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Abstract  The Main Ethiopian Rift (MER) is an area of extreme topography underlain by post-Miocene volcanic rocks, Jurassic 

limestone and a Precambrian basement. A prime concern is the rapid expansion of wide gullies that are impinging on agricultural 

land.  We investigate the potential contribution of Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) 

data and geomorphologic parameters to discern patterns and features of gully erosion in the MER. Maximum Likelihood Classifica-

tion (MLC), Support Vector Machine (SVM), and Minimum Distance (MD) classifiers are used to extract different gully shapes and 

patterns. Several spatial textures based on Grey Level Co-occurrence Matrices (GLCMs) are then generated. Afterwards, the same 

classifiers are applied to the ASTER data combined with the spatial texture information. We used geomorphologic parameters ex-

tracted from SRTM and ASTER DEMs to describe the geomorphologic setting and the gullies’ shapes. The classifications show 

accuracies varying between 67% and 89%. Maps derived from this quantitative analysis allow the monitoring and mapping of land 

degradation as a direct result of gully-widening. This study reveals the utility of combining ASTER data and spatial textural infor-

mation in discerning areas affected by gully erosion. 
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Introduction 

Gully erosion has a negative impact on soil fea-

tures, crops, and water resources and is one of the 

main erosion processes in terms of resultant soil 

loss and sediment production across the world.[1-5] 

Several definitions are used to define the concepts 

and main characteristics of gullies. The Food and 

Agriculture Organisation (FAO) describes gullies 

as stream channels whose width and depth do not 

allow normal tillage.[6] Hudson (1985) defines gul-

lies as steep- sided eroding water-courses that are 

subject to ephemeral flash floods during rainstorms. 

Gully erosion occurs at different rates and scales.[7] 

The causes, processes, prediction, and control of 

gully erosion have been studied in different envi-

ronments and through several techniques.[1,8,9,10] A 
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study of 22 reservoir catchments in Spain clearly 

indicates that sediment yield increases when the 

frequency of gullies increases.[11] As well as being 

important in terms of soil degradation, gully ero-

sion is also the main link between transfer runoff 

from uplands to valley bottoms.[3,12] Consequently, 

gully erosion is considered as one of the erosive 

processes that most contributes to shape the Earth's 

surface.[13] 

The Main Ethiopian Rift (MER) is an area of ex-

treme topography underlain by post-Miocene vol-

canic rocks, post-Triassic sediments and a Precam-

brian basement.[14]  The MER is severely affected 

by wide gullies which are expanding into agricul-

tural lands at an alarming rate.[15] The rapid increase 

in the number of areas affected by gully erosion in 

Ethiopia during recent decades has been variously 

attributed to deforestation, overgrazing, and climate 

change.[16] High temperature decreases the decom-

position of organic matter and therefore can in turn, 

decrease soil stability, leading to gully formation.[17] 

Hitherto, the majority of land degradation studies 

related to gully erosion have been on a local scale 

and diagnostic with little or no focus on the mapping 

of gully shapes. Several gully erosion studies have 

been carried out in the Ethiopian Rift, including 

qualitative erosion mapping.[13,18,19]  However, a 

standard method for gully erosion mapping is still 

lacking.[20]  The main objective of these studies was 

to find out the type and severity of degraded soils 

associated with gullies according to different 

land-use types. The development of Geographic In-

formation System (GIS), accurate Digital Elevation 

Model (DEM), and remote sensing techniques pro-

vide new possibilities to improve and optimize gully 

erosion mapping techniques.[1]  Satellite scenes 

currently cover almost the whole Earth, providing 

interesting capacities to investigate gullies wherever 

required. Giordano and Marchisio (1991) revealed 

that gullies affect areas wide enough to be covered 

by the resolution of satellite images.[21]  Therefore, 

multispectral remote sensing techniques are becom-

ing increasingly relied upon to map the extension of 

gully erosion phenomena[22-24] and to generate maps 

showing the erosional activity of gully walls from 

mapped vegetation cover.[24] 

A spatial mapping and assessment of the gullies in 

the MER region is required to fully describe and un-

derstand this phenomenon. The main objective of 

this current work was to map areas affected by gully 

erosion and to develop a methodology based on re-

mote sensing data to provide regional-scale, gully 

erosion-intensity maps. Algorithms for image classi-

fication, spectral properties, texture feature informa-

tion, and geomorphologic analysis were used for this 

purpose. Consequently, we describe the potential 

contribution of Advanced Space-borne Thermal 

Emission and Reflection Radiometer (ASTER) data 

and geomorphologic parameters to discern gully 

erosion in the MER.  

1  Study areas  

Two different study areas within the MER were 

selected for this research. Test sites A and B were se-

lected as representatives of typical catchments where 

gully erosion is encountered on a large scale. In addi-

tion, they highlight two different types of gullies 

(discontinuous and continuous). The visual interpre-

tation of the RGB ASTER image shows much 

spreading of discontinuous gullies in region A, 

whereas the continuous gullies are widely present in 

region B. 

The test sites are located in the central part of the  

MER in the northeast of Africa between longitude 

38° and 39° and  latitude 8° and 9° North  (Fig.1). 

The average annual rainfall is approximately 720 mm. 

The main rainy season extends from late May to Sep-

tember. Region A is dominated by pastureland, used 

by the people of the ALEMA TENA village for cattle 

grazing. The presence of the village, with a few hun-

dred families has led to a landscape in sharp contrast 

to that in region B. Region B is dominated by crop-

land, savannah, and rangeland.  

Both study areas are situated in a sub-humid tropi-

cal environment but exhibit differing geomorphology. 

Area B is characterized by chains of hills and steep 

slopes (average ∨ 25°) with an average elevation of  

1765 m asl. Area A has a more undulating topography 

with gentle slopes and an average elevation of 1643 

m asl. Slopes in both areas are often highly dissected 

by V-shaped and concave valleys.  
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Fig. 1  Location of study areas in the MER 

2  Data and methodology 

Different methods have been proposed for the extrac-

tion and classification of gully erosion.[8,9]  A methodo-

logical framework in the context of remote sensing and 

GIS techniques was considered to carry out this study. 

Algorithms for image classification as Maximum Like-

lihood Classification (MLC), Support Vector Machine 

(SVM), and Minimum Distance (MD) were used to ex-

tract the various gully shapes and patterns.  

(1) Support vector machine 

The SVM is a type of universal learning machine, 

used for pattern recognition and originally designed to 

solve binary classification problems.[25] The SVM clas-

sification requires a proper selection of kernel function 

to establish accurate hyperplanes that minimize mis-

classification error.[25] The Radial Basis Function (RBF) 

kernel was selected for the classification and works 

well for general image classification cases.[26]  

The mathematical representation of the RBF kernel 

(K) is:  
2
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Where data separability are represented by {xi, xj} 

and σ  is the width of the radial basis function.  

(2)Maximum likelihood classification 

Maximum likelihood classification is the most 

widely adopted parametric classification algorithm.[27-29] 

MLC algorithm is based on probability distributions 

and decision rules which assume the date values to be a 

set of multivariate normal distributions.[30]
 

The algo-

rithm classification assigns a particular class to each 

pixel based on the shortest modified distance of the 

pixel from the class mean. It also considers shape, size 

and orientation of the training samples 

(3)Minimum distance classification 

Supervised MD classification was also applied in 

this study. It is a simple classification algorithm 

which uses the mean vectors of each endmember and 

calculates the Euclidean distance from each unknown 

pixel to the mean vector for each class.[31]  All pixels 

are classified to the nearest class unless a standard 

deviation or distance threshold is specified, in which 

case some pixels may be unclassified if they do not 

meet the selected criteria. The MD algorithm is fast 

and one of the more commonly used algorithms be-

cause of its mathematic simplicity. 

Classification accuracies were assessed using con-

fusion matrices. Sample data of gully and non-gully 

erosions were initially selected from the satellite im-

age and confirmed with the information collected 

during fieldwork, which was then used to run the 

classification.  

ASTER image Level 1B data, acquired in October 

2006, is used for the purpose of this work. The image 
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has a spatial resolution of 15 m in three Visible and 

Near Infrared (VNIR) bands, 30 m in the nine Short 

Wave Infrared (SWIR) bands and 90 m in the 5 bands 

of the Thermal Infrared (TIR). Atmospheric correction 

was conducted on this image using ENVI FLAASH to 

produce surface reflectance from a multispectral radi-

ance ASTER scene and compensate for atmospheric 

effects.  

In addition, DEM was generated from the ASTER 

stereo image using the 3N (nadir) and 3B (backward) 

bands of the ASTER data. Therefore, 175 tie points 

were collected to connect the 3N and 3B channels 

using the OrthoEngine toolbox in the PCI Geomatica 

environment. These images have a size of 4200 × 

4100 pixels with a spatial resolution of 15 m. The 

generated DEM employed Ground Control Points 

(GCPs) from a 1:25000 scale topographic map and 

Shuttle Radar Topographic Mission (SRTM) data.   

Furthermore, we selected a number of predisposing 

factors to accurately identify soils affected by gullies. 

Slope, elevation and drainage networks are considered 

as important factors in susceptibility studies of soil 

denudation.[32-34]  These factors were used to validate 

the MLC, SVM and MD supervised classification re-

sults. Layers representing the appointed factors were 

overlapped on the classification results and used to 

validate the classification through visual interpretation. 

The extraction of the drainage network was gen-

erated automatically based on the deterministic 8 

(D8) model and by direct digitalization of the 

ASTER image.[35,36]  The D8 methodology con-

siders eight flow directions, four horizontal and 

vertical, and four diagonal. The model determines 

the steepest down slope between a cell and a 

neighbouring cell, taking into consideration the 

elevation of the closest cells and the distance be-

tween the centres of cells.   

Maps derived from such analyses allowed the iden-

tification and description of forms and patterns of 

gullies that were encountered in the study areas on a 

catchment scale. The general methodological proce-

dure is presented in the Fig.2. 

2.1  Training sample preparation 

Selection of the training samples is an important 

stage in supervised satellite image classification pro- 

 
Fig. 2  Diagram of mapping the gully erosion using 

remote sensing and geomorphology analysis 

cedures. Collected sample datasets are fed into the 

classification algorithms to discriminate the gully 

erosion with other classes. In land degradation map-

ping the definition of training features is a crucial 

step as an incorrect definition/selection of training 

areas may compromise the outcome of classifica-

tion.[37]  Training areas were selected based on the 

knowledge and information available from the region. 

This was acquired during fieldwork and then com-

bined with geomorphologic aspects collected from 

the SRTM and ASTER DEM data. Furthermore, 

shaded relief, aspect angle, and drainage network 

from the DEM were generated and used as additional 

spectral data information to discriminate the pattern 

of gullies from the non-gullies.  

For better discrimination in selecting training sam-

ples from ASTER image classes, we used the results of 

unsupervised algorithms to help define the training 

features. The k-means clustering method was selected 

to obtain probable clusters. In addition, visual interpre-

tation from RGB composition and reference maps were 

considered for a better definition of the training sets. 

According to Lu and Weng (2005), such a procedure is 

a hierarchical development to obtain the best possible 

result from the classification approach.[38] To conduct 

SVM, MLC and MD supervised classifiers, two classes 

were defined: gullies (i.e. where we find gullies with 

river beds and gullies without river beds) and 

non-gullies (i.e. other land use classes, such as bare soil, 

irrigation area, urban, and savannah). We adopt an ap-

proach similar to that applied by Liberti et al. (2009) to 

discern badland areas in southern Italy, which has simi-

lar climate conditions as the study areas.[17]
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Fig. 3  Gully area extent maps in the region A 

 
Fig. 4  Gully area extent maps in the region B 

2.2  Spatial texture information approach  

According to Irland et al. (1939), gully classifica-

tion requires a description of forms and patterns.[10]  

Hilsky (1973) suggested that classification of gullies 

should be based on gully form (in plan), gully side 

morphology, and the shape of the transverse and lon-

gitudinal profiles.[39] 

In this study, we analyzed the variability of spatial 

texture information for land degradation by gullies. 

Measures of texture based on the Grey Level 

Co-occurrence Matrix (GLCM) were used to extract 

spatial information from the image.[25] This technique 

can be presented as a tabulation of how different com-

binations of pixel brightness values (grey level) occur in 

an image. [27] Several texture layers results from this 

technique, namely mean, variance, homogeneity, con-

trast, dissimilarity, entropy, second moment, and corre-

lation were computed from each pixel and its horizontal 

neighbours. We experimented with these textures to find 

out the textures that were showing additional spectral 

information for the classification. We found that  mean, 

variance, and contrast textures are useful for distin-

guishing between gullies and non-gullies. These three 

texture features were combined with VNIR and SWIR 

bands and used to discern the patterns of gully erosion.  

To remove spurious pixels within a large single 

class, we used the majority analysis during post- 

classification processing. Several attempts to find a 

suitable kernel size were carried out, with the 3 3×  

kernel producing the most favourable results.  

3  Results and discussion 

3.1  Spectral properties of gullies 

Spectral analysis was performed in this study to 

describe spectral behaviours of the gullies. Reflec-

tance values were extracted for the predefined classes 

in order to demonstrate the spectral characteristics of 

the gullies. For this purpose, four types of gully and 

non-gully classes are chosen from the two selected 

test sites. Approximately 200 pixels were chosen to 

represent each class (i.e. continuous gullies, discon-

tinuous gullies, bare soil and urban region). Discon-

tinuous gullies in our study represent the initial 

stages of development, typically when the more 

rapid rate of gully expansion occurs.[40] These gul-

lies develop through side-wall erosion and collapse, 

soil pipes and collapsed cavities then become con-

tinuous gullies as they connect to other gullies.[22] 

The average of the spectral response of each training 
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shows a standard deviation that does not exceed 3% 

for all spectral responses (Fig. 5). Reflectance val-

ues reveal mostly non-stressed information for 

gully-affected soils. The spectral profiles of the ur-

ban area and gully erosion with the depth streaming 

bed are stressed and intermixed. This is in agree-

ment with the findings of the classification algo-

rithms, where misclassified gullies in the test site A 

are mostly because of the high similarity of the re-

flectance with the urban areas. 

Fig. 5  Average of spectral signatures of different 
classes from ASTER 

3.2  Methodology 

3.2.1  Gully erosion mapping 

The geomorphologic setting shows that 15% and 

9% of the gullies in the test sites A and B are affected 

by permanent gullies. The classification results were 

assessed using confusion matrices. The accuracies 

were 87% and 89% for the test sites A and B, respec-

tively (Figs. 7 and 8). This is explained by the high 

development of discontinuous gullies in area A, 

where the floor has a shallower gradient than the sur-

rounding area and is composed of newly deposited 

material layer over an undisturbed alluvium.[41]  

Therefore, to correctly distinguish gully spreading in 

test site A is problematic. This highlights the neces-

sity of additional information (especially ground truth 

data or very high resolution images), which can en-

hance the accuracy for such a study. Fig. 6 shows that 

GLCM texture features reduced misclassified pixels 

in the north-western part of the study area mostly af-

fected by discontinuous gullies. The enhanced con-

trast effects from the texture features may explain this  

 

Fig. 6  Comparison the MLC results using spectral 
data and GLCM texture information 

accuracy improvement. 

In the eastern part of area A and the western part of 

area B, gully channels are narrow and have V-shaped  

forms coupled with steep slopes. Gully erosion oc-

curred predominantly in areas of pasture and bare soil. 

Gully shapes are more prominent from June to Sep-

tember during the rainy season. During this time, under 

heavy rain, many gullies are reactivated and in addition 

to vertical dissection, may frequently undergo head-

wards retreat and lateral spreading.[34]  The test site A 

displays higher occurrence of discontinuous gullies, 

which result in the development of badlands. Here, the 

forms and patterns of badlands are clear and character-

ized by short and narrow channels. The majority of the 

non-identified gullies are located in the upper reaches 

of channels where gullies are thin and difficult to detect 

using solely the spectral reflectance data. The classifi-

cation accuracies vary between 67 %, 72 %, and 68 % 

without incorporation of the GLCM texture features 

and 77 %, 87 %, and 73% combined with the GLCM 

textures, resulting from the MLC, SVM, and MD clas-

sifiers, respectively (Figs.7 and 8).  

SVM classification performs better than other 

methods to identify gullies in test site A, which is 

not the case for area B, where MLC outperforms 

other classifiers (Fig. 8). We initially tried to find the 

best possible algorithm suitable for gully erosion 

classification, but finding out how one classifier 

performs better than another is beyond the scope of 

our study. References do not mainly link classifier 

performance to the substance of these algorithms. 

Nevertheless, the potential exists that such models 

may be linked to spatially-explicit land use change 

models.[42] 
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Fig. 7  Classification accuracy for area A 

 

Fig. 8  Classification accuracy for area B 

3.2.2  Gully controlling factors from remote sensing 

data 

Because of the low spatial resolution of SRTM data  

(90 m), ASTER DEM (15 m) data provides better re-

sults to identify affected soils by gullies over small 

scales. We found that the ASTER DEM data high-

lighted more accurate shapes and patterns for recog-

nized gullies. According to the classification results, 

the drainage network extracted from ASTER DEM 

shows high-density feeders within the areas that are 

highly affected by gullies.  

The GLCM texture information greatly improved the 

classification results, as shown in Figs. 7 and 8, which 

reveal an improvement within all the classifications. The 

combination of ASTER data and GLCM texture fea-

tures are more sensitive to identify discontinuous gullies, 

showing a 6% increase in the classification accuracy for 

three classifiers. When combining GLCM texture fea-

tures with the spectral data, the accuracy improvement 

of test area A is higher than that of test area B.  

Geomorphologic parameters (shaded relief, aspect, 

and slopes) and acquired information from fieldwork 

were used to select ground truth to assess the classi-

fication accuracy using confusion matrices. Further-

more, classification results were overlaid with the 

geomorphologic parameters in order to localize the 

over-and-under estimation of gullies of each classifier. 

The extent of the gully class was compared with the 

edge from the shaded relief and aspect maps. Visual 

interpretation in this case was successful and high-

lighted the location of erroneous and misclassified 

areas affected by gully erosion. 

The identification of gully erosion could be im-

proved by combining the classification results (gul-

lies and non-gullies) with several controlling factors 

such as land use, DEM, vegetation cover, rainfall, and 

lithology. The present study considers relatively small 

areas; a larger study area should consider these addi-

tional controlling factors.  

The above methodology could be applied to images 

acquired from several satellites. Higher spatial resolu-

tion (e.g. IKONOS, QuickBird, etc) may certainly re-

duce the spectral mixing problem. Nevertheless, lim-

ited spatial cover, low spectral resolution, and high 

acquisition costs characterize very high-resolution data 

and are a limiting factor for gully erosion mapping. [20] 

The proposed approach to discern gully erosion at the 

catchment scale by combining digital DEM from both 

ASTER and SRTM images and GIS was effective for 

the discrimination of gullies. A goal for future work 

will be to establish the various controlling factors that 

must be considered when predicting future gully ero-

sion within a regional scale.  

4  Conclusion 

This work highlights the utility of ASTER data, 

spatial textural information and geomorphologic pa-

rameters in discerning areas affected by gully erosion 

in the region. The results of this study showed that 

textural layers estimated from a GLCM significantly 

improved spectral data classification of the ASTER 

image. MLC, SVM, and MD classifications were 

conducted to discern gullies in two different test sites. 

The confusion matrix resulted in two different but en-

couraging accuracy results (between 67 % and 89 %). 

The urban surface misclassification and highly de-

veloped discontinuous gullies in test area A could ex-

plain the lower accuracy as compared with test area B. 
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Visual interpretation of the DEM extracted from an 

ASTER image using the 3N and 3B bands led to a 

greater detail in the patterns of gully erosion. In this 

case, a higher spatial resolution of the ASTER image 

was achieved compared with the DEM derived from 

SRTM data. Geomorphologic parameters from the 

ASTER image play an important role in discriminat-

ing the features and patterns of gullies. These geo-

morphologic parameters were useful for validating 

the results from both the algorithms and textural fea-

tures used to discern areas affected by gullies. The 

drainage network map, for example, shows a high 

density of feeders located in the areas identified as 

suffering from gully erosion.  

Our results suggest that the semi-automatic identi-

fication of gully erosion using ASTER optical data is 

an effective approach towards a better understanding 

of the occurrences of this form of land degradation. 

This new approach can now be transferred to other 

areas for further evaluation. 
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