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Abstract
The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave
heights have been analyzed using two transformation functions estimated by non-parametric and parametric methods. The
marginal wave characteristic distribution and the joint density of wave properties have been calculated using the two transfor-
mations, with the results and accuracy of both transformations presented here. The two transformations deviate slightly between
each other for the calculation of the crest and trough height marginal wave distributions, as well as the joint densities of wave
amplitude with other wave properties. The transformation methods for the calculation of the wave crest and trough height
distributions are shown to provide good agreement with real ocean data. Our work will help in the determination of the most
appropriate transformation procedure for the prediction of extreme values.
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Non-parametricmethod . Crossing-density function

1 Introduction

While the probability distribution for stochastic wave charac-
teristics is generally modeled by a Gaussian process using
existing methods (Lindgren and Rychlik 1982), the results,

especially for the distribution of the crests and troughs, deviate
from observations (Ochi and Ahn 1994). Therefore, an appro-
priate model is needed to analyze the properties of waves. For
example, the Slepian model and the regression method may be
used to obtain accurate approximations of the distributions of
wave characteristics (Lindgren and Rychlik 1991). However,
the results derived using a regression-approximation method
are often referred to as a “theoretical distribution,” since the
results differ from themathematical method, which gives small-
er numerical errors. While the distributions proposed by
Longuet-Higgins, Cavanie et al. agree well with the theoretical
distribution for a narrow-band Gaussian model, these distribu-
tions are only based on a few spectral moments, with the agree-
ment with observations worsening for broader spectra (Cavanie
et al. 1976). Rychlik and Johannesson analyzed the wave char-
acteristics using the transformed Gaussian model and demon-
strated an improved distribution of thewave characteristics with
respect to the other models mentioned (Rychlik et al. 1997).
However, the transformed Gaussian model lacks an analysis of
the transformation function as used by other methods, and it is
not clear whether this transformation is able to capture the in-
fluence of the distribution of wave characteristics.

Ways to estimate the transformation include that proposed
by Ochi and Ahn (1994), which is a monotonic exponential
function, while Winterstein’s model (Winterstein 1988) is a
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monotonic cubic Hermite polynomial, with both transforma-
tions usingmoments to estimate the transformation function g.
The Winterstein–Hermite and Ochi models are generally used
for the analysis of non-linear vibration problems, such as
extreme-value and fatigue analyses, but are rarely used to
analyze wave characteristics. In Jean-Marc and Sebastien
et al. (Azas et al. 2011), an exact solution for the Hermite
method was proposed, but which only gives the extreme be-
havior of wave models while ignoring the wave characteristic
distribution. Rychlik’s non-parametric method is based on the
crossing intensity (Aberg 2007) for the analysis of the wave
distribution to prove the transformed Gaussian model, but
lacks a comparison of the different transformations estimated
by different methods used in the analysis of wave characteris-
tics. For more exact approximations of the distribution of
wave characteristics, and predicting the extreme values, it is
essential to analyze the transformed function as estimated by
each method.

The analysis of the wave characteristic distribution of the
China Sea is in an attempt to provide references for the wave
energy resource development, navigation, marine engineer-
ing, disaster prevention, and reduction. In China, the wave
study mostly based on very limited buoy material or shipping
data, so an exact model for wave characteristic analysis is
necessary (Zheng et al. 2014). This paper is to compare two
methods to choose an appropriately sophisticated one to
modeling wave data for evaluation of extreme values.

This paper summarizes two main methods, the parametric
and non-parametric methods, to estimate the transformation in
transformed Gaussian models. Based on three ocean datasets
(Yang et al. 2015) with different significant wave height Hs,
two different transformation functions are used here to analyze
the probability distribution parameters of wave statistics. First,
two transformed functions are obtained using both parametric
and non-parametric methods, which are then compared with
the empirical distribution of observed wave characteristics.
Under the two transformations and combined with the
Lindgren distribution, the parameters defining the probability
density function for this region are obtained. From these re-
sults, the influence of the two different transformations are
analyzed for waves with different significant wave heights,
and the distributions obtained by the two transformations are
compared with determine which gives a better transformation
for the analysis of the distributions of wave characteristics.

2 Methodology and Data

The elevation of the sea X(t) as a function of time, sampled at a
fixed location, can be written as a function of a Gaussian
process Z(t),

X tð Þ ¼ G Z tð Þ½ � ð1Þ

where G is a continuously differentiable deterministic func-
tion with positive derivatives and Z(t) is a simple stationary
Gaussian process with zero mean and a variance of one.

We denote the spectrum of X by S(w), and the spectrum of

Z by ~S wð Þ. The transformation G performs the appropriate
non-linear translation and scaling, so that Z is always normal-
ized to have zero mean and a variance of one, and the first
spectral moment of Z is one. The calculation uses the inverse
function of G, g to define the transformation instead of G, as
well as the relation Z(t) = g [X(t)] between the observational
data X(t) and the transformed data Z(t).

Here, the simplest alternative is used to estimate the func-
tion g directly from the data by the following two methods:
parametric and non-parametric methods.

2.1 Data

For the analysis of two different transformation functions for
waves with different significant wave height Hs, the data
adopted in this paper were provided by South China Sea
Institute of Oceanography, and three datasets were sampled
(Zeng 2015) in the South China Sea (Yang et al. 2015). The
analyses of each dataset for two different transformations are
presented here. The abbreviation MWL of the Y-axis means
“mean water level” in Fig. 1.

Some simple statistics for the observations are given in
Table 1, including the sampling interval Ts, the total time of
the measurement T, and the significant wave height Hs. For
calculating the significant wave height, all turning points had
been included in the calculating process.

We define the wave characteristics as shown in Fig. 2.

2.2 Methods

2.2.1 Non-parametric Method

Based on the non-parametric method, the transformed function
is calculated using the crossing-density function V(u), which
yields the average number, per time or space unit, of up-
crossings of the level u. The basic definition of the crossing
function is

V uð Þ ¼ E numbers of up−crossings of level u by X tð Þ½ � ð2Þ
where E is the expected value, and V is approximated as

V uð Þ ¼ 1

T
∑
i
l mi;Mið � uð Þ ¼ V̂̂ uð Þ ð3Þ

where l mi;Mið � uð Þ ¼ 1 if min < u <max and zero if u out of this
range, the min and the max is the local extreme of the wave in
index, u is a variable of different levels for the crossing-density
function and the transformed function in the next section, by
definition of the empirical up-crossing density observed at time
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T, and V̂ uð Þ is not a continuous function. While V(u) is a differ-
entiable function, so the definition of the V̂ uð Þ is modified into a
left continuous function as formula 3.

For a zero-mean Gaussian process Z(t), the crossing density
~V uð Þ is given by Rice’s formula as

~V uð Þ
Vo

¼ σz

σx
exp −

u2

2σ
~x

2

0
@

1
A ð4Þ

where Vo is the maximum of ~V uð Þ, and the observed data X(t)
are normalized, so that the maximum of the crossing intensity
is (2π)−1. If σ2

z and σ
2
x are the variance of X(t) and Z(t), assum-

ing σ2x ¼ σ2
z ¼ 1, then the formula follows

~V uð Þ ¼ 1

2π
exp −

u2

2

� �
ð5Þ

The empirical crossing intensity V̂ uð Þ calculated from
sampled sea data is used to estimate the function g =
G−1, which can then be used to match the transformed
model. For the transformed model X(t) = G[Z(t)], the
crossing intensity is

V uð Þ ¼ ~V g uð Þ½ � ¼ 1

2π
exp −

g uð Þ2
2

 !
ð6Þ

Assuming that V(u) is a continuous and unimodal function
with a maximum u = u0, the transformation g is expressed as

g uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 2πV uð Þð Þ

p
if u≥u0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 2πV uð Þð Þ

p
if u < u0

�
ð7Þ

Since V(u) can be estimated from the data and denoted

by the empirical crossing V̂ uð Þ, the renormalized empir-
ical transformation function is

g* uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 2πV σuþ mð Þð Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 2πV σuþ mð Þð Þ

p
�

ð8Þ

Since V̂ uð Þ is not a continuous function, then g∗(u) is also
not continuous, and hence must be smoothed for the
Gaussian process

gs uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 2πV σuþ mð Þð Þ½ �− −2ln 2πV σu0 þ mð Þð Þ½ �

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 2πV σuþ mð Þð Þ½ �− −2ln 2πV σu0 þ mð Þð Þ½ �

p
�

ð9Þ

which gives the smoothed approximation gs(u) to
g(σu +m). Finally, the estimation of the transformation
is

g uð Þ≈gs u−m
σ

� �
ð10Þ

So that if gs(u) = u, the Gaussian model for the observation-
al data X(t) can be obtained.

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 1 Samples of observations with the turning points marked. a
Hs = 0.54m. b Hs = 1.67m. c Hs = 5.32m
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2.2.2 Parameter Method

In contrast to the non-parametric method, the function g is
estimated by establishing the Hermite polynomial for the para-
metric method. This section summarizes the transformation
function for the analysis of wave characteristics by revisiting
the Hermite moment model used to analyze non-linear re-
sponses. The transformation uses the moment of X(t) to com-
pute g.

Firstly, X(t) must be normalized by the mean and variance

X−m
σ

¼ X 0 ¼ G Zð Þ ð11Þ

wherem is the mean of X(t), σ is the variance ofX(t), and Z is a
Gaussian process.

Given N response moments of the process, the transforma-
tion for a standardized process is taken as an N-term Hermite
series,

X 0 ¼ G Zð Þ ¼ k Z þ ∑
N

n¼3

~hnHen−1 Zð Þ
� 	

ð12Þ

where k = 1 and the wave non-linearity is sufficient, which

enables here ~hn to be equal to the Hermite moment hn,
~hn ¼ hn. The Hermite moment is related to the central mo-
ment α, where α is estimated from the X process,

hn ¼ αn

n!
−

αn−2

1!2 n−2ð Þ þ
αn−4

2!22 n−4ð Þ!−⋯ ð13Þ

where

αn ¼ E X n
0 tð Þ
 � ð14Þ

The Hermite polynomials Hen − 1(z) in particular are

He1 zð Þ ¼ z
He2 zð Þ ¼ z2−1
He3 zð Þ ¼ z3−3z
He4 zð Þ ¼ z4−6z2 þ 3

8>><
>>:

ð15Þ

Here, the data are estimated using the central moments α4

< 3, so the Hermite series can be applied to model the trans-
formation to a Gaussian process Z(t) according to

g xð Þ ¼ x0− ∑
N

n¼3
hnHen−1 x0ð Þ ð16Þ

From Eq. (15), the function g is calculated from the
Hermite moment as estimated from the data.

The Hermite series in Eq. (12) is assumed to be monotonic,
where the probability distribution function follows from the
Gaussian process

FX xð Þ ¼ P X tð Þ≤x½ � ¼ Φ z½ � ð17Þ
where F and Φ are the cumulative functions of X(t) and Z(t),
respectively.

3 Theoretical Probability Distribution of Wave
Characteristics

For the transformed Gaussian process Z(t), the marginal dis-
tribution is approximated accurately using the regression
method for Lindgren and Rychlik’s distribution (Lindgren
et al. 1998; Schuster 1898).

Here this section gives a brief description of the theoretical
distribution known as Lindgren and Rychlik’s distribution,
which requires numerical integration. The Lindgren method
consists of using a “model process” to investigate the behavior
of the surface near a local maximum (crest) of a given height
from which it is possible to estimate the joint distribution of
height and period conditional on the value of the crest height.
By integrating this distribution over all possible crest heights, the
joint distribution of wave height and period is obtained, with the
result shown by Srokoze and Challenor (Srokosz and Challenor
1987) to be an adequate approximation; therefore, Lindgren and
Rychlik’s distribution is called the “regression method.”

The marginal distributions of the crest period TC, trough
period TT crest height AC and trough height AT, as well as the
joint density of wave characteristics, are approximated by the
regression method presented in the next section.

The special joint density of the trough and crest height fmM is
used based on Longuet-Higgins’s method (Longuet-Higgins
1975; 1983), with the transformation g assumed to be known.
The joint probability of the trough and crest is expressed as

P a; bð Þ ¼ P m < a < b < Mð Þ ð18Þ
where a, b are fixed levels, u is the reference level for a< u < b,
and m and M are the heights of the wave troughs and crests,
respectively.

Table 1 Summary of observation
statistics Dataset Sampling interval Ts (s) Total sampling time T (s) Significant wave height Hs (m)

Group 1 0.35 10 883 0.54

Group 2 0.35 10 880 1.67

Group 3 0.78 9880 5.32
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The joint density is calculated as

f mM a; bð Þ ¼ −
∂2P a; bð Þ
∂a∂b

ð19Þ

for which the approximate definition of P(a, b) is defined by
the “Palm distribution” simply as the proportion of waves for
which m < a < b <M according to

P a; bð Þ ¼ lim
τ→∞

Num ti∈ 0; τ½ � : mi < a < b < Mif g
Num ti∈ 0; τ½ �f g

¼ intensity of trough < u and crest > v
intensity of waves

ð20Þ
where Num is the number of elements in the set{}, X is the
observed data, ti is the up-crossing time of the reference level
u, andmi andMi are the trough and crest heights of each wave,
respectively. Further details concerning this expression are
found in Rychlik et al. (1995).

4 Calculated Transformations

The calculation of level u-up-crossing (level crossing density)
is to estimate the transformed function of the parametric meth-
od in transformation and then in parametric method, the wave
characteristics of transformed Gaussian process could be ana-
lyzed. Before calculating the transformation g by the non-
parametric method, the crossing density is estimated from
the three datasets for the crossing intensities shown in Fig. 2.

The transformations are estimated for the three datasets,
indicating distributions with a light lower tail and heavy upper
tail compared with a Gaussian model. For comparison of the
transformed functions, Fig. 3 shows the results produced by
unsmoothed transformations g* estimated by the non-
parametric method according to Eq. (8) as well as the

transformation glc that uses Eq. (10), which is a smoothed
transformation estimated by the non-parametric method. The
abbreviation gh represents a transformation estimated by the
parametric method (see Eq. (16)). These transformations are
compared with the linear transformation g(u) = u, which rep-
resents the Gaussian process and use gu represents g(u) = u.

From Fig. 4, all transformations deviate from the straight
line g = (u) representing the Gaussian model, as well as from
each other, and two of the transformations glc and gh overes-
timate the crest height and underestimate the lower trough.
Comparing the two transformations glc and gh for the lowest
significant wave height, glc deviates only slightly from gh,
with gh giving slightly higher crests than glc when the crest
height exceeds Hs. As Hs increases, the gh transformation
deviates from the glc transformation for u > 1.2, which also
means the glc transformation gives higher crests in the case
that the wave height exceeds Hs. However, with regard to
troughs, the two transformations do not deviate greatly from
each other in the second dataset. In the dataset with the highest
Hs, the gh and glc transformations exhibit reverse behavior,
with the glc transformation giving a higher crest, but with gh
giving a lower trough than glc. However, from Fig. 3, it can be
seen that the different influences on the wave characteristics
need to be analyzed in detail by two transformations, as per-
formed in the next section.

Although the deviation of the two transformations from a
Gaussian process may be clear, the degree to which this occurs
should be quantified. The function e(g) used as a test quantity
for the non-Gaussian nature of the data was transformed by
the different transformation function g, with the value of e(g)
giving a measure of the deviation of g from a Gaussian model.
The departure of each transformation function from the
Gaussian process is calculated by e(g), which is defined as

e gð Þ ¼ ∫∞−∞ g uð Þ−uð Þ2du
� �1=2

ð21Þ

For an ergodic Gaussian process, and from the definition of
e(g), the value of e(g) is zero if the number of the sampled data
amounts to an infinite process. The results are calculated for
100 sampled data points as shown in Fig. 4, where the dash–
dotted line is the test value of the transformation gh and the
dashed line is the result of glc (Fig. 5).

From Fig. 4, the data depart from a Gaussian process
significantly, and the testing value of two transforma-
tions all deviate from the Gaussian process as summa-
rized in Table 2. The green dots represent the depart-
ment between observed data and Gaussian process.

As the values of the two transformations are different from
each other, the transformed process X(t) may also be different,
so the analysis of the resulting wave characteristics becomes
essential, particularly the extent to which different functions
alter the distributions.

Fig. 2 Definition of wave characteristics
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The next important parameter in estimating the transformed
Gaussian model is the spectra S(w), which is simulated using
the correlation function algorithm.

The spectral density function S of two datasets estimated
with two different transformations is shown in Fig. 6, with the
dashed line illustrating the transformation glc and the solid line
the transformation gh.

5 Results and Discussion

The distributions of the wave properties presented here were
calculated with the help of the WAFO toolbox (Rychlik and
Lindgren 2011). The method of observed data and trans-
formed process’s distribution analysis were the same

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 3 The crossing intensity of observations compared with theoretical
Gaussian distributions. a Hs = 0.54m. b Hs = 1.67m. c Hs = 5.32m

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 4 Comparison of the four transformations g for different values of
Hs. a Hs = 0.54m. b Hs = 1.67m. c Hs = 5.32m
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one, so the difference between different transformations
and observed means the error.

5.1 Marginal Distribution of Wave Characteristics

The discussion below focuses on analysis of the marginal
distribution of wave characteristics. The density values of
the crest wave period TC calculated by two transformations
are compared with the empirical distribution estimated from

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 6 Spectra of two different transformation processes. aHs = 0.54m. b
Hs = 1.67m. c Hs = 5.32m

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 5 Comparison of the function e(g) for the four transformations g
with different values of Hs. a Hs = 0.54m. b Hs = 1.67m. c Hs = 5.32m

Table 2 Values of e(g)
of two transformations
with different values of
Hs

Hs (m) 0.54 1.67 5.32

e(glc) 0.4871 0.6967 0.7384

e(gh) 0.2424 0.9014 0.8038
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the whole observed data, and the probability and cumulative
density functions (pdf and cdf, respectively) are calculated and
shown in Fig. 7.

For the pdf of TC, the transformed processes of the glc and
gh transformations match well with the Gaussian process
g(u) = u, with the wave period in X(t) equal to that of a
Gaussian process. However, the empirical distribution obtain-
ed from the data deviates from the others in the range of the
extreme value for all Hs because of the TC probability density

as a short wave with a small amplitude around the peaking;
however, the numerical integration could have low accuracy
for small amplitudes.

The cdf narrowed the gap and all of them have a good
agreement, with the results indicating that the wave-period
distribution of the two transformations glc and gh for processes
G [Z(t)] is in agreement with the observations. The small
changes in both the crest wave period and crossing density
indicate that the calculations are accurate.

(a) Hs = 0.54 m, pdf of TC

(b) Hs = 0.54 m, cdf of TC

(d) Hs = 1.67 m, cdf of TC

(e) Hs = 5.32m, pdf of TC

(f) Hs = 5.32 m, cdf of TC(c) Hs = 1.67 m, pdf of TC

Fig. 7 Probability and cumulative density functions for TC. a Hs = 0.54m, pdf of TC. b Hs = 0.54m, cdf of TC. c Hs = 1.67m, pdf of TC. d Hs = 1.67m,
cdf of TC. e Hs = 5.32m, pdf of TC. f Hs = 5.32m, cdf of TC.
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For the wave trough period TT, the pdf and cdf are calcu-
lated similarly to the crest period TC, with the results shown in
Fig. 8.

The results for the density of the trough period are similar
to those of the crest period. From the cdf, the trough period
estimated by the two transformations and the Gaussian pro-
cess also exhibits little deviation from the empirically estimat-
ed distributions. Consequently, the results estimated by the
transformation for the trough period are accurate, and, with

regard to the theoretical crest period, give good agreement for
estimation of the minimum. As the maximum and minimum
values are estimated accurately, the extreme values may also
be estimated accurately regardless of the transformation meth-
od employed.

Of interest is the wave amplitude distribution shown in Fig.
9, where the transformation glc matches well with the obser-
vations regardless of the significant wave height. In contrast,
for data of lower Hs, the transformation gh and Gaussian

(a) Hs = 0.54 m, pdf of TT

(b) Hs = 0.54 m, cdf of TT

(c) Hs = 1.67 m, pdf of TT

(d) Hs = 1.67 m, cdf of TT

(e) Hs =5.32 m, pdf of TT

(f) Hs = 5.32 m, cdf of TT

Fig. 8 Probability and cumulative distribution functions of TT. a Hs = 0.54m, pdf of TT. b Hs = 0.54m, cdf of TT. c Hs = 1.67m, pdf of TT. d Hs = 1.67m,
cdf of TT. e Hs = 5.32m, pdf of TT. f Hs = 5.32m, cdf of TT.
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process g(u) = u deviate from the observations as is evident in
Fig. 9(b), but with good agreement again for Hs = 5.32 m, as
shown in Fig. 9(c). Therefore, while the glc and gh transfor-
mations as well as the Gaussian process g(u) = u may give
equivalent crest heights with higher Hs, the transformation
glc could give better estimates of the crest height with lower
significant wave heights.

In Fig. 10, the abscissa represents the absolute value of the
true value. The two transformations give results in good agree-
ment with the observed data, meaning that the predicted dis-
tribution of the trough height obtained from the two transfor-
mations and the Gaussian process yield similar results as the
result analysis of crest height. In particular, the two trans-
formed processes deliver identical results for the trough
distribution.

5.2 Joint Density of the Wave Characteristics

Wave joint densities were calculated in this part, and the re-
sults were estimated from three groups as follows.

The joint densities are displayed in Fig. 11, similar shapes
of joint density functions are estimated by the two transforma-
tions, but with deviations in the range around the peaks. For
Hs = 0.54 m and Hs = 1.67 m, the transformation gh attains a
higher crest amplitude for the same TC and includes more dots
than the glc transformation, but a higher amplitude is attained
by the glc transformation for Hs = 5.32 m than the gh transfor-
mation for the same TC.

Figure 12 shows the asymmetric joint distributions as esti-
mated by the two transformations glc and gh, with the

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 10 Cumulative distribution function of AT. a Hs = 0.54m. b Hs =
1.67m. c Hs = 5.32m

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 9 Cumulative distribution function of AC.
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maximum wave heights being relatively higher than the cor-
responding minimum values, which is consistent with the

observations. For Hs = 0.54 m and Hs = 1.67 m, the transfor-
mation gh gives better approximations than the glc

(b) Hs = 1.67 m

(c) Hs = 5.32 m

(a) Hs = 0.54 m

Fig. 12 Joint density of the maximum and the following minimum wave
heights. a Hs = 0.54 m. b Hs = 1.67 m. c Hs = 5.32 m

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 11 Joint density of the crest period and crest amplitude. a Hs =
0.54m. b Hs = 1.67m. c Hs = 5.32m
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transformation, although in Fig. 12b, the line indicating the
estimation from the glc transformation includes more data
points than for the gh transformation, which may give greater

errors than the gh transformation when predicting the relative
heights of the maximum and following minimum wave
heights.

The joint density of the trough and crest heights was ob-
tained using the Markov-chain approximation for the se-
quence of turning points of the three datasets. As for the joint
density of the maximum andminimumwave heights shown in
Fig. 12, the lines of the transformed process compare well
with the observed crests and troughs. From Fig. 13, the func-
tion estimated by the glc transformation gives good agreement
with the observations compared with the gh transformation,
resulting in greater crest heights than trough heights.

6 Conclusions

The paper has presented the analysis of two transformation
functions glc and gh estimated from two different methods
for three wave datasets of different Hs, and found differences
in the distributions of wave characteristics modeled by the two
transformations. For the marginal distribution of wave char-
acteristics, especially for the distributions of AC and AT, the
transformation glc gives a better approximation than the gh
transformation independent of the value of Hs. For the TC
and TT values, the two transformations give good agreement
with the observed data, which gives confidence in the accura-
cy of the calculation of the joint density. For the joint density
of AC and TC, the transformation gh gives better approxima-
tions than glc for Hs < 1.67 m. As Hs increases, the results
estimated by the transformation glc are superior to that for
the gh transformation. For the joint density of the maximum
and minimum heights, as well as the joint density of the crest
and trough heights, the transformation glc gives a better ap-
proximation than the gh transformation independent of the
value of Hs. Both transformations could give asymmetric
characteristic of the extreme joint distribution. However, the
results of the non-parametric transformation were similar to
Gaussian process especially for AC and AT analysis with the
lower Hs. Comparing the non-parametric method, the para-
metric method could give more accurately the result of the
extreme distribution analysis.

Results of distributions imply that the two transformations
give more accurate approximations than the Gaussian process,
at least for the data considered here. The transformations do
not change the crossing density of the observed data, which
gives confidence in the values for the crest and trough heights.
The difference in the approximations estimated by the two
transformations gives different wave characteristics for differ-
ent Hs. According to results related to the crest and trough
heights, the transformation glc yields a better approximation
than the gh transformation. For the relationship between the
wave period and the corresponding amplitude, the transforma-
tion gh produces a better approximation for Hs < 1.67 m, but a

(a) Hs = 0.54 m

(b) Hs = 1.67 m

(c) Hs = 5.32 m

Fig. 13 Joint density of the crest and trough heights. aHs = 0.54m. bHs =
1.67m. c Hs = 5.32m
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higher Hs leads to a superior performance of the glc
transformation.

Above all, the transformation estimated by the parametric
method predicts the distributions of wave characteristics more
accurately, especially the height of local maxima and wave
crest and trough height (AC, AT), for Gaussian process gives
less non-linear result. The transformed function and the distri-
bution of local extreme values all show the department of the
Gaussian process, which should be called the non-Gaussian.
These results also express the non-Gaussian behavior of the
actual ocean wave data relative to the Gaussian process. This
implies that the transformed models would be necessary if the
extreme wave characteristic has to be modeled. On the other
hand, the marginal distributions of the wave period and am-
plitude were also modeled well by the Gaussian process.
Finally, as the transformed Gaussian model is still too simple
to provide more accurate predictions for extreme values,
recommending the use of the general class of transformation
model is presented here.
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