
string or array structure. According to the concept of data structure,
GP code is a tree composed by some nodes and branches. The evo-
lution operations of GP can proceed in the dendriform structure of GP
code directly, which includes the operations of reproduction, crossover
and mutation for a single node or a whole branch. When GP code
is used to represent the complex distillation sequence, the branches
of GP dendriform structure can be defined as streams, and the nodes
can be defined as unit operations (for example column, splitter and
blender). So, the combination of all nodes and branches for GP code
can be used to express the actual nonsharp distillation structure di-
rectly. We can know from the above description that although GP
is a domain independent optimization algorithm, it needs domain
knowledge to instruct the definition for its tree-like code. Mean-
while, evolution operations need to proceed in the relative profes-
sional domains to assure the effectiveness and accuracy of the al-
gorithm. So, combined with a professional knowledge of chemical
engineering separation, the definition for GP tree-like code and the
evolutionary operations is specially restricted in this work in order to
get an efficient optimization method for nonsharp distillation sys-
tem synthesis.

PROBLEM STATEMENT

The problem to be studied in this paper can be described as fol-
lows. A single feed stream of N-component mixture is given with
the known conditions (i.e., composition, flow rate, temperature and
pressure). The problem is to synthesize an optimal separation flow
that can separate the multicomponent mixture into the specified mul-
ticomponent product streams. The configurations can involve series

and/or parallel arrangements of distillation columns, as well as stream
splitting, blending and bypassing. To be convenient for expression
and calculation, the following assumptions are introduced in this
work:

(1) Each distillation column performs a “sharp” separation.
(2) The maximum number of separators is N−1.
(3) Components in any stream are ranked according to their rel-

ative volatility order. To give an example, a stream containing N
components is arranged as H1, H2, …, HN, where H1 is the most vol-
atile (lightest) component, H2 is the next lightest, and so forth down
to the heaviest of all the components HN.

(4) Heat integration among the distillation columns is not per-
mitted.

(5) The separation flow is optimized in order to minimize the fol-

lowing simple nonlinear objective function: [10], where

Li and Ki are, respectively, the separation mass load and the diffi-
culty degree of the ith component separation, where Ki=1/lnα.

GP-BASED ENCODING STRATEGY

1. Nonsharp Distillation Sequence Encoding
In order to express the positions and the connection relationships

of distillation, splitting, blending and bypassing operations in GP
tree-like code, three kinds of nodes (column node, splitter node and
blender node) are defined in this paper. Some relevant properties
are set for these nodes to represent their features, respectively, and
the definition can be stated as follows:
1-1. Design for Column Node

Because the information for the stream cut (separation) position
(i.e., assignation for the light and heavy key component) is a very
important property for column node that determines the separation
mission of this distillation column, we use the corresponding ordi-
nal number of the light key component to represent it. For example,
integer one denotes the light key component (i.e., No 1 component)
and the heavy key component is the adjacent one to the light key
component for a sharp separation column. It requires N−1 columns to
separate an N-component mixture when only conventional columns
with sharp separation are adopted. So, it corresponds to N−1 differ-
ent integers to represent cut property, and the relationship between
the property and the corresponding separation mission is as follows.

H1|H2|H3
…Hi|Hi+1

…HN−1|HN (1)
1 2 i N−1

Feed composition is other important information for column node.
It is represented with two integers in this paper: one of them denotes
the lightest component in the feed stream and the other indicates
the heaviest component, which both being expressed by the corre-
sponding component’s ordinal number.

It is specified that the information of stream cut position and feed
composition is randomly selected for every column when the GP
code is produced in this paper; therefore, the randomization of this
algorithm can be assured.
1-2. Design for Splitter Node

As everyone knows, a splitter can divide an inlet stream into sev-
eral outlet streams that have the same compositions and physical
properties but different flow rates. Similar to the definition for col-

LiKi()0.6

i=1

n−1

∑

Fig. 1. Dendriform structure of expressions.

404 X.-H. Wang et al.

May, 2008

umn node, two kinds of information are needed to express the prop-
erties for splitter node, too. First, two integers are used to describe
the information of feed composition, and the definition method for
the two integers is the same as for the column node that is men-
tioned above. Further information for splitter node is the definition
of the distribution coefficient for every outlet stream that denotes
the ratio of an outlet stream flow rate to the inlet stream flow rate.
In order to assure the regularity of GP tree-like code, we limit that
every splitter can only divide an inlet stream into two outlet streams
in this paper. A real number is used to indicate the distribution co-
efficient of one outlet stream: meanwhile, the distribution coefficient
of another outlet stream is confirmed automatically, because the
sum of the two distribution coefficients must be 1.
1-3. Design for Blender Node

A blender is very important in such nonsharp separation sequence.
If the definition for it is random, that is, every blender is encoded
randomly just as the same as that of the other two kinds of nodes,
it will appear randomly at any position of GP code. Then, the GP
code may become too complex and disordered to possess high valid-
ity. Moreover, it will result in the failure to express the mixed opera-
tion of any two or multiple feeds into the same blender. In order to
express the special netlike structure of a nonsharp separation pro-
cedure, a special encoding method for blender node is adopted in
this paper, which sets all the blenders of GP code to be arranged in
a kind of grid framework. The maximum layer number for the grid
framework is usually confirmed according to the scale of every de-
tailed problem. Meanwhile, the maximal number of blenders in every
layer for the blender grid framework is defined to the number of
products. In order to denote the position of each blender in the frame-
work, two integers are figured as the property of the blender node.
One of them denotes the layer number and the other indicates the
ordinal number of the blender in this layer. The last layer of blender
grid framework is named the terminal products blender. In order to
produce the prescribed mixture products, all streams of GP code
will be collected to the several terminal products blenders, so the
number of terminal products blender must be the same as that of
the products.
2. Generating GP Code

The whole GP code is based on the above-mentioned blender
grid structure and every blender in it can be as a sub-node from which
a sub-tree can be generated via growing downward randomly. Thus,
many sub-trees can be formed according to the same principle. When
the whole GP code reaches the maximum depth limited by the al-
gorithm, all the branches will be connected with several terminal
blender nodes randomly to produce different mixture products and
the whole algorithm tree ceases growth. That is, the whole GP tree-
like code is formed finally, based on the growth of sub-tree layer
upon layer, which can be used to express the complex netlike struc-
ture of nonsharp distillation sequence.

The detailed process for generating GP code includes the fol-
lowing steps. First, a column node or a splitter node is selected ran-
domly as GP code tree’s root node that expresses the original feed
can be separated by a distillation column or be divided by a splitter.
If a column node is selected as the root node, which corresponds to
a distillation column in the actual flow, there are two branches: a
right branch and a left branch for the node. The right branch cor-
responds to the top stream of the column that includes the compo-

nents lighter than the light key component, while the left branch cor-
responds to the bottom stream that includes the components heavier
than the heavy key component. If a splitter node is selected as the
root node for a GP code, two branches (left branch and right branch)
are also generated that correspond to the same compositions and
physical properties but different flow rates of the two outlet streams
for this splitter, respectively. Once the root node for GP tree is con-
firmed, no matter if it is a column node or a splitter node, the con-
nection relation for both the left branch and right branch with the
following nodes should be expressed. It is specified in the algo-
rithm that the next sub-node can be randomly selected from three
types of nodes, including column node, splitter node and blender
node. Then, every sub-node connects to the next sub-node pro-
duced randomly, that results in each branch of any node extending
downwards continuously. The connection proceeds alternately until
all branches reach the GP code tree’s maximum deepness, which
has been defined in this paper; then all branches of the GP code
are randomly connected to the different terminal product blenders
to produce the specified product streams. Now, the growth of the
GP tree stops, which means a whole GP tree-like code has been
achieved, just like Fig. 2 (symbol S-splitter node, symbol C-col-
umn node, symbol M-blender node).

During the GP code forming process, if any branch of any sub-
node is confirmed randomly to be connected to a blender node, a pair
of property parameters of this blender node can be used to indicate
the position of this blender node. That is, which layer and which
column among the blender grid framework the blender is located
in. It means that any node of any sub-tree in GP code has the pos-
sibility of connecting to any blender node in the blender grid struc-
ture. Thus, any blender has the possibility to mix multiple streams
from different sub-trees. Then, this blender node will be as a sub-root
node and a corresponding sub-tree downwards grows randomly
based on it.

The coding method can be used to express the bypass operation
successfully. When a splitter node is confirmed as the root node of
a GP tree-like code randomly and a terminal products blender of the
GP code is just selected by one of the two branches of this splitter

Fig. 2. Netlike structure of GP code.

Synthesis of nonsharp distillation sequences via genetic programming 405

Korean J. Chem. Eng.(Vol. 25, No. 3)

node directly, it means that a part of the original feed can be sent to
the products blender directly without being separated by a distillation
column. This connecting way can be used to express the bypass
operation for the original feed stream. Meanwhile, for any sub-node
located anywhere in the whole GP tree-like code, when one branch
of it is connected to the terminal products blender directly, it also
means that a part of inlet stream for this node can be sent to the ter-
minal products blender directly without being separated by a distil-
lation column, and the bypassing operation for this middle stream
can be realized.
3. GP Evolutionary Operations Based on Chemical Engineer-
ing Domain Knowledge

In a similar way to GA, GP also needs the operations of repro-
duction, crossover and mutation to achieve the evolutionary optimi-
zation process.
3-1. Reproduction Operation

Reproduction operation is used to regenerate the optimal mem-
bers from the population of one generation to the next generation
and eliminate the bad members. The athletics selection method [15]
of GP does not need to evaluate the fitness of every member in one
generation, which obviously speeds up the evolutionary velocity of
the population. So, this method is adopted to execute the reproduc-
tion operation in this paper.
3-2. Crossover Operation

Crossover operation is used to exchange the part genes of two
members of GP code to produce two new members and it is divided
into two classes in this work, i.e., the crossover of a node and the
crossover of a node property.

When the crossover of a node proceeds, according to the special
feature of multicomponent product nonsharp distillation sequence,
it is specified in this work that two column nodes can exchange to
each other or two splitter nodes can exchange to each other as well
as a column node and a splitter node can exchange to each other too,
but a column node or a splitter node cannot be crossed to a blender
node, and two blender nodes cannot be crossed to each other also.
If two allowed nodes would be crossed, in order to guarantee the
validity of this operation, it is specified that the two nodes must have
the same feed composition. The judgment method is to compare
whether the feed composition information contained in the two nodes
is the same or not. When the crossover of a node proceeds, the con-
tents of the crossover operation include not only the node itself but
also all properties of the node. Meanwhile, both the node itself and
the two branches of this node partake in the crossover operation.
Here, not every blender node can partake in the crossover opera-
tion in order to protect the blender grid frame.

When the crossover operation is aimed at a node property, it is
defined that only corresponding properties of the two homogeneous
nodes are crossed while the node itself remains changeless.

Sameness: every blender node cannot partake in the crossover
of node property in order to protect the blender grid frame.

To ensure the randomization of this algorithm, stochastic selec-
tion is adopted in this paper to determine the types of the crossover
operation (i.e., the crossover of a node or the crossover of a node
property).
3-3. Mutation Operation

According to the characteristic of the nonsharp distillation pro-
cess, it is specified in this work that the column node itself and the

splitter node itself can participate in the mutation operation and they
can mutate to each other too. When the mutation operation is for
column node or splitter node itself, it is limited in that the mutation
operation cannot change the feed information for the node but can
do mutation for the information of the stream cut.

The mutation operation method for a column node or splitter node
is that the left and right sub-nodes of the selected node are deleted
first. Then, the information of the stream cut is randomly changed
again in the range of the feed information included in this node.
Lastly, the new left and right branches of this node are generated
according to the new information of stream cut that can assure the
mutated code being valid. Here, the new information of stream cut
for column node is to assign the light and heavy key components
randomly again, and for the splitter node it is to generate the distribu-
tion coefficient randomly again. When the column node and the
splitter node mutate to each other, the feed information for every
node must be kept fixed first and the new left and right branches
will be produced according to the new stream cut information (or
distribution coefficient) of this new node.

Sameness, the types of mutation operation (i.e., the mutation op-
eration for homogeneous node or the mutation operation for differ-
ent type node) is randomly specified here in order to assure the di-
versity of GP code.

To sum up, GP tree-like code can be used to represent every in-
dividual of the population directly and the evolution operations can
proceed in the code forthwith, not like the GA using binary charac-
ter to represent separation flow. So, the improved GP-based algorithm
can be used to describe various netlike structures of the nonsharp
separation process directly and may discover more unimaginable
flow structures.
4. Calculation Steps for the GP-Based Synthesis Algorithm

The GP-based synthesis algorithm includes the following steps:
(1) Generate initial population randomly as described in 4.2. Be-

cause too many nodes and blender layers can lead to the GP code
being excessively complex, and even possibly lead to the failure of
the calculation of this algorithm fail, the maximal depth of the GP
algorithm tree is set to 7. As a result, the sum of total nodes is limited
in order to assure the success of this algorithm. Meanwhile, the maxi-
mal blender layer number is set to 5, which includes the last layer
of the terminal product blender. On the other hand, the population
size is set to P and the maximal evolutionary generation is set to W,
where P and W will be assigned according to every actual problem.

(2) The simulated annealing (SA) algorithm [21] is a well estab-
lished technique for optimization problems that cannot be repre-
sented by simple and explicit functions. Typically, the SA algorithm
simulates the physical process of annealing, i.e., melting a solid by
increasing its temperature, followed by slow cooling and crystalliza-
tion to a minimum free energy state. SA may be viewed as a random-
ization device that allows some wrong-way movements during the
course of the optimization, through an adaptive acceptance/rejec-
tion criterion.

In this paper, the SA algorithm is used to optimize the continu-
ous variable, the distribution coefficient of every splitter for every
GP code, while the GP algorithm is used to optimize discrete var-
iables, the separation flow structure. First, we give an initial value
of the distribution coefficient for every splitter; then, the optimal
solution can be found generally by properly adjusting the change

406 X.-H. Wang et al.

May, 2008

step size and iteration number for the value of the distribution co-
efficient.

The GP-based strategy improved in this paper can deal with both
discrete and continuous variables simultaneously.

(3) Translate every GP code into its corresponding nonsharp dis-
tillation flow and get the separation mass load for every distillation
column node. Then, the fitness of every GP code can be calculated

with the formula: given in section 3.

(4) The operations of reproduction, crossover and mutation are
performed as described in 4.3 where the reproduction rate is set to
15%, the crossover rate is set to 50% and the mutation rate is set to
8%.

(5) Steps (2) to (4) are repeated until the fitness does not change
in the last two generations or the number of the maximal generation
is reached, which means the algorithm should be terminated.

EXAMPLES

The calculation software for the GP-based synthesis algorithm
is programmed by using C++ language, and the effectiveness of

the algorithm is validated by the following three typical nonsharp
distillation problems on a Pentium 4/3.0 G computer. The data are
given in Tables 1-3 and the synthesis is to find the optimal separa-
tion flow that can minimize a simple nonlinear objective function:

 given in section 3.

LiKi()0.6

i=1

n−1

∑

LiKi()0.6

i=1

n−1

∑

Table 1. Data for Example 1

Flow rate (kmol·h−1) A Propane B Isobutane C n-Butane D Isopentane E n-Pentane Quantity
Feed 45.36 136.08 226.8 181.44 317.52 907.2
Product1 20.00 100.00 100.0 150.00 100.00 470.0
Product2 25.36 036.08 126.8 031.44 217.52 437.2
Separation C1 C2 C3 C4

(T=350 K)
K=1/lnα 1.19 3.66 1.26 4.72

Table 2. Data for Example 2

Flow rate (kmol·h−1) A B C D Quantity
Feed 10 32 20 48.0 110.0
Product1 02 3.2 02 04.8 012.0
Product2 01 6.4 00 04.8 012.2
Product3 05 6.4 02 19.2 032.6
Product4 00 9.6 10 14.4 034.0
Product5 02 6.4 06 04.8 019.2
Separation C1 C2 C3

K=1/lnα 1.2 1.5 3.0

Table 3. Data for Example 3

Flow rate (kmol·h−1) A Propane B Isobutane C n-Butane D Isopentane E n-Pentane F n-Hexane G n-Heptane Quantity
Feed 15 20 25 35 30.0 45 30 200.0
Product1 07 04 10 15 12.0 20 15 083
Product2 03 08 07 10 09.4 15 10 062.4
Product3 05 08 08 10 08.6 10 05 054.6
Separation C1 C2 C3 C4 C5 C6

(T=350 K)
K=1/lnα 1.19 3.66 1.26 4.72 1.04 1.08

Fig. 3. (a) GP code for Example 1 (numbers are stream flow rates);
(b) Configuration for Example 1 (Fractions are relative flow
rates; numbers in brackets are stream flow rates).

Synthesis of nonsharp distillation sequences via genetic programming 407

Korean J. Chem. Eng.(Vol. 25, No. 3)

Example 1 is the second example of Liu and Xu [10]. The popula-
tion size for GP is set to 50, while the maximal evolutionary genera-
tion is set to 40. The GP code for the optimal solution obtained in
this work is illustrated in Fig. 3(a) and the corresponding optimal
flow configuration is expressed in Fig. 3(b), which is different from
the one of Liu and Xu [10]. In the optimal flow obtained by us, all
middle blenders are cancelled by the GP-based algorithm and the
Mi expresses the ith product terminal blender in Fig. 3(a). From Fig.
3(b), we know that the parallel C2 and C4 separations are executed
simultaneously after C3 separation, and the separation mass load L
of C1, C2, C3 and C4 severally is 53.29, 119.9, 464.49 and 255.47,
respectively. From Table 1, we know that the separation difficulty
degree K between AB, BC, CD and DE components, respectively,
is 1.19, 3.66, 1.26 and 4.72. So, the objective function of this work

is calculated by the formula =166.9 and that of Liu and

Xu [10] is 172.9. It is evident from the values of the objective func-
tion that the sequence obtained in this work is better than that of
Liu and Xu [10]. The optimal configuration is found at the evolu-
tional generation of 30 and the time for CPU is about 600 s.

Example 2 is the third example of Liu and Xu [22]. The size of
the population for GP is set to 60, while the maximal evolutionary
generation is set to 50. The GP code for the optimal solution and
its corresponding optimal flow configuration obtained in this work
are illustrated in Fig. 4(a) and (b) severally. The same as Example
1, all middle blenders are cancelled by the GP-based algorithm for
the optimal solution and the Mi expresses the ith product terminal
blender in Fig. 4(a). The separation sequence is the same as the one
of Liu and Xu [22], but they did not give the detailed separation
flow. From Fig. 4, we know that the separation mass load L of C1,
C2 and C3 severally is 16.8, 77 and 27.2, respectively. From Table 2,
we know that the separation difficulty degree K between AB, BC
and CD components, respectively, is 1.2, 1.5 and 3.0. So, the ob-
jective function of the optimal separation configuration obtained in

this work is calculated by the formula =37.4; the opti-

mal solution is found at the 40th GP evolutional generation, and
the time for CPU is about 900 s.

Example 3 is a seven-component three-product nonsharp sepa-
ration problem that is made by us. The size of the population for
GP is set to 80, while the maximal evolutionary generation is set to
60. The GP code for the optimal solution and its corresponding op-
timal flow are explained in Fig. 5(a) and (b). Sameness, no middle
blenders are found and the Mi expresses the ith product terminal
blender in Fig. 5(a). It is difficult to find such a complex flow by
the algorithm of experiential rules. However, the GP-based synthe-

LiKi()0.6

i=1

4

∑ LiKi()0.6

i=1

3

∑

Fig. 4. (a) GP code for Example 2 (numbers are stream flow rates);
(b) Configuration for Example 2 (Fractions are relative flow
rates; numbers in brackets are stream flow rates).

Fig. 5. (a) GP code for Example 2 (numbers are stream flow rates);
(b) Configuration for Example 3. Fractions are relative flow
rates; numbers in brackets are stream flow rates.

408 X.-H. Wang et al.

May, 2008

sis algorithm proposed in this work can find the optimal solution at
the 45th GP evolutional generation within about 1,200 seconds with-
out giving any superstructure.

From Fig. 5, we know that the separation mass load L of C1, C2,
C3, C4, C5 and C6 severally is 9.34, 39.24, 2.05, 3.05, 86.6 and 4.2,
respectively. From Table 3, we know that the separation difficulty
degree K between AB, BC, CD, DE, EF and FG components, re-
spectively, is 1.19, 3.66, 1.26, 4.72, 1.04 and 1.08. So, the objective
function of the optimal separation configuration determined in this

work is calculated by the formula =48.

CONCLUSION

A new stochastic optimization algorithm, Genetic Programming
(GP), is proposed for the synthesis of multicomponent product non-
sharp distillation sequences. Based on the special blender grid frame-
work, a complex nonsharp distillation netlike structure is devised and
can be expressed directly by using GP’s special hierarchical config-
uration. The synthesis of such separation sequences is to minimize
a simple nonlinear objective function that is mentioned above. In
order to assure the proceeding validity of this algorithm, several evo-
lutionary factors are improved according to the domain knowledge
of chemical engineering. While GP is used to optimize the structural
variable, SA algorithm is used to optimize the continuous variable
simultaneously. It is shown by the computation results that the pro-
posed GP-based synthesis method can automatically solve the opti-
mization synthesis problem of nonsharp distillation sequence includ-
ing distillation, splitting, blending and bypassing operations quickly
and effectively.

NOMENCLATURE

Hi : the ith component
Ki : difficulty degree of the ith component separation
Li : separation mass load of the ith separation column
N : component number for mixture
P : size of the population for GP
W : maximal number of evolutionary generation for GP
α : relatively volatilization degree

REFERENCES

1. J. G. Segovia-Hernandez, A. Bonilla-Petriciolet and L. I. Salcedo-
Estrada, Korean J. Chem. Eng., 23, 689 (2006).

2. Y. H. Kim, K. S. Hwang and M. Nakaiwa, Korean J. Chem. Eng.,
21, 1098 (2004).

3. J. Cho and D. M. Kim, Korean J. Chem. Eng., 24, 438 (2007).
4. S. Pradhan and A. Kannan, Korean J. Chem. Eng., 22, 441 (2005).
5. R. Nath, Studies in the synthesis of separation process, Ph.D. dis-

sertation, University of Houston, TX (1977).
6. M. Muraki and T. Hayakawa, Chem. Engng. Sci., 43, 259 (1988).
7. Z.-Y. Liu, Z.-S. Guo, et al., Journal of Chemical Industry and Engi-

neering (China), 45, 321 (1994).
8. G. Bamopoulos, R. Nath, et al., AIChE J., 34, 763 (1988).
9. S. H. Cheng and Y. A. Liu, Ind. Engng. Chem. Res., 27, 2304 (1988).

10. Z.-Y. Liu and X.-E. Xu, Chem. Engng. Sci., 50, 1997 (1995).
11. Z.-Y. Liu, L.-N. Hu, et al., Journal of Chemical Engineering of Chi-

nese Universities, 13, 66 (1999).
12. Z. Hu, B. Chen and X. He, Comput. Chem. Eng., 17, 379 (1993).
13. R. R. Wehe and A. W. Westerberg, Comput. Chem. Eng., 11, 619

(1987).
14. A. Aggarwal and C. A. Floudas, Comput. Chem. Eng., 16, 89 (1992).
15. J. R. Koza, Genetic programming: On the programming of com-

puter by means of natural selection, Cambridge: The MIT Press
(1992).

16. B. Grosman and D. R. Lewin, Comput. Chem. Eng., 28, 2779 (2004).
17. J. Madar, J. Abonyi and F. Szeifert, Ind. Engng. Chem. Res., 44, 3178

(2005).
18. V. Venkatraman, A. R. Dalby and Z. R. Yang, Journal of Chemical

Information and Computer Sciences, 44, 1686 (2004).
19. M. P. Hinchliffe and M. J. Willis, Comput. Chem. Eng., 27, 1841

(2003).
20. M. Kovacic, M. Brezocnik and R. Turk, Materials and Manufac-

turing Processes, 20, 543 (2005).1
21. S. Kirkpatrick, D. D. Gelatt and M. P. Vecchi, Science, 220, 671

(1983).
22. Z. Y. Liu and X. E. Xu, Chem. Engng. Res. Des., 73(Part A), 13

(1995).

LiKi()0.6

i=1

6

∑

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 3.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200062006500730074002000730075006900740065006400200066006f007200200068006900670068002d007100750061006c0069007400790020007000720065007000720065007300730020007000720069006e00740069006e0067002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

