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Abstract
The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews, vessels, and cargoes; thus, it must
be damped. This study presents the design of a rudder roll damping autopilot by utilizing the dual extended Kalman filter
(DEKF)–trained radial basis function neural networks (RBFNN) for the surface vessels. The autopilot system constitutes the
roll reduction controller and the yaw motion controller implemented in parallel. After analyzing the advantages of the DEKF-
trained RBFNN control method theoretically, the ship’s nonlinear model with environmental disturbances was employed to
verify the performance of the proposed stabilization system. Different sailing scenarios were conducted to investigate the motion
responses of the ship in waves. The results demonstrate that the DEKF RBFNN–based control system is efficient and practical in
reducing roll motions and following the path for the ship sailing in waves only through rudder actions.
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1 Introduction

At present, marine transportation is indispensable for the de-
velopment of the world. The ocean-going ships always have
to endure large environmental impacts including waves,
winds, and currents. The dramatic roll motions will affect
the comfort of seafarers and passengers because of seasick-
ness. Moreover, it may lead to the instability and unsafety of
the ship and cargoes. From the perspective of safety, the roll
damping facilities or strategies are needed to damp the roll

motions as much as possible. Some effective methods and
devices, e.g. moving weights (Treakle et al. 2000), stabilizing
fins, anti-roll tanks, and bilge keels, have been successfully
designed to reduce roll motions. However, the additional
equipment affects the ship’s carrying capacity, seaworthiness,
and structure strength and increases the shipbuilding and
maintenance costs. Therefore, other applicable approaches
are needed for vessels to keep stability while maintaining the
orientation.

When altering the rudder angle, there exist additional force
and moment on the roll motions. Consequently, the rudder is
an alternative to control roll motions besides being used as the
steering facility. Using the rudder for path following and roll
reduction simultaneously is not a simple task due to the cou-
pling between the motions of yaw and roll. Hence, qualified
control strategies are required to handle the trade-offs. The
conventional rudder roll stabilizer based on the proportional-
integrative-derivative (PID) control method (Van and Van
1978) has been applied in the commercial autopilot system
for its simplification and reliability. However, this kind of
controllers, which was designed with fixed parameters and
scheduling gains, does not work well in heavy seas (Sun
et al. 2014). With the development of modern control theory,
fuzzy logic control algorithmwas adopted to design the rudder
roll stabilization system (Nejim 2000). However, it is difficult
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to formulate the fuzzy control rules, which are generally ob-
tained by trial-and-error-based human knowledge. The
H-Infinite-based rudder roll stabilization system was devel-
oped by Zhang et al. (2006), but the control method has the
risk of being unstable when the changing speed of the dynam-
ics is beyond the adapting capability. The slidingmode control
also has been adopted in this domain (Fang and Luo 2007).
However, the high frequency of control actions may lead to
unexpected dynamic distortions (Sun et al. 2014).

Impelled by the development of computing technology,
the control algorithms based on neural networks became
applicable. The advantages of the neural network control
algorithm lie in the capability of approximating nonline-
arity and robustness against system noises. Another fea-
ture of the neural network is the capabi l i ty in
‘comprehending’ the multivariable characteristics of the
system by adjusting the weights, which avoids the analyt-
ical analysis of the complicated nonlinear differential
equations. In Alarçïn (2007), the rudder roll stabilization
system for fishing vessels was designed by using a neural
network approach, in which the sigmoid transfer function
is used as the activation functions. By utilizing the hyper-
bolic tangent function, Fang et al. (2010) proposed a PID
controller tuned by the neural network to control the
ship’s roll motions in random waves. The wavelet neural
network also has been investigated to design the roll
damping controller (Li et al. 2010). Amongst the multi-
layer feed-forward neural networks, the radial basis func-
tion neural networks (RBFNN) has simple architecture
and owns the adequate generalization capability in
avoiding unnecessary and lengthy calculations (Liu
2013). Thus, the RBFNN is adopted in this study to de-
sign the control system.

The training algorithm is essential to propose a neural
network controller. Up to the present, most of the neural
network–based roll stabilizers are trained by the well-
known backpropagation (BP) algorithm or its variants
(Alarçïn 2007; Fang et al. 2012). Although the BP
methods are applicable to train neural networks, the rele-
vant flaws are still of concern. Since BP is a first-order
steepest descent method, the training of networks with
gradient descent tends to be slowly and poorly ap-
proaching satisfactory results (Ko and Lee 2013).
Additionally, the propagation of dynamic derivatives re-
garding the networks’ output is computationally expen-
sive (Choi et al. 2005). Actually, the training of proposed
neural networks can be considered as the process of esti-
mating parameters. As the optimal state estimator, the
Kalman filter can be employed as the alternative.
Amongst the Kalman filter variants, the extended
Kalman filter (EKF) algorithms, which are capable of
achieving second-order nonlinearity accuracy by using
Jacobian matrix for approximation, can provide the online

training mechanism (Medagam and Pourboghrat 2009).
Although the unscented Kalman filter (UKF) algorithm
has been investigated as a satisfied neural network train-
ing method to the control of the ship’s motions (Wang
et al. 2017a), the additional computational burdens are
excessive since it needs to handle the propagations of
‘sigma points’ to capture the true means and covariances
of the Gaussian random variables through the system dy-
namics. Contrary to the higher order training methods, the
EKF-based training algorithm for RBFNN does not re-
quire batch processing and can easily access the
Jacobian matrix, making it more suitable for online usage
(Zhao et al. 2013). From the running time standpoint, the
EKF-based training algorithm is more competent with rea-
sonable computational expenses.

Besides the standard EKF, the augmented EKF (Goh and
Mandic 2007) and decoupled EKF (Nouri et al. 2008) have
been developed to train neural networks. It is shown that, with
the application of the training algorithm based on EKF vari-
ants, the converging speed and the capability in restraining
noises were improved (Sanchez et al. 2008). However, the
algorithms were proposed to train the weights but not pro-
posed to train the dynamic parameters in the activation func-
tions. For the ship’s motion control, which always requires the
alternations of the desired attitude due to the passage planning,
the capabilities of the RBFNN controller also depend on the
online optimization of the centers in radial basis functions.
Therefore, the dual EKF (DEKF) is utilized to train both
weights and centers of the RBFNN controller in this study.

The main motivation of this study is to develop a qualified
rudder roll damping autopilot based onDEKFRBFNN, which
has low computational expenses and satisfactory tracking ca-
pabilities. The key objectives of this research are (1) to formu-
late the DEKF-based training method for the feedback
RBFNN control scheme; (2) to analyze the merits of the pro-
posed training method in comparison with the BP training
method; (3) to develop a rudder roll stabilization system based
on DEKF RBFNN for surface vessels advancing in waves;
and (4) to validate the efficiency of the system by achieving
the tasks of path following and roll damping simultaneously
with environmental disturbances.

The organization of this study is as follows: section 2 in-
troduced the preliminaries including the state space function
of the ship’s motions in four degrees of freedom (DOF) as well
as the control scheme of a direct method for robust adaptive
control by RBFNN. In section 3, the DEKF training method
for RBFNN-based controller and its theoretical advantages are
presented. After that, in section 4, the rudder roll stabilization
system was proposed by using DEKF RBFNN–based control
algorithm to fulfil the tasks of roll damping and path following
through the rudder actions. The simulation scenarios and re-
sults are presented in section 5 to investigate the efficiency of
the system. Conclusions are given in section 6.
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2 Problem Formulations and Preliminaries
of the Direct RBFNN Control

2.1 Ship’s Motion Equations

The ship’s mathematical model, which is deduced from
Newton-Euler’s law, is the representation of the ship’s mo-
tions. The kinematic and kinetic states of the surface vessel
are clarified in the two correlative coordinates, namely earth-
fixed coordinate and body-fixed coordinate (see Fig. 1).

Considering the objectives of roll damping and path fol-
lowing, the four-DOF (i.e. surge, sway, yaw, and roll) model is
used to describe the dynamic motions of surface vessels. The
ship’s four-DOF nonlinear model including control forces and
manoeuvring characteristics can be expressed as (Fossen
1994):

η˙ ¼ Jv ð1Þ
Mv˙ þ C vð Þvþ D v;ηð Þvþ Gη ¼ τ ex þ τ ð2Þ
where the vectors η = [x, y, ϕ,ψ]T and v = [u, v, p, r]T are used
to represent the states of the ship’s motions, where (x, y) are

the position, ϕ and ψ are the roll angle and yaw angle in the
earth-fixed coordinate, (u, v) are the linear velocity of surge
and sway in the body-fixed coordinate, p and r are the roll rate
and yaw rate of the ship, J is the transformation matrix of the
kinetic and kinematic states, M is the system inertial
matrix, C(v) is the Coriolis and centripetal matrix, D(v) is
the damping matrix, Gη denotes the vector of gravitational
force and moments, and τ denotes the vector of control inputs,
τex is the matrix of external disturbance.

Specifically, the above-mentioned matrices are given as:

M¼
m−X u̇ 0 0 0
0 m−Y v̇ −mzg−Y ṗ mxg−Y ṙ
0 −mzg−Y v̇ I x−Y ṗ 0
0 mxg−Nv̇ 0 I z−Nṙ

2664
3775 ð3Þ

C vð Þ ¼
0 0 mzgr Y v̇v−m rxg þ v

� �
0 0 0 mu−X u̇u

−mzgr 0 0 Y v̇v
−Y v̇vþ m rxg þ v

� �
−muþ X u̇u −Y v̇v 0

2664
3775
ð4Þ

D v;ηð Þ ¼
−X uuu−X uuuu2 −X vvv−X rvr 0 −X rrr
−Yuvϕvϕ−Yurϕrϕ −Yuuvu2−Yvvvv2−Y rrvr2 0 −Yuuru2−Y rrrr2−Yvvrv2

−Kuvϕvϕ−Kurϕrϕ −Kuuvu2−Kvvvv2−Krrvr2 Kp−Kpppp2 −Kuuru2−Krrrr2−Kvvrv2

−Nuvϕvϕ−Nurϕrϕ −Nuuvu2−Nvvvv2−Nrrvr2 0 −Nuuru2−Nrrrr2−Nvvrv2

2664
3775 ð5Þ

G ¼
0 0 0 0
0 0 0 0
0 0 −Kϕ 0
0 0 0 0

2664
3775 ð6Þ

τ ex ¼ τ exjX ; τexjY ; τ exjK ; τexjN
� �T ð7Þ

τ ¼ τX ; τY ; τK ; τN½ �T ð8Þ
where m is the mass of the ship; xg and zg are the position of
the ship’s center of mass in the body-fixed coordinate; Ix and Iz
are the moment of inertia; X u˙ , Yv˙ , Y r˙ , Nv˙ , Yp˙ , and Nr˙ are the
hydrodynamic added mass and added moment inertia of the
ship; X•, Y•, K•, and N• with subscripts are the hydrodynamic

coefficients concerning the corresponding dimension; τX, τY,
τK, and τN are the forces and moments generated from actua-
tors including propellers and rudder on corresponding DOF;
and τex ∣ X, τex ∣ Y, τex ∣K, and τex ∣N are the environmental
disturbances on corresponding DOF, including the distur-
bances of waves, currents, and wind.

2.2 RBFNN-Based Function Approximation
for Feedback Control

In order to better represent the process of the ship’s motions,
the four-DOFmathematical model of the surface vessel can be
rewritten as a second-order nonlinear system. Considering the
fact that the transformation matrix of the states (i.e. J) is a
determined item in every iteration of calculating ordinary dif-
ferential equation (ODE), when the relevant items are defined

as A Sð Þ ¼ −C vð Þ−D v;ηð Þ
M þ −Gη

M v, B Sð Þ ¼ 1
M, C = J ∈R, d ¼ τex

M ,
u = τ, the Eq. (1) can be simplified as the following state space
equations:

s˙ 1 ¼ Cs2
s˙ 2 ¼ A Sð Þ þ B Sð Þuþ d

Y ¼ s1
ð9Þ

Fig. 1 Two correlative coordinates for the motions of the surface vessel
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where S = [s1 s2]
T are the system states of the plant, which

contains the relevant controllable variables in the control pro-
cess, u is the input of the plant being controlled, and Y is the
output of the plant.

In the closed-loop control of the plant, the target value Yd,
the error e, and an augmented error term eA can be defined as:

Y d ¼ Yd Y˙ d
� �T

; e¼Y d−Y ¼ e e˙
� �T

¼ Yd−Y ; Yd
˙ −Y˙

� �T
; eA ¼ λ 1½ �e¼λeþ e˙ ð10Þ

where λ is selected to ensure that the polynomial eA + λ is
Hurwitz (Ge et al. 1999). The derivative of the augmented s
can be expressed as:

eA˙ ¼ λe˙ þ e
¼ λe˙ þ Yd−Y
¼ λe˙ þ Yd−CA Sð Þ−CB Sð Þu−Cd
¼ D−CA Sð Þ−CB Sð Þu−Cd

ð11Þ

where D ¼ λėþ Yd .
Lemma: For the system expressed by Eq. (9), considering

that B(S) > 0, the ideal control law to make the plant converge
to desired states can be chosen as:

u* ¼ −
1

CB Sð Þ CA Sð Þ−Dþ Cdð Þ− Ḃ Sð Þ
2CB Sð Þ2 −

1

εCB Sð Þ −
1

εCB Sð Þ2
 !

eA

ð12Þ
where ε > 0 is the design parameter which is used to determine
the converge rate of the tracking error, then lim

n→∞
ek k ¼ 0.

Proof: When the control law in Eq. (12) is substituted in
the Eq. (11), the augmented term s can be rewritten as:

eA˙ ¼ D−CA Sð Þ−CB Sð Þu−Cd
¼ −

Ḃ Sð Þ
2B Sð Þ þ

1

ε
þ 1

εB Sð Þ
� �

eA
ð13Þ

Developing the Lyapunov function as V ¼ 1
2B Sð Þ eA

2; its

derivative can be presented as:

V˙ ¼ 1

B Sð Þ eAeA
˙ −

Ḃ Sð Þ
2B Sð Þ2 eA

2

¼ −
1

εB Sð Þ þ
1

εB Sð Þ2
 !

eA2 ð14Þ

The above-mentioned function indicates that the augment-
ed error eA would converge to zero. Correspondingly,
lim
n→∞

ek k ¼ 0.

It is shown that the robust control law in Eq. (12) can be
formulated as a function of the desired signals, the system
states, and their relevant derivatives

z ¼ S eA
eA
ε
D

h iT
ð15Þ

whereas, as can be seen in the above-mentioned equations, the
corresponding matrices in the ship’s motion equations (i.e.
A(S), B(S), and C) are complicated. In addition, the various
unknown disturbances acting on the ship add difficulty to
achieve the model-based closed-loop control. Hence, to
achieve the control law in Eq. (12), it is reasonable to utilize
the online optimization algorithm to approximate the control
laws.

The RBFNN was developed to approximate the unknown
functions by adopting the radial basis functions as the activa-
tion functions (Broomhead and Lowe 1988). The scheme of
the neural networks contains three layers: input layer, output
layer, and hidden layer. The essential feature of the RBFNN-
based control approach is that no prior knowledge of the dy-
namics of the plant is required to design the controller, and no
offline training is required for the neural network (Ge et al.
2010). Therefore, the RBFNN can be applied in this study to
approximate the function of control law as:

û ¼ ω̂TΦ zð Þ ¼ ω̂1Φ1 zð Þ þ ω̂2Φ2 zð Þ þ⋯þ ω̂iΦi zð Þ þ⋯þ ω̂mΦm zð Þ½ �
Φ zð Þi ¼ exp −

z;−; ĉik k2
2σRBF

2

 !
ð16Þ

where û is the approximated value of ideal control law, ω̂
is the estimation of the ideal weights, Φ(z)i is the radial
basis function working as the activation function in the
hidden layer, in which ĉi is the center and σRBF is the
width representing the covering scope for the network
input, and Φ with i subscripts denote the activation func-
tions with the input z.

Based on the introduction mentioned above, it is known that
the unknown nonlinear plant can be controlled by the RBFNN-
based controller with the input z. The input matrix can be con-
structed by using the desired value and actual value. When the
algorithm to update the neural network weights and centers is
applied, the direct control method based on the RBFNN approx-
imation can be used to provide control and make the plant con-
verge to the desired states; the details are illustrated in Fig. 2.
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3 Control Algorithm Based on DEKF-Trained
RBFNN

In this section, the DEKF training algorithm is introduced to
train the RBFNN-based controller to improve the control per-
formance with satisfactory design complications. The
strengths of the DEKF training algorithm to the BP training
method are analyzed mathematically as well.

3.1 RBFNN-Based Controller Trained by DEKF

The training algorithm for the RBFNN-based controller is
presented as:

3.1.1 Estimation of Weights

& Initialization

w ̂0 ¼ E w0½ �P0 ¼ E w0−ŵ0Þ w0−ŵ0ÞT
� i�h

ð17Þ

where ŵ is the estimated weights initialized as small random
value (e.g. magnitude of 0.1). P is the estimated error covari-
ance of weights, and its initial value can be a diagonal matrix
with diagonal components.

& Recursively executing with time interval Δt

Step W-1. Time updating

wet ¼ wt̂−ΔtPet ¼ Pt−Δt ð18Þ

wherew∼ is the predicted weights and P∼ is the predicted error
covariance of weights.

Step W-2. Jacobian matrix calculation

H t ¼
∂yp
∂~wt

¼ ∂yp
∂ym

∂ym
∂~wt

¼ exp −
X t−ce 1ð Þk2
2σRBF

2

					
!
; exp −

X t−ce 2ð Þk2
2σRBF

2

					
!
;…; exp −

X t−ce mð Þk2
2σRBF

2

					
!
� ∂yp
∂ym

   " ð19Þ

where H is the Jacobian matrix regarding neural network
weights for DEKF estimation and

∂yp
∂ym

is the Jacobian item
representing the sensitivity between the plant input and output;
more details about the implement are shown in Liu (2013).

Step W-3. Kalman gains matrix calculation

K t ¼ PetH t
T H tPetH t

T þ Rw�−1
h

ð20Þ

where K is the Kalman gain matrix for weights group, Rw is a
diagonal matrix with components equal to or slightly less than 1.

Step W-4. Estimation of states

ŵt ¼ wet þ K teAw ð21Þ
where w ̂ is the estimated weights of the RBFNN-based con-
troller and eAw is the augmented deviation, which obeys the
format in Eq. (11).

Step W-5. Error covariance updating

Pt ¼ Pet−K tH t
TPet þ Qw ð22Þ

Fig. 2 Architecture of the direct RBFNN control system
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where Qw is the matrix representing artificial process noise in
the process of the weights’ training. It is used to avoid numer-
ical divergence.

3.1.2 Estimation of Centers

& Initialization

c0̂ ¼ E c0½ �G0 ¼ E c0−c0̂Þ c0−c0̂ÞT
� i�h

ð23Þ

where c ̂ is the estimated centers initialized as small random
value.G is the estimated error covariance of centers initialized
as a diagonal matrix with diagonal components.

& Recursively executing with time interval Δt
& Step C-1. Time updating

cet ¼ ct̂−ΔtGet ¼ Gt−Δt ð24Þ

where ce is the predicted centers and Ge is the predicted error
covariance of centers.

Step C-2. Jacobian matrix calculation

J t ¼
∂yp
∂~ct

¼ ∂yp
∂ym

∂ym
∂~ct

¼ wet 1ð ÞΦ 1ð Þce 1ð Þ−X t

σRBF
2

;wet 2ð ÞΦ 2ð Þce 2ð Þ−X t

σRBF2
;…;wet mð ÞΦ mð Þce mð Þ−X t

σRBF2
� ∂yp
∂ym



ð25Þ

where J is the Jacobian matrix regarding neural network cen-
ters for DEKF estimation.

Step C-3. Kalman gains matrix calculation

T t ¼ Get J t
T J tGet J t

T þ Rc�−1
h

ð26Þ

where T is the Kalman gain matrix for centers group and Rc is a
diagonal matrix with components equal to or slightly less than 1.

Step C-4. Estimation of states

ct̂ ¼ cet þ T teAc ð27Þ
where ĉ is the estimated centers of RBFNN-based controller and
eAc is the augmented deviation,which obeys the format in Eq. (11).

Step C-5. Error covariance updating

Gt ¼ Get−T t J t
TGet þ Qc ð28Þ

where Qc is the matrix representing artificial process noise in
the process of the centers’ training. It is used to avoid numer-
ical divergence.

More details about the studies of the stability analysis and
converging in the use of the EKF-based training algorithm can
be referred in De and Yu (2007) and Wang and Huang (2011).
Based on the above-mentioned formulas, the DEKF-based al-
gorithm was used as the training algorithm by using the aug-
mented system error to update the weights and centers of the
RBFNN. As shown in Eqs. (21) and (27), the augmented error
between the desired value and the actual value was adopted in
the current iteration to approximate the weights and centers.
After calculating the control law by using the proposed
DEKF-trained RBFNN controller shown in Eq. (16), the actua-
tor will make the plant converge to the desired value recursively.

3.2 Performance Analysis Between DEKF- and
BP-Based Training Algorithm

It is well-known that the BP training algorithm is a classical
method to set the weights and centers of RBFNN. Although the
BP training method is effective in training neural networks, it
only processes the present gradient descent procedure. That is
to say, the gradient is calculated for the error surface merely
based on the current state but not the whole set of the states,
which are constantly changing under the control law. The BP
training algorithm can be expressed as (Liu 2013):

ΔwBP ¼ −ηw
∂E
∂wBP

¼ −ηw
∂E
∂yp

∂yp
∂ym

∂ym
∂wBP

¼ ηweAw exp
− X t−~c 1ð Þ
			 			2
2σRBF2

0B@
1CA; exp

− X t−~c 2ð Þ
			 			2
2σRBF2

0B@
1CA;…; exp

− X t−~c mð Þ
			 			2
2σRBF2

0B@
1CA

264
375 ∂yp
∂ym

ΔcBP ¼ −ηc
∂E
∂cBP

¼ −ηc
∂E
∂yp

∂yp
∂ym

∂ym
∂cBP

¼ ηceAc ~wt 1ð ÞΦ 1ð Þce 1ð Þ−X t

σRBF
2

;wet 2ð ÞΦ 2ð Þce 2ð Þ−X t

σRBF2
;…;wet mð ÞΦ mð Þce mð Þ−X t

σRBF2
� ∂yp
∂ym




ð29Þ
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where ηw and ηc are the learning rates of the neural networks
and s is the augmented error of the system. When the follow-
ing two assumptions are taken, (1) Pe ¼ pwI , Ge ¼ pcI and (2)

HPeHT þ Rw�−1 ¼ awI
h

, JGeJT þ Rc�−1 ¼ acI
h

, the DEKF
algorithm for neural network training can be simplified as the
following form:

ΔwEKF ¼ KeAw

¼ ~PHT H~PHT þ Rw
h i−1

eAw
¼ awpweAwH

¼ awpweA exp
− X t−~c 1ð Þ
			 			2
2σRBF

2

0B@
1CA; exp

− X t−~c 2ð Þ
			 			2
2σRBF

2

0B@
1CA;…; exp

− X t−~c mð Þ
			 			2
2σRBF

2

0B@
1CA

264
375 ∂yp
∂ym

ΔcEKF ¼ TeAc

¼ ~GJT J ~GJT þ Rc
h i−1

eAc
¼ acpceAcJ

¼ acpceAc wet 1ð ÞΦ 1ð Þce 1ð Þ−X t

σRBF
2

;wet 2ð ÞΦ 2ð Þce 2ð Þ−X t

σRBF
2

;…;wet mð ÞΦ mð Þce mð Þ−X t

σRBF
2

� ∂yp
∂ym




ð30Þ

Note that from the mathematical standpoint, the DEKF
training algorithm can be interpreted as the degeneration of
the BP training algorithm with awpw = ηw and acpc = ηc.

The essentialities of the two above-mentioned assumptions
can be implicated as follows. The first assumption means that
the covariance of the weights and centers remains the diagonal
form as its value is not changed during the propagation.
Initially, this assumption is reasonable because the initial er-
rors of the weights and centers do not have cross-correlations.
However, during the training process, maintaining the

diagonal forms of P and G means that the errors in the
weights and centers are uncorrelated, which is unsound be-
cause the weights and centers in the previous steps affect the
derivative value of the outputs which will contribute to the

Fig. 3 The scheme of the proposed rudder roll stabilization

Fig. 4 The roll motions and rudder actions of the ship sailing on
trajectory

Table 1 The main characteristics of the full-scale container ship

Length (m) 175.00

Breath (m) 25.40

Mean draft (m) 8.00

Displacement (m3) 21 222

Block coefficient 0.559

Metacentric heights (m) 0.3

Rudder area (m2) 33.037

Propeller diameter (m) 6.533
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value of the following estimations. Hence, the off-diagonal
forms are essential as they contain interrelated information
for the training of weights and centers.Moreover, this assump-
tion leads to the results that the weights and centers are up-
dated with the same rate even though they need to be trained
based on the changing rate of differences. Therefore,
discarding the off-diagonal covariance has the significant im-
pact on the training of weights and centers.

Based on the first assumption, the second assumption can
be rewritten as:

HPeHT þ Rw ¼ pwHHT þ τwI JGeJT þ Rc ¼ pcJ JT þ τcI

ð31Þ

In order to achieve the assumptions which equal to awI and
acI, it is required that

HHT ¼ γwI
J JT ¼ γcI

ð32Þ

When the rows of matrices are orthogonal and the entries
are

ffiffiffiffiffiffi
γw

p
and

ffiffiffiffiffi
γc

p
, respectively, the assumptions will be satis-

fied with

HPeHT þ Rw�−1 ¼ 1

pwγw þ τw
I JGeJT þ Rc�−1 ¼ 1

pcγc þ τ c
I




ð33Þ

However, these conditions cannot always be satisfied be-
cause the row entries of H and J are the partial derivatives of
the outputs regarding the weights and centers in the proposed
RBFNN.

Overall, when the DEKF algorithm is being simplified into
the BP algorithm, the assumptions cannot always be guaran-
teed and would result in the discarding of some useful infor-
mation in updatingweights and centers. Therefore, the DEKF-
based training algorithm is superior to the BP-based algorithm
theoretically. The section of case studies will examine the
comparative performance of BP- and DEKF-trained RBFNN
control system.

4 DEKF RBFNN–Based Rudder Roll Damping
Autopilot

The rudder roll stabilizer has been demonstrated to be a com-
petent approach to reduce roll motions only using the rudder
as the damping actuator (Perez and Blanke 2012). In compar-
ison with the compact controller design, the separate control-
ler design, which owns two controllers implemented in paral-
lel, has fewer rudder actions and design complexity caused by
the coupling items (Fang and Luo 2006). In this study, the
rudder roll stabilization system is designed through develop-
ing and conducting the yaw motion controller and the roll
damping controller separately. Based on the DEKF RBFNN
control scheme, the autopilot control system concerning the
objective of path following and roll damping is developed as
shown in Fig. 3.

The enclosure-based steering line of sight (EBS LOS)–
based guidance method (see Fig. 1) is employed in the control
system. The dynamic desired course angle ψd to track the
trajectory and the tracking deviation E0 can be calculated as:

ψd ¼ arctan
ylos−yc
xlos−xc

� �
ð34Þ

E0 ¼ yc−ykð Þcos αkð Þ− xc−xkð Þsin αkð Þ ð35Þ
where (xc, yc) is the current position, (xlos, ylos) is the position
of EBS LOS point, (xk, yk) is the previous pre-set waypoint,
andαk is the orientation of the pre-determined trajectory; more
details can be seen in Fossen (2011).

In the proposed system, the roll damping controller
will calculate the relevant control output based on the
actual roll angle ϕ and roll rate p. Simultaneously, the
actual position is utilized in the EBS LOS guidance
block to calculate the instantaneous course angle. The
actual yaw angle ψ and yaw rate r are compared with
the desired yaw angle ψd to build up the input matrix
for the yaw motion controller. The ship’s command rud-
der angle is equivalent to the summation of the control
law from yaw motion controller and roll reduction con-
troller with corresponding parameters:

Fig. 5 The trajectories of the vessel when following trajectory 1
Fig. 6 The path following error of the vessel advancing according to
trajectory 1
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uψ ¼ ŵ̂ψ
TΦ zψ
� � ¼ ∑m

j¼1ŵ̂ψ jð Þexp − zψ−ĉ̂ψ jð Þ		 		2
2σRBF2

 !

uϕ ¼ wϕ̂
TΦ zϕ
� � ¼ ∑m

j¼1w ̂ϕ jð Þexp −
zϕ−ĉϕ jð Þk2
2σRBF2

					
!
δc ¼ bψuψ þ bϕuϕ

 
ð36Þ

where uψ and uϕ are the approximated control laws for
path following and roll reduction, Φ are the neurons of

the proposed RBFNN, zψ ¼ ψ; λ ψd−ψð Þ þ ψ̇d−ψ̇ð Þ½ ;

λ ψd−ψð Þþ ψ̇d−ψ̇ð Þ
ε ; λ ψ̇d−ψ̇ð Þ þ ψd�T a n d zϕ ¼

ϕ; λ ϕd−ϕð Þ þ ϕ̇d−ϕ̇ð Þ; λ ϕd−ϕð Þþ ϕ̇d−ϕ̇ð Þ
ε ; λ ϕ̇d−ϕ̇ð Þ þ ϕd

h iT
(where ϕd = 0 is selected in this study to show the roll stabili-
zation) are the input of relevant controllers, ŵψ and ŵϕ are the
corresponding weights trained by the DEFK, ĉψ and ĉϕ are the
corresponding centers trained by the DEFK, j is the total num-
ber of the neurons in the neural network. δc is the rudder
command angle and bψ and bϕ are the parameters reflecting
the emphasis of control performance. Since the underactuation
characteristic of the ship’s motion control, the rudder is com-
monly utilized as the only actuator. The selection of the pa-
rameters is determined by the environmental conditions and
stabilization requirements. In this study, the importance of the

yaw control is assumed to be equivalent to that of the roll
damping control; thus, the two parameters are assumed to be
equivalent to each other (Fossen 2011).

To analyze the control capability of the proposed DEKF
RBFNN–based rudder roll stabilization system, the evaluation
items including roll reduction percentage, the cost functions of
roll motion CRoll, and rudder angle CRudder (McGookin et al.
2000) are adopted and expressed as follows:

dB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

k¼0 pBk
� �2

M−1

s
; dA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

k¼0 pAk
� �2

M−1

s
PReduction %ð Þ ¼ dB−dA

dB
� 100%

CRoll ¼ ∑
M

k¼0
ϕ2
k ;CRudder ¼ ∑M

k¼0δ
2
k

ð37Þ

where dB is the standard deviation of roll rate pB without roll
damping control and dA is the standard deviation of roll rate p

A

with roll damping control (Fossen 1994), M is the amount of
the total iterations, and ϕk and δk are the roll angle and rudder
angle in the kth iteration respectively.

Table 2 The values of cost function and relevant roll damping percentage (sailing on trajectory 1)

Controller types Standard deviation of roll rate Roll reduction percentage Cost of roll motions Cost of rudder actions

Without roll stabilizer 0.01689 N/A 140 650 234 407

DEKF RBFNN stabilizer 0.00679 59.83 48 411 474 708

BP RBFNN stabilizer 0.00799 52.70 55 591 515 668

PD stabilizer 0.00995 41.08 61 926 521 293

Fig. 7 The path following error of the vessel advancing according to
trajectory 2 Fig. 8 The trajectories of the vessel when following trajectory 2
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5 Simulation Studies

In order to validate the efficiency of the rudder roll stabiliza-
tion system based on DEKF-trained RBFNN, the four-DOF
nonlinear mathematical model of a full-scale container ship is
adopted in this study. The main characteristics of the relevant
ship are outlined in Table 1. More details can be seen in
Fossen (1994). The input and output of the plant (i.e. the
surface vessel being controlled) are the rudder angle and an-
gular motions, while the system states are the attitudes of the
vessel.

5.1 Simulation Setting and Prior Training of the DEKF
RBFNN–Based Controller

The Bogacki-Shampine algorithm was employed to solve the
ODE of the ship’s mathematical model with wave distur-
bances. The ship’s propeller rotation rate was set at 80 r/min.
From the perspective of engineering practice, the slew rate of
rudder angle (i.e. motions of control actuator) was constrained
within ±5 (°) /s regarding the characteristics of normal servo
motors as well as the requirement of IMO (Oda et al. 2008),
while the angle was correspondingly constrained to δmax = ±
20° to avoid sharp fluctuations of rudder actions.

Two scenarios were carried out to investigate the perfor-
mance of the proposed stabilization system: in the first sce-
nario, the ship is requested to sail from the beginning way-
point (0, 0) to the next waypoint (3600, 2160), and then head-
ing to the following point at (5920, 6120) before advancing to
the waypoint (5920, 9600) (defined as trajectory 1) with initial
state at [η0, v0] = [0 m, 0 m, 0°, 30°, 8 m/s, 0 m/s, 0 (°) /s,
0 (°) /s]T; the second scenario (trajectory 2) is designed to
make the ship sailing from the initial waypoint (0, 0) to
(4000, 0), and then to (8000, 1200) before arriving at the

waypoint (12 000, 1200) with initial state at [η0, v0] = [0 m,
0 m, 0°, 0°, 8 m/s, 0 m/s, 0 (°) /s, 0 (°) /s]T. The characteristic
of the environmental disturbance was selected as sea state 5.

The parameters of the proposed DEKF training method for
approximating the weights and centers of the RBFNN are
tuned by the experience and trial-and-error method as ε =
0 .5 , λ = 4 , Rw

ψ ¼ Rc
ψ ¼ I3, Rw

ϕ ¼ Rc
ϕ ¼ I3, Qw

ψ ¼ Qc
ψ ¼

0:01� I9, and Qw
ϕ ¼ Qc

ϕ ¼ 0:00001� I9.
In order to save the learning time for the DEKF RBFNN

controller, the prior training was conducted. Nine neuron
nodes were involved in the neural network scheme. In the
present study, the prior case for the ship advancing based on
the desired path is carried out to train the ship to learn how to
sail on the desired trajectory while reducing roll motions. The
‘convergent weight matrices’ obtained after 100 s can then be
selected as the initial matrices for the RBFNN–based roll
s t ab i l i z e r t o hand le the mot ions o f the sh ip
ŵψ0 ¼ 0:09; −0:001; −0:002½ ;−0:003; −0:004; −0:003;
−0:0022; −0:001; −0:0003 �T;ŵϕ0 ¼ −0:17;½ −0:44;

−0:77 ; −0:94; −0:75; −0:34; −0:03; 0:07 ; 0:05�T.

5.2 Results and Discussion

In order to highlight the capability of the designed DEKF
RBFNN–based rudder roll stabilization system, the BP
RBFNN–based and proportional derivative (PD)–based rud-
der roll stabilization system (Wang et al. 2015) were employed
in this study for comparison. Two different pre-set trajectories
are proposed to investigate the roll damping and path follow-
ing performance of the proposed control system.

For the first scenario, as shown in Fig. 4, without the roll
damping controller, the DEKF RBFNN–based yaw motion
controller is capable of maintaining the ship sailing on the
desired path steadily. However, the roll angle of the ship is

Fig. 9 The path following error of the vessel sailing based on trajectory 2

Table 3 The values of cost function and relevant roll damping percentage (sailing on trajectory 2)

Controller types Standard deviation of roll rate Roll reduction percentage Cost of roll motions Cost of rudder actions

Without roll stabilizer 0.02106 N/A 197 138 293 559

DEKF RBFNN stabilizer 0.00881 58.17 53 481 578 768

BP RBFNN stabilizer 0.01130 46.35 78 299 580 114

PD stabilizer 0.01299 38.30 93 876 636 885

Table 4 The comparison of computational burdens amongst DEKF-,
UKF-, and PB-trained RBFNN controllers

CPU frequency Running time for each iteration (s)

EKF RBFNN controller BP RBFNN controller

2.60 G 1.532 × 10−4 1.490 × 10−4

3.4 G 0.715 × 10−4 0.743 × 10−4
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huge due to environmental disturbances. When the roll
damping control loop is activated, the tasks of path following
and roll damping are achieved by using the rudder roll stabi-
lization system synchronously. The figures also show that the
DEKF RBFNN–based control system uses mild rudder ac-
tions, but it performs better in roll damping than that of the
BP RBFNN- and PD-based control systems. It can be ex-
plained that the increase of yaw angle deviations is the price
paid for roll reduction and added to the complicated coupling
system. Figures 5 and 6 illustrate the trajectories and the cor-
responding deviations between desired trajectories and actual
trajectories for four types of control systems (i.e. without roll
damping control, with DEKF RBFNN roll damping control,
with BP RBFNN roll damping control, and with PD roll
damping control). It is shown that the ship is capable of sailing
on the desired trajectory without significant tracking errors
when using the control of the proposed rudder roll stabiliza-
tion system.

The values of relevant evaluation items are summarized in
Table 2. The roll damping percentages of the proposed rudder
roll stabilization systems are calculated as 59.83%, 52.70%,
and 41.08%, respectively. It is found that comparing with the
BP RBFNN- and PD-based stabilizer, the DEKF RBFNN
stabilizer is capable of providing effective rudder actions with
better roll damping performance and path following accuracy.

A similar conclusion can be drawn from the second scenar-
io with different wave encounter angles. In this process, the
dynamic performances of the ship turning to both the port side
and starboard side are considered. Figures 7, 8, and 9 show
that the DEKF RBFNN–based rudder roll stabilization system
is promising in making the vessel to track the desired path and
to reduce the roll motion even subject to the waves on the
beam sea. The values of relevant evaluation items are shown
in Table 3. It can be observed that the roll damping rate of the
DEKF RBFNN–based system (i.e. 58.17%) is larger than that
of the BP RBFNN system at 46.35% and PD system at
38.30%. Thus, the roll damping and path following, as well
as the efficiency, of rudder actions are validated.

In practice, the functionality of the autopilot is achieved by
the embedded computer. Regarding the computational ex-
penses, the active control running time per period can be used
to evaluate the computational complexity. That is the elapsed
time when running the control program at every interval.
Table 4 outlines the computational expenses of the DEKF
RBFNN roll stabilizer and the BP RBFNN roll stabilizer
(Wang et al. 2015). It is indicated that the computing load of
the proposed DEKF RBFNN–based control system approxi-
mately equals to that of the BP-based control system, since
DEKF only needs to perform the calculation of Jacobian ma-
trix in one integration. Running time for each iteration (s) is
shown in Table 4.

Therefore, the competent control performance, the low
computational overhead, and the efficiency of using actuators

make the EKF RBFNN a good choice to design autopilot and
rudder roll stabilizer. From the investigations concerning dif-
ferent trajectories and encounter angles of waves, the EKF
RBFNN–based rudder roll stabilization system was demon-
strated to be effective in maintaining the ship advancing on the
desired path and compensating the huge roll motions at the
same time.

6 Conclusion

In this paper, the DEKFRBFNN algorithm has been proposed
to develop the rudder roll stabilization system, which contains
the yaw motion controller and the roll reduction controller
implemented in parallel. The rudder roll stabilization system
incorporated with the nonlinear mathematical model had been
used to verify the control performance of the ship by only
using the rudder as the steering actuator. It is found that the
designed control system is feasible to maintain the surface
vessel advancing on the pre-set path while reducing the roll
motion at the same time. Comparing with the BP RBFNN–
based control system, the DEKF RBFNN–based system has
faster converge speed and better robustness against the exter-
nal disturbances. It is worth noting that the designed DEKF
RBFNN–based control algorithm has promising control per-
formance but equivalent computational cost as it avoids some
complicated integration calculations. Therefore, the DEKF
RBFNN control algorithm is competent to design the rudder
roll stabilization system with qualified capability in reducing
roll motions and following path.

Further investigations will focus on the validation of the
DEKF RBFNN–based rudder roll stabilization autopilot
through experimental approaches by using the free running
model scaled vessel ‘Hoorn’ (Wang et al. 2017b). To further
improve the accuracy of the estimations and the robustness in
coping with the environmental variables, other competent
training algorithms are going to be investigated to design the
neural network–based control system for vessels.

Funding This research is a part of the project titled ‘Intelligent Control
for Surface Vessels Based onKalman Filter Variants Trained Radial Basis
Function Neural Networks’ partially funded by the Institutional Grants
Scheme (TGRS 060515) of Tasmania, Australia.
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