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Abstract
The complexities of the marine environment and the unique characteristics of underwater channels pose challenges in obtaining reliable signals 
underwater, necessitating the filtration of underwater acoustic noise. Herein, an underwater acoustic signal denoising method based on 
ensemble empirical mode decomposition (EEMD), correlation coefficient (CC), permutation entropy (PE), and wavelet threshold denoising 
(WTD) is proposed. Furthermore, simulation experiments are conducted using simulated and real underwater acoustic data. The experimental 
results reveal that the proposed denoising method outperforms other previous methods in terms of signal-to-noise ratio, root mean square error, 
and CC. The proposed method eliminates noise and retains valuable information in the signal.

Keywords  Ensemble empirical mode decomposition; Correlation coefficient; Permutation entropy; Wavelet threshold denoising; Underwater 
acoustic signal denoising

1  Introduction

The Earth’s ocean area significantly exceeds its land area, 
and the ocean contains abundant resources. Therefore, coun‐
tries worldwide have increasingly focused on ocean devel‐
opment and protection. Owing to the complexity of ocean 
background noises and the non-linear, non-Gaussian, and 
non-stationary properties of underwater acoustic signals, 
the detection and mitigation of noise in underwater acoustic 
signals are vital (Tucker et al., 2016; Li et al., 2018b). There‐
fore, the research and application of underwater acoustic 
signal denoising methods are of great significance in the 
underwater acoustic field.

Matched filters have been widely used in the past (Islam 
and Chong, 2014). These filters effectively utilize the differ‐
ences between signals and noise distributions and use specific 
filters that match the frequency characteristics of both signals 
to achieve noise reduction. However, the use of matched fil‐
ters for denoising non-stationary signals has limitations. 
Moreover, wavelet-based methods are used for denoising 
signals, but these methods require pre-selection of basis 
functions, and their effectiveness is not ideal as the fre‐
quency bands of useful signals and noise overlap (Yue et al., 
2019; Wess and Dixon, 1997). Huang et al. (1998) proposed 
a new signal decomposition method named empirical 
mode decomposition (EMD). EMD can decompose a sig‐
nal into high-to-low components and serve as an adaptive 
signal processing technique suitable for non-linear and non-
stationary processes. This method was significantly used 
for signal denoising (Cui and Chen, 2015; Lu et al., 2016). 
However, EMD is susceptible to mode mixing, which leads 
to signal loss and affects signal processing. To solve this is‐
sue, Wu and Huang (2011) improved EMD and proposed a 
modified signal decomposition method named ensemble 
empirical mode decomposition (EEMD). EEMD incorpo‐
rates the properties of EMD, adaptively processes non-lin‐
ear and non-stationary signals, and effectively mitigates 
mode mixing.

Recently, numerous denoising methods based on EEMD 
and its improved algorithms have been widely used in dif‐
ferent fields. Zhao et al. (2011) used the EEMD algorithm 
for denoising Electrocardiogram (ECG) in the medical 
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field. Sun et al. (2020) introduced a new surface electro‐
myography (sEMG) denoising method based on EEMD 
and wavelet threshold to eliminate the random noise from 
sEMG signals. Yang et al. (2017) proposed a vibration sig‐
nal denoising algorithm in the field of engineering vibra‐
tion based on EEMD and correlation coefficients (CC). 
Moreover, Jia et al. (2021) introduced a novel method for 
denoising the vibration signal based on EEMD and gray 
theory. Xue et al. (2019) proposed a noise suppression meth‐
od in the radar communication field based on EEMD and 
permutation entropy (PE) according to the characteristics 
of ground-penetrating radar signals. To effectively suppress 
noise in an atmospheric lidar return signal, Cheng et al. 
(2021) proposed a segmentation singular value decomposi‐
tion (SVD) -lifting wavelet transform (LWT) denoising 
algorithm based on EEMD. Peng et al. (2021) proposed a 
signal denoising method in the field of seismic monitoring 
based on EEMD and multiscale principal component anal‐
ysis. The method exhibited good prospects for processing 
microseismic waves.

However, no studies have been reported on underwater 
acoustic signal denoising using EEMD (Li et al., 2017b; 
Li et al., 2018a). Among the existing denoising algorithms, 
intrinsic mode functions (IMFs) are mainly classified into 
noise IMFs and real IMFs (Chen et al., 2012; Singh et al., 
2014; Li et al., 2018). Generally, noise IMFs are frequently 
discarded during the denoising process, but this method 
often lacks accuracy.

Therefore, this study presents a hybrid algorithm for de‐
noising underwater acoustic signals based on EEMD, CC, 
PE, and wavelet threshold denoising (WTD). Compared 
with existing denoising algorithms, the proposed algorithm 
categorizes IMFs into three parts and does not directly dis‐
card high-frequency noise signals but instead uses WTD 
for denoising. Thus, the proposed algorithm can effectively 
preserve features of the original signals.

2  Traditional underwater acoustic target signal 
denoising process

2.1  EMD

The basic concept of EMD methods involves the decom‐
position of the original signal into its IMFs (Ogundile et al., 
2020). This process has two constraints:

1) The number of zero crossings and extrema must be ei‐
ther equal or differ by one.

2) At any point in the complete data, the mean value of 
the envelope defined by local minima and local maxima 
must be zero.

The specific decomposition steps are as follows (Xiong 
et al., 2017):

1) All local maxima and minima of the signal are deter‐

mined, and the maxima and minima with a tertiary spline 
interpolation curve are connected to form the upper and 
lower envelopes of the signal yup ( t ) and ylow ( t ).

2) The average value curve of the upper and lower enve‐
lope is calculated as follows:

m1 ( t ) =
1
2

[ yup ( t ) + ylow ( t ) ] (1)

3) x ( t ) is subtracted from m1 ( t ) to obtain a new sequence 
h1 ( t ) with the removal of low-frequency components:

h1 ( t ) = x ( t ) − m1 ( t ) (2)

4) Steps (1)–(3) are repeated, and then the signal is fil‐
tered m times to obtain IMF1 ( t ) = m ( t ).

5) r ( t ) = x ( t ) − m1 ( t ), the signal r ( t ) is further de‐
composed according to steps (1)–(4). As it becomes impos‐
sible to extract components that meet the IMF conditions 
from Residual component, we can obtain n components 
that satisfy IMF. Finally, we can obtain IMFn ( t ) = r ( t ).

2.2  EEMD

2.2.1 The basic principles of EEMD
When using the EEMD algorithm to process the signal, 

white Gaussian noise is added to compensate for any miss‐
ing signal scale. After a sufficient number of additions, the 
final decomposition result is averaged. In this phase, the 
additional noise cancels each other out, leaving only the 
lasting and stable part that represents the signal. The summa‐
rized process of EEMD is expressed as follows (Jia et al., 
2021):

1) A white noise with a specific amplitude A is added to 
the original signal.

2) EMD is performed on the signal with the added white 
noise, and K IMF components and one residual component 
are obtained.

3) Steps 1) and 2) are repeated with a specific number 
of trials. In each trial, K, the number of IMF, remains con‐
stant. Equation (3) shows the results of all trials.

x ( t ) + n1 ( t ) =∑
j = 1

k

IMFij ( t ) + ri ( t ) (3)

where x ( t ) is the original signal; ni ( t ) is the added white 
noise of the ith trial; IMF ij ( t ) is the jth IMF component of 
the ith trial; ri ( t ) is the residual component of the ith trial.

4) The ensemble mean of all trials is calculated. Corre‐
sponding formulas are expressed in Eq. (4) and (5). The fi‐
nal decomposition result of the original signal obtained via 
EEMD is shown in Eq. (6).
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IMF j ( t ) =
1
M∑i = 1

M

IMFij ( t ) (4)

r ( t ) =
1
M∑i = 1

M

ri ( t ) (5)

x ( t ) =∑
j = 1

k

IMFj ( t ) + r ( t ) (6)

where M is the number of trials, and r ( t ) is the residual 
component of EEMD.

2.2.2 EEMD parameter selection
When introducing white noise to an original signal, the 

selection of the two vital parameters, amplitude (A) and en‐
semble number (M), becomes an urgent issue that needs to 
be addressed. The following relationship between A and M 
is established (Du et al., 2016):

S = A/ M (7)

where S denotes the standard deviation of the error be‐
tween the original signal and IMFs. Equation (7) reveals 
that the error is directly proportional to the A of the added 
white noise and inversely proportional to M.

When using the EEMD algorithm to process signals, if 
A is too small, the white noise may not be evenly distribut‐
ed across the scales of each component, and the main fre‐
quency of the component may not be unique. Moreover, 
white noise cannot eliminate interruptions in signal decom‐
position and suppress mode mixing. If A is too large, noise 
interference may occur, and the added white noise cannot 
be eliminated during ensemble averaging. Therefore, this fac‐
tor affects the final decomposition result. Because EEMD 
decomposition is more sensitive to noise, A is usually set 
to a relatively small value. Wu et al. (2010) analyzed large 
datasets and found that when A is set to 0.1–0.5, the maxi‐
mum interference error caused by the added noise to the fi‐
nal decomposition result is ~1%.

As the same amount of A is added to the Gaussian white 
noise, a smaller value of M cannot eliminate the interfer‐
ence of the added white noise on the IMF component dur‐
ing the averaging process. As M continuously increases, 
the added white noise gradually reduces its impact on the 
decomposition result, thereby enhancing signal processing 
efficiency. However, at a larger M value, the computational 
load of signal decomposition increases, leading to a decrease 
in signal processing efficiency. Generally, an average of ~100 
sets is considered the standard. Nevertheless, specific ex‐
periments are required for individual signals.

2.3  CC

After the original signal is decomposed via EEMD, k IMF 
components are obtained across k frequency bands. Among 

these components, high-frequency components mainly com‐
prise noise signals, while low-frequency components mainly 
contain effective signals. Therefore, determining the criti‐
cal point between noise components and effective signal 
components is vital (Shang et al., 2019).

According to the empirical energy of the IMF compo‐
nents, effective IMF components are selected for recon‐
struction to obtain the denoised signal, while the noise IMF 
components are discarded (Zhao et al., 2011). The corre‐
sponding threshold for this selection is determined accord‐
ing to the specific characteristics of each signal. Incorrect 
component selection can lead to erroneous results (Yang 
et al., 2015). Additionally, the correlation between each com‐
ponent and the original signal is calculated to distinguish 
noise components from effective signal components. Cova‐
riance is commonly used to quantify the degree of relation‐
ship and relevance between two random variables (Gong 
et al., 2022), as shown in Eq. (8):

cov ( X, Y ) = E ( XY ) − E ( X )E (Y ) (8)

However, the size of the covariance value is not an accu‐
rate measure of the degree of correlation between two ran‐
dom variables. The size of the covariance value is influ‐
enced by the dimensions of the two variables and is not 
suitable for direct comparison. To accurately measure the 
correlation degree between two random variables, CC is 
introduced to assess their linear correlation. Generally, the 
CC between the noise-dominant component and the origi‐
nal signal is smaller than that between the effective and 
original signals. Furthermore, the change in CC of the effec‐
tive signal is more significant than that of the noise compo‐
nent. Figure 1 displays the critical point, and the turning 
point is visibly distinct.

CC ( )n, x < CC ( )s, x (9)

The CC between each modal component and the origi‐
nal signal is calculated as follows:

Figure 1　Correlation coefficient diagram

224



Y. Y. Zhang et al.: A New Method for Denoising Underwater Acoustic Signals Based on EEMD, CC, PE, and Wavelet Threshold Denoising

CC [ x ( t ), IMF i ] =
∑
i = 1

N

[ x ( t ) − x̄ ] [ fi ( t ) − f̄ i ]

∑
i = 1

N

[ x ( t ) − x̄ ]2 ∑
i = 1

N

[ fi ( t ) − f̄ i ]2

(10)

x̄ =
1
N∑i = 1

N

x ( t ) (11)

f̄ i =
1
N∑i = 1

N

fi ( t ) (12)

where fi ( t ) is the ith IMF component, N is the number of 
sampling points, 

-
f

i
 is the mean of N IMF components, and 

x̄ is the sample mean of the original signal.
After calculating CCs, the turning point is identified as 

the point where the curvature value R of the correlation 
curve reaches its maximum (Shaw et al., 2016). The specific 
calculation formula is as follows:

R =
CC'

(1 + CC'2 )1.5
(13)

CC'' = CCi + 1 − 2CCi + CCi − 1 (14)

CC' = CCi − CCi − 1 (15)

Therefore, the noise and signal components can be iden‐
tified using the CC graph by locating the maximum curva‐
ture. This approach has the following advantages:

1) CC standardizes the correlations between two random 
variables by subtracting the covariance, thereby eliminating 
dimensional numerical influence (Zhao, 2015; Qiao, 2016).

2) CC is used to analyze the characteristic signals with‐
in long-term signal waveforms. The calculation of CC aids 
in the extraction of similar components (Li et al., 2017a).

3) A line chart is created based on the calculation of CC. 
This approach eliminates the need for setting artificial 
thresholds, thereby preventing the issue of setting different 
thresholds for different signals.

However, owing to the non-linearity, non-stationarity, 
and non-Gaussian properties of the underwater acoustic sig‐
nal, the direct elimination of noise signals may result in the 
loss of some useful signals. Therefore, further classifying 
noise components into pure noise and noise-dominant com‐
ponents is vital.

2.4  PE

PE is a spatial complexity measurement used for analyz‐
ing one-dimensional time series and is characterized by its 
simple calculation and good noise resistance (Bandt and 
Pompe, 2002). The summarized process of PE is as fol‐
lows (Zanin et al., 2018):

1) The time series X = {x1, x2, ⋯, xN} is reconstructed 

as follows:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

{ }x (1),  x (1 + τ ), ⋯, x (1 +(m − 1) τ )
                                    ⋮
{ }x ( j ),  x ( j + τ ), ⋯, x ( j +(m − 1) τ )
                                    ⋮
{ }x (K ),  x (K+ τ ), ⋯,  x (K +(m−1)τ ) ( K =n−(m−1)τ )

(16)

where τ and m denote the time lag and embedding dimension.
2) Each row vector is rearranged in an ascending order:

x(i + ( j1 − 1)τ ) ≤ x(i + ( j2 − 1)τ ) ≤ ⋯ ≤ x(i + ( jm − 1)τ )

(17)

3) A symbol sequence for each row vector is obtained as:

S ( g ) = ( j1, j2,⋯, jm ) ( g = 1, 2, ⋯, l   and   l ≤ m!) (18)

4) PE is defined as:

Hp (m ) =  −∑
j = 1

l

Pj ln Pj (19)

where Pj is the probability of one symbol sequence.
5) Normalized PE is defined as:

Hp = Hp (m ) / ln (m!) (20)

In Equation (20), the Hp value reflects the randomness 
of the time series. A smaller Hp value indicates a more reg‐
ular time series, while a larger Hp value signifies a more 
random time series. In this study, we set m = 3 and τ = 1 
based on the recommendation from a previous study 
(Bandt and Pompe, 2002). Zhang et al. (2022) indicated 
that at Hp ≥ 0.75, the corresponding mode is considered a 
noise signal, and at Hp < 0.75, the corresponding mode is 
considered an effective signal. Therefore, in this paper, we 
use PE to further identify the noise components obtained 
from the CC diagram as noise-dominant components and 
pure noise components.

2.5  WTD

Compared with traditional filtering methods, wavelet 
transform exhibits multi-resolution characteristics. A one-
dimensional noisy time series can be expressed as follows 
(Wang et al., 2018):

s ( t ) = y ( t ) + n ( t ) (21)

where y ( t ) denotes the original signal, n ( t ) is the noise 
signal, and s ( t ) is the noisy signal.

Assuming that n ( t ) is Gaussian white noise, y ( t ) is usu‐
ally represented as a low-frequency signal in practical en‐
gineering applications. Therefore, the following methods 
are used to reduce noise. The specific steps are as follows:

1) A suitable wavelet basis function and decomposition 
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level are selected to perform wavelet decomposition on the 
noisy signal.

2) Thresholding is applied to high-frequency coefficients 
through the selection of an appropriate threshold method 
at different decomposition scales.

3) The signal is reconstructed using low-frequency coef‐
ficients from wavelet decomposition and threshold high-
frequency coefficients at different scales.

Wavelet thresholding with different thresholds usually 
involves three methods, namely denoising with a default 
threshold, denoising with a specified threshold, and de‐
noising with a hard threshold. Among these methods, de‐
noising with a specified threshold can be further classified 
into soft thresholding and hard thresholding. In this paper, 
a soft thresholding method is selected to eliminate the 
threshold.

3  Proposed noise reduction algorithms

3.1  Denoising algorithms for underwater acoustic 
signals

When using the EMD algorithm, EEMD algorithm, and 

the CC method for denoising signals, the direct removal of 
the noise IMF components may also eliminate hydroacous‐
tic signal components, thereby affecting noise reduction. 
This study introduces PE and WTD based on the EEMD 
method to develop the proposed underwater acoustic sig‐
nal denoising algorithm (Figure 2). The specific procedures 
are summarized as follows:

1) The underwater signal is decomposed via EEMD to 
produce numerous IMFs, including noise IMFs and real 
IMFs;

2) CCs between each IMF component and the original 
signal are calculated;

3) Noise and signal IMFs are classified based on the in‐
flection points of the CC graph. The maximum curvature 
of the CC curve serves as the critical point distinguishing 
between noise and signal IMFs.

4) Signal IMFs are screened out, and the PEs of other 
IMFs are calculated.

5) Noise-dominant IMFs are identified based on their 
PEs. If the PE of IMF is > 0.75, it is considered a pure 
noise IMF; if the PE of IMF is < 0.75, it is classified as a 
noise-dominant IMF.

6) The noise-dominant IMFs are denoised via WTD. 
Wavelet soft-threshold denoising (WSTD) is used for en‐

Figure 2　Flow chart of the proposed denoising algorithm for underwater acoustic signals

226



Y. Y. Zhang et al.: A New Method for Denoising Underwater Acoustic Signals Based on EEMD, CC, PE, and Wavelet Threshold Denoising

hancing the quality of noise-dominant IMFs, with the wave‐
let basis function and decomposition level set to db4 and 
4, respectively.

7) The denoised signal is obtained through the reconstruc‐
tion of the denoised noise-dominant IMFs and real IMFs.

3.2  Evaluation method for denoising effect

To effectively evaluate the denoising effect, numerous 
scholars have proposed some evaluation methods, including 
signal-to-noise ratio (SNR), root mean square error (RMSE), 
CC, Lyapunov exponent, and noise intensity. In this study, 
we selected the first three evaluation criteria for the assess‐
ment of the denoising effect (Wang et al., 2013; Rosen‐
stein et al., 1993).

3.2.1 SNR
SNR represents an energy relationship between signal 

and noise. A higher SNR indicates that the signal contains 
a larger amount of useful information and a lesser noise. 
Therefore, the SNR serves as an intuitive method for eval‐
uating the quality of the denoised signal by analyzing 
whether the SNR has improved. SNR is defined as follows:

SNR = 10 × lg (  x
2

 x̂ − x
2 ) (22)

where x, x̂, and  *  indicate the noise signal, denoised sig‐
nal, and norm, respectively.

3.2.2 RMSE
RMSE quantifies the numerical difference between the 

denoised signal and the original signal. A smaller RMSE 
indicates a more effective noise reduction. RMSE is de‐
fined as follows:

RMSE =
 x̂ − x

2

length ( x )
(23)

where length(∗) represents the length of signals.

3.2.3 CC
CC represents the correlation degree of the two signals. 

A larger coefficient indicates a stronger correlation degree 
between two signals. The specific calculation formula is 
introduced in section 2.3.

4  Denoising of simulation signal

According to the non-linear and non-stationary proper‐
ties of underwater acoustic signals, four types of simulation 
signals are selected for denoising, namely Blocks, Bumps, 
Doppler, and Heavysine. The sampling frequency and data 

length are set to 1 kHz and 1 024, respectively. Noisy sig‐
nals with different SNRs are obtained through the addition 
of Gaussian white noise. Figure 3 shows the original sig‐
nal and noisy signal with an SNR of 0 dB.

Taking the Heavysine signal as an example, Figure 3 shows 
the complete submersion of the Heavysine signal in noise. 
The following is the complete denoising process.

4.1 Signal decomposition

The noisy Heavysine signal is decomposed via EMD 
and EEMD methods (Figure 4). In both decomposition 
methods, the IMF1 represents the shortest oscillation period, 
typically corresponding to a noise component or high-fre‐
quency components.

4.2 Identifying noise and signal IMFs

The CC between each IMF component obtained through 
EMD and EEMD methods and the original signal is calcu‐
lated (Figure 5).

Figure 5 reveals that the maximum curvature of CC 
curves occurs at the fourth-order position in EEMD and the 
sixth-order position in EMD. The first four IMFs can be 
classified as noise IMFs in EEMD, and the first six IMFs 
can be identified as noise IMFs in EMD.

4.3 Identifying noise-dominant IMFs

Noise-dominant IMFs can be identified based on the 
PEs of noise IMFs in EEMD. For the noisy Heavysine sig‐
nal with an SNR of 0 dB, the PEs of noise IMFs are shown 
in Table 1. The PE of IMF4 is less than 0.75, indicating 
that IMF4 is the noise-dominant IMF in EEMD.

4.4 Denoising and reconstruction of noise-
dominant IMFs

WSTD is applied to IMF4 using the wavelet basis func‐
tion of db4 and a decomposition level of 4. The denoised 
Heavysine signal is obtained through the reconstruction of 
the denoised IMF4 and real IMFs. Figure 6 displays the de‐
noising results. The denoising method that involves the 
use of wavelet soft-threshold method to directly eliminate 
signals is referred to as WSTD. Denoising methods that 
combine CC with EMD and EEMD are denoted as EMD–
CC and EEMD–CC. The proposed denoising method is de‐
noted as EEMD–CC–PE–WSTD.

Figure 6 indicates that the denoised signal obtained 
through EEMD –CC – PE –WSTD can effectively fit the 
source signal. Sharp spikes are effectively eliminated, lead‐
ing to a smoother and cleaner signal with minimal distor‐
tion. Compared with the signal obtained through the other 
three methods, the denoised signal obtained through the pro‐
posed method retains more features of the original signal. 
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Moreover, the baseline of the denoised signal closely cor‐
responds to that of the source signal, indicating effective 
baseline correction.

To further verify the effectiveness of the proposed method, 
four types of signals with different SNRin are denoised 
through EMD–CC, EEMD–CC, WSTD, and EEMD–CC–PE
–WSTD methods. Figures 7 and 8 show the denoising results.

On average, EEMD–CC–PE–WSTD achieves the high‐
est denoising effect. Particularly, at a low SNRin, EEMD–
CC–PE–WSTD features a significantly improved denois‐
ing performance. Additionally, EEMD–CC–PE–WSTD ex‐
hibits a higher SNR and lower RMSE than the other three 
denoising methods.

5  Denoising of measured ship signals

EMD–CC, EEMD–CC, WSTD, and EEMD–CC–PE–
WSTD algorithms are used to denoise the ship sound sig‐
nal from an open-source database to further verify the ef‐
fectiveness of the proposed underwater acoustic denoising 
algorithm. Subsequently, SNR, RMSE, and CC are used to 

evaluate the denoising results.

5.1  Ship signal source

The ocean acoustic recordings used to train the classifier 
were obtained from various open-source databases. Ship 
noise data were collected from the ShipsEar (Santos-
Domínguez et al., 2016). Most of these recordings were 
collected in or near the Port of Vigo using a hydrophone 
with a sampling rate of 52 734 Hz. Recordings from differ‐
ent types of vessels in or near the docks included fishing 
boats, ocean liners, ferries of various sizes, containers, tugs, 
pilot boats, yachts, and small sailboats. In this study, the 
audio recordings of passenger ships were selected for anal‐
ysis to assess the performance of the denoising algorithm.

5.2  Signal preprocessing

To facilitate the subsequent denoising processing, we use 
a 0.6-s frame to crop the filtered target audio signal. To en‐
sure the integrity of the signal during trimming, the overlap‐
ping duration between two adjacent frames of signals is set 
to 0.05 s. The signal-trimming process is shown in Figure 9.

(a) Blocks

(c) Doppler

(b) Bumps

(d) Heavysine

Figure 3　Time-domain waveform of the noisy signal with 0 dB
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The time-domain diagram of the processed ship signal 
is shown in Figure 10.

The time-domain diagram of the collected ship signal con‐
tains numerous peaks and a significant amount of noise, indi‐
cating the need for denoising (Figure 10).

5.3  Selection of EEMD parameters for the ship 
signal

Notably, the A of the added white noise and the number 
of trials M are the two key parameters in EEMD. To select 
suitable parameters, the SNR of the ship signal after EEMD 
processing is calculated by varying A and M (Table 2).

Under a constant number of trials, a noise amplitude of 
0.3 mV results in a maximum SNR value, while SNR de‐
creases with increasing noise amplitude (Table 2). This is 
due to the effect of the added white noise on the signal, 

(a) EMD

(b) EEMD

Figure 4　Decomposition results of the noisy Heavysine signal with 0 dB

Figure 5　CC curve of the noisy Heavysine signal obtained via EMD 
and EEMD

Table 1　PEs of noise IMFs for simulation signal

IMF1

0.997 7

IMF2

0.884 2

IMF3

0.757 7

IMF4

0.578 0
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(a) EMD–CC

(c) EEMD–CC

(b) WSTD

(d) EEMD–CC–PE–WSTD

Figure 6　Denoising results of the noisy Heavysine signal

(a) “Block” signal

(c) “Doppler” signal

(b) “Bump” signal

(d) “Heavysine” signal

Figure 7　SNRout of different methods for simulated signals
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which increases overall noise and affects the decomposi‐
tion results. At a constant noise amplitude of 0.3 mV, the 
maximum SNR value is achieved when M = 100. As the 
number of trials increases, the corresponding SNR value 
gradually stabilizes, indicating that excessively increasing 
the number of trials displays minimal effects on the de‐
composition results.

In summary, the experiment indicates that the optimal val‐
ues are A = 0.3 mV and M = 100.

5.4  Ship signal denoising method

5.4.1 EMD–CC method
The processing effect of the decomposition of the ship 

signals obtained via EMD is shown in Figure 11. The ship 
signal decomposes into eight natural modal components 
through EMD (Figure 11). The first three components ex‐
hibit significant noise interference and mode mixing in the 

(a) “Blocks” signal

(c) “Doppler” signal

(b) “Bumps” signal

(d) “Heavysine” signal

Figure 8　RMSEout of different methods for simulated signals

Figure 9　Ship signal clipping process

Figure 10　Tested ship signal waveform

Table 2　SNR of signals processed via EEMD under different A and M

M (s)

50

100

150

A (mV)

0.1

13.574 3

13.627 4

13.462 3

0.2

13.774 9

13.776 6

13.660 0

0.3

13.882 6

14.079 5

13.870 3

0.4

13.855 6

14.021 7

13.887 1

0.5

14.170 4

14.073 0

13.981 2
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spectrogram. Subsequently, the signal is reconstructed, 
and the CC between each component and the original ship 
signal is calculated (Figure 12).

Figure 12 shows that the maximum curvature of CC oc‐
curs at the third-order position. The first three eigenmode 
components are considered noise signals and will be dis‐

Figure 11　EMD decomposition components and spectrum diagram of ship signals
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carded, while the remaining components are classified as 
effective signals for reconstruction.

5.4.2 EEMD–CC method
The ship signal is decomposed using the two EEMD pa‐

rameters determined in Figure 13.
EEMD decomposes the ship signal into six IMF compo‐

nents and sequentially separates the original ship signal from 
high-to-low frequency. Each component, starting from IMF2, 
exhibits a single signal scale, indicating the effective sup‐
pression of the modal mixing phenomenon. Additionally, 
the CC between each component and the original ship sig‐
nal is calculated, and the results are shown in Figure 14.

Figure 14 reveals the point of maximum curvature in the 
CC curve corresponds to the third-order position. The first 
three IMF components are considered noise signals and 
will be discarded, and the remaining components are clas‐
sified as valid signals for the reconstruction process.

Figure 12　EMD–CC variation curve of ship signal

Figure 13　EEMD decomposition components and spectrum diagram of ship signals
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5.4.3 EEMD–CC–PE–WSTD method
From section 5.4.2, the first three IMF components are 

identified as noise components, and the PE value of each 
component is calculated, as shown in Table 3.

The results revealed that the PE of IMF2 is less than 
0.75. Thus, IMF2 can be considered the noise-dominant 
component and is denoised via WSTD. Additionally, the 
second IMF component is reconstructed along with the last 
three IMF components.

5.5  Comparison of different denoising results

Through the adjustment of the time axis, the time-do‐
main diagram of the original signal is shown in Figure 15.

The time-domain diagrams of the signal obtained from 
different denoising methods are shown in Figure 16.

All four methods effectively reduce peaks and glitches 
in the signal via denoising (Figure 16). However, the sig‐
nal denoised via the proposed method is smoother and re‐
tains more valuable information compared with other meth‐
ods. Additionally, the proposed method significantly reduc‐

Table 3　PEs of noise IMFs for measured ship signals

IMF1

0.765 8

IMF2

0.533 1

IMF3

0.994 9

Figure 15　Time-domain diagrams of original ship signals

Figure 14　EEMD–CC variation curve of ship signals
(a) WSTD

(b) EMD–CC

(c) EEMD–CC

(d) EEMD–CC–PE–WSTD

Figure 16　Time-domain diagrams of the ship signal denoised via 
different methods
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es the impurities and noise in the signal, making it more fa‐
vorable for human hearing.

Furthermore, the short-time Fourier transform diagram 
of the original signal is shown in Figure 17.

The short-time Fourier transform diagrams of the sig‐
nal obtained via different denoising methods are shown 
in Figure 18.

For ship noise, the signal frequency range is mainly con‐
centrated below 1000 Hz (Zhang et al., 2017). Figures 17 

and 18 show the wide frequency distribution of the origi‐
nal signal, particularly with various frequency components 
present above 1 000 Hz. However, the frequency of the 
denoised signal is highly concentrated, mainly below 5 000 Hz, 
and the background noise is significantly reduced. Further‐
more, the algorithm proposed in this paper exhibits a more 
significant denoising effect on the signal, with the signal 
mainly concentrated below 1 000 Hz.

5.6  Denoising effect evaluation

The following three parameters are used to evaluate 
the denoising effect of actual underwater acoustic signals 
(Table 4).

Table 4 indicates that the SNR of the reconstructed 
signal is improved using WSTD, EMD, and EEMD algo‐
rithms. Moreover, the SNR of the signal reconstructed 
through the improved EEMD method is 14 dB higher 
than that of the original signal. The RMSE and CC results 
revealed that signals processed through the improved 
EEMD exhibit lower RMSE and higher CC than the original 
signal. Therefore, the EEMD–CC–PE–WSTD algorithm 
exhibits an improved denoising effect and is effective 
and suitable for denoising underwater acoustic signals.

Table 4　Denoising results of the measured ship signal

Parameter

SNR (dB)

RMSE

CC

original signal

8.956 4

−
1

WSTD

13.053 4

0.068 5

0.912 5

EMD–CC

12.351 9

0.057 1

0.903 3

EEMD–CC

18.079 5

0.023 6

0.980 4

EEMD–CC–PE–WSTD

22.030 0

0.017 4

0.990 1

Figure 17　 Short-time Fourier transform diagram of the original 
signal

(a) WSTD

(c) EEMD–CC

(b) EMD–CC

(d) EEMD–CC–PE–WSTD

Figure 18　Short-time Fourier transform diagram of the ship signal denoised via different methods
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6  Conclusions

To reduce the loss of effective signals during the denois‐
ing process of underwater acoustic signals, a noise reduc‐
tion method based on EEMD, which incorporates CC, PE, 
and WSTD is proposed. The key innovations and conclu‐
sions of the proposed denoising method are as follows:

1) The adaptive decomposition algorithm, EEMD, is 
used to denoise underwater acoustic data signal. This pro‐
cess decomposes original data into a set of IMF compo‐
nents with different scales.

2) Compared with existing denoising methods, CC and 
PE classify IMFs into three parts (pure noise IMFs, noise-
dominant IMFs, and real IMFs).

3) The curvature value of the CC curve is used to distin‐
guish between the noise and real components of the under‐
water acoustic signal based on the characteristics of the 
signal without the need for an arbitrary threshold.

4) The proposed EEMD–CC–PE–WSTD method does 
not require human intervention. The calculation process is 
adaptive.

5) Four types of signals (Blocks, Bumps, Doppler, and 
Heavysine) with different SNRs are denoised through 
EMD – CC, EEMD –CC, EEMD –CC – PE –WSTD, and 
WSTD methods. The proposed denoising method exhibits 
higher performance, with lower RMSE and higher SNR.

6) Compared with other denoising methods, the EEMD–
CC–PE–WSTD method is an effective method for denoising 
underwater acoustic signals. This study provides a solid 
foundation for the subsequent processing of ship-radiated 
noise signals, including prediction, detection, extraction, and 
classification.
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