
Journal of Marine Science and Application (2018) 17:297–311
https://doi.org/10.1007/s11804-018-0043-3

RESEARCH ARTICLE

Radiation and Exciting Forces of Axisymmetric Structures
with a Moonpool in Waves

Keynote Contribution for the International Workshop onWave Loads andMotions of Ships
and Offshore Structures, Harbin, China, 5-7 November, 2017

Ronald W. Yeung1 · LuWang1

Received: 3 June 2018 / Accepted: 22 July 2018 / Published online: 25 September 2018
© Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
A highly efficient “hybrid integral-equation method” for computing hydrodynamic added-mass, wave-damping, and wave-
exciting force of general body geometries with a vertical axis of symmetry is presented. The hybrid method utilizes a
numerical inner domain and a semi-infinite analytical outer domain separated by a vertical cylindrical matching boundary.
Eigenfunction representation of velocity potential is used in the outer domain; the three-dimensional potential in the inner
domain is solved using a “two-dimensional” boundary element method with ring sources and ring dipoles to exploit the body
symmetry for efficiency. With proper solution matching at the common boundary, both radiation and diffraction potentials
can be solved efficiently while satisfying the far-field radiation condition exactly. This method is applied to compute the
hydrodynamic properties of two different body geometries: a vertical-walled moonpool with a bottom plate that restricts
the opening and a spar-like structure with a diverging bottom opening inspired by designs of floating Oscillating Water
Columns. The effects of the size of the bottom opening on the hydrodynamic properties of the body are investigated for both
geometries. The heave motion of the floater as well as the motion of the internal free surface under incident wave excitation
are computed and studied for the spar-like structure.

Keywords Moonpool · Spar · Oscillating water column · Potential flow · Hybrid method · Axisymmetric body

1 Introduction

Moonpools have been extensively utilized in various
marine applications ranging from drilling to underwater
exploration. The resonance of the internal moonpool free
surface is highly complex and has been the subject of
extensive research over the past decades. Traditionally, the
research on moonpool behavior is carried out using various
methods based on the linearized potential-flow theory.
The method of matched eigenfunctions is very convenient
for relatively simple body geometries involving vertical
and horizontal surfaces. For instance, the hydrodynamic
coefficients of a truncated vertical cylinder (Yeung 1981)

and, in a more complicated case, that of a coaxial-cylinder
wave-energy device have been efficiently computed using
this method (Chau and Yeung 2012; Wang et al. 2016).
In the context of moonpools, the method of matched
eigenfunctions has been successfully applied to identify
moonpool resonance frequencies and mode shapes without
external free surface (Molin 2001; Molin et al. 2018). The
same method can also be easily adapted to incorporate
free surface external to the moonpool wall in both two
dimensions (Yeung and Seah 2007) and three dimensions
(Mavrakos 1988, 2004; Shipway and Evans 2003). More
recently, the method of matched eigenfunctions has been
successfully applied to study moonpools containing a two-
layer fluid (Zhang and Bandyk 2013, 2014). Alternatively,
the potential-flow problem with moonpools can be solved
numerically using a panel method with the free-surface
Green’s function (wave sources). This approach is more
versatile when dealing with complex body geometries
and was applied extensively to study trapped modes
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(Newman 1999; McIver 2005; McIver and McIver 2007).
However, without using additional panels to “cap” the solid
body, the wave-source formulation leads to many irregular
frequencies with nonphysical resonance. This issue greatly
complicates the study of moonpools which also have many
physical internal resonance frequencies.

Despite their usefulness in studying moonpool behavior,
potential-flow methods tend to significantly over-predict the
moonpool wave amplitude near resonance (Faltinsen et al.
2007). The discrepancy is at least partly caused by a lack of
viscous damping which can be significant if the moonpool
wall features sharp edges. One obvious approach to resolve
this issue is to perform viscous Computational Fluid
Dynamics (CFD) simulations. It has been demonstrated
that potential-flow solvers can be effectively combined
with Navier-Stokes solvers to more efficiently simulate
moonpool behaviors with viscous effects (Kristiansen and
Faltinsen 2012; Kristiansen et al. 2013; Fredriksen et al.
2014). This task is made slightly easier by the fact that
viscous effects primarily manifest in the form of flow
separation near sharp edges which does not require very
high numerical resolution to properly capture. Alternatively,
some empirical correction can be made to potential-flow
simulations to improve the prediction of the magnitude
of moonpool resonance (Faltinsen and Timokha 2015).
Nevertheless, an efficient and robust boundary element
method based on potential-flow theory is still likely the
preferred approach to conduct large parametric studies for
various moonpool designs, especially in three dimensions,
partly because of its computational efficiency and partly
because of the ease of creating meshes. The inviscid
solutions are still highly valuable in terms of approximately
identifying the various internal resonance frequencies of
the moonpool and providing, away from resonances, a
quantitative baseline for further CFD simulations.

This paper presents a highly efficient hybrid integral-
equation method for solving the potential-flow problem
about arbitrary body or bodies with a vertical axis of
symmetry in waves. This hybrid method utilizes a numerical
inner domain containing the body and a semi-infinite
analytical outer domain separated by a vertical cylindrical
matching boundary. Eigenfunction representation of the
velocity potentials is utilized in the outer domain while the
three-dimensional potential in the inner domain is solved
using a “two-dimensional” boundary element method with
ring sources and dipoles to exploit the body symmetry for
efficient computation. The two-dimensional version of this
hybrid method is originally presented by Yeung (1975)
and later applied to steady ship waves (Yeung and Bouger
1979). This method is later extended to general three-
dimensional bodies without symmetry (Yuen and Chau
1987; Matsui et al. 1987; Matsui and Kato 1991) and to
time-domain problems (Yeung 1985; Lee 1985; Hamilton

and Yeung 2003). In this paper, we focus on the application
of the hybrid integral-equation method to the radiation
and diffraction problems of two different axisymmetric
bodies with circular moonpools: a thick-walled moonpool
with a bottom plate of restricted opening and a spar-
shaped structure with a diverging bottom opening inspired
by designs of floating Oscillating Water Columns (OWCs)
(Falcão et al. 2012). The fact that the current method is free
from irregular frequencies greatly facilitates the analysis of
the results. Furthermore, the body motion and moonpool
behavior when the body is heaving under the excitation of
incident waves are also investigated.

2 Description of the Hydrodynamic Problem

The current work focuses on the computation of the
radiation and diffraction potentials about an axisymmetric
surface-piercing structure with a moonpool in the center.
The radiation and wave excitation forces on the structure as
well as the fluid motion inside the moonpool will also be
deduced from the solutions of the potentials. As an example,
a vertical thick-walled moonpool with a bottom plate that
restricts the opening is shown in Fig. 1.

The hybrid integral-equation method employed in this
paper requires the separation of the flow domain D into
two parts: an inner domain D(i) and an outer domain D(o).
The two domains are separated by a cylindrical matching
boundary�C of radiusRC . The boundary�C also separates
the calm free surface located at y = 0 into �

(o)
F , the

section in the outer domain, and �
(i)
F for the part in the

inner domain which also includes the moonpool free surface
for convenience. The flat bottom surface �B is located
at y = −h with h being the water depth. The surface
of the body at the equilibrium position is denoted by SB .
Driven by incident waves of amplitude A and wave number
k0, the structure exhibits time-harmonic oscillations about
its equilibrium position. Only heave motion with complex
amplitude A2 is considered here, although the current
method can be easily extended to investigate surge and pitch
motions as well by employing suitable boundary conditions.

In the rest of this paper, only variables with an overline
are dimensional; unless specified otherwise, all variables are
normalized by the water depth h, fluid density ρ, and the

characteristic time scale
√

h/g, where g is the gravitational
acceleration.

If we assume the fluid to be inviscid and incompressible
and the flow irrotational, potential-flow theory can be
applied. Using linearized free-surface boundary conditions,
the total velocity potential � can be decomposed into the
incident wave potential φ0 associated with the undisturbed
unit-amplitude incident wave, the diffraction potential φ7,
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Fig. 1 Problem schematic

and the radiation potential φ2 from the time-harmonic heave
motion of the body:

� = �
{
A(φ0 + φ7)e

−iσ t + A2(−iσ)φ2e
−iσ t

}
(1)

where σ is the frequency of oscillation. The incident
potential φ0 of a linear wave propagating in the positive
x-direction is known and given by

φ0 = − i

σ

cosh k0(y + 1)

cosh(k0)
eik0x (2)

where eik0x can be decomposed as

eik0x =
∞∑

n=0

inεnJn(k0R) cos nθ, εn =
{
1 if n = 0
2 if n ≥ 1

(3)

with Jn being the Bessel function of the first kind.
Inside the fluid domain D, the radiation potential and

the diffraction potential independently satisfy the Laplace’s
equation:

∇2φj = 0, j = 2, 7. (4)

On the body surface SB , the linearized boundary
conditions of the radiation potential φ2 and the diffraction
potential φ7 are given by

∂φ2

∂n

∣∣∣∣
SB

= n2 (5)

∂φ7

∂n

∣∣∣∣
B

= −∂φ0

∂n

∣∣∣∣
B

(6)

where n2 is the y-component of the unit normal vector n
of surface SB pointing into the body. On the calm free

surface �F , the combined linearized free-surface boundary
condition is applied:
[
−σ 2φj + ∂φj

∂y

]

y=0
= 0, j = 2, 7. (7)

The no-penetration boundary condition is imposed on the
bottom �B :

∂φj

∂y

∣∣∣∣
y=−h

= 0, j = 2, 7. (8)

Finally, we have the far-field radiation condition requiring
radially outgoing radiation and diffraction waves to decay
faster than 1/

√
R:

lim
k0R→∞

(
∂

∂R
− ik0

)(√
Rφj

)
= 0, j = 2, 7. (9)

3 Hybrid Integral-EquationMethod
for Radiation and Diffraction Problems

The hybrid integral-equation method described in this
section can be applied to a wide class of body geometries
with a vertical axis of symmetry and arbitrary cross
sections. Structures that are either surface-piercing or
submerged, free-floating or bottom mounted can all be
easily accommodated with trivial modifications to the
algorithm. Furthermore, the current numerical method can
also be used for multiple concentric bodies moving relative
to each other, such as heaving point-absorber wave-energy
converters. However, we shall restrict ourselves to the
moonpool problem described in Section 2. At the end of
the section, the computation of the radiation and wave
excitation forces are briefly discussed. In particular, the
wave force can be computed both directly by integrating
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the scattered potential and indirectly from the radiation
potential using reciprocity relations.

3.1 Formulation for the Inner Numerical Domain

Inside the inner numerical domain D(i), the unit radiation
potential φ2 and the diffraction potential φ7 are solved
using the boundary element method. For a field point
P = (x, y, z) = (R, y, θ) on the boundary of the inner
domain ∂D(i), we can write the following Fredholm integral
equation of the second kind for solving the potentials φj

with j = 2, 7 on the domain boundary:

2πφj (P ) =∫∫

∂D(i)

[
∂φj

∂ν
(Q)G(P, Q) − φj

∂G

∂ν

]
dS(Q)

ifP ∈ ∂D(i) (10)

where Q = (ξ, η, ζ ) = (R, η, ϑ) is the integration point
and G is the Green’s function. To differentiate from the
normal vector n at P , the unit normal vector (pointing
away from the domain) at Q is given by ν. Since we
have a flat bottom, it is convenient to use the following
Green’s function with a simple source and its mirror image
to automatically satisfy the bottom boundary condition on
�B (Lee 1985):

G(P, Q) = 1

r
+ 1

r1
(11)

where

r =
√

(x − ξ)2 + (y − η)2 + (z − ζ )2

r1 =
√

(x − ξ)2 + (y + η + 2)2 + (z − ζ )2. (12)

With the above choice of Green’s function, the surface
integral in Eq. 10 only needs to be carried out on the surfaces
SB ∪ �

(i)
F ∪ �C .

Furthermore, by decomposing the velocity potentials
into multiple circumferential modes, we can carry out the
surface integral in the circumferential direction first (analyt-
ically when possible) to exploit the body symmetry about
the y-axis for more efficient and accurate computation.With
this approach, the full three-dimensional problem is decom-
posed into N independent “two-dimensional” problems to
be solved in a plane of constant θ where N is the num-
ber of circumferential modes retained. For the radiation and
diffraction potentials, we have:

φj =
∞∑

n=0

ϕn
j (R, y) cos(nθ), j = 2, 7. (13)

Because of the body symmetry about the plane z = 0,
only cosine circumferential modes are nonzero. In fact,only

the axisymmetric mode of n = 0 is nonzero for the heave
radiation potential with φ2 = ϕ0

2(R, y). With Eq. 13, Eq. 10
can be rewritten as

2πϕn
j (R, y) =

∫

s(i)

R√
R

[
∂ϕn

j

∂ν
− ϕn

j

∂

∂ν

]
1√
R

Cn(R, y;R, η)ds

forj = 2, 7, n = 0, 1, . . . , ∞, and(R, y) ∈ s(i) (14)

where

√
R
R

Cn(R, y;R, η) cos nθ =
∫ 2π

0
cos nϑ

(
1

r
+ 1

r1

)
R dϑ .

(15)

The contour s(i) is the intersection between the vertical half
plane of θ = 0 and the surfaces �C , �

(i)
F , and SB . The

differential area dS has been replaced by Rdϑds where ds
is the differential arc length element of the contour s(i).

It can be shown that Cn, which is related to the potential
of a ring source (and its mirror image across the bottom)
with strength varying as cos nθ , is given by the following
expression:

Cn(R, y;R, η) = m0C
n
0 + m1C

n
1 (16)

where

m2
0 = 4RR

(y − η)2 + (R + R)2

m2
1 = 4RR

(y + η + 2)2 + (R + R)2
(17)

and

Cn
0 =

∫ π/2

−π/2

cos 2ne√
1 − m2

0 cos
2 e

de

Cn
1 =

∫ π/2

−π/2

cos 2ne√
1 − m2

1 cos
2 e

de. (18)

For the special cases of n = 0 and n = 1, we have the
following analytical expressions for Cn

0 and Cn
1 :

C0
0 = 2K(m0)

C0
1 = 2K(m1) (19)

and (Lee 1985)

C1
0 = 4

m2
0

[K(m0) − E(m0)] − 2K(m0)

C1
1 = 4

m2
1

[K(m1) − E(m1)] − 2K(m1). (20)
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In the above equations, K and E are the Complete Elliptic
Integrals of the first and second kind, respectively. Because
heave radiation potential only involves the n = 0 mode,
the analytical expressions in Eq. 19 allow very efficient
computation of φ2 since we only need to carry out numerical
integration in the girth direction. Similarly, if we need the
surge and pitch radiation potentials, which only involve
the n = 1 mode, the expressions in Eq. 20 can be used.
The computation of the diffraction potential is slightly
more complicated because it potentially includes an infinite
number of circumferential modes. In this case, Eq. 18 can
be integrated numerically using, for example, a recursive
adaptive quadrature to evaluate Cn

0 and Cn
1 for general

non-negative integer values of n.

3.2 Formulation for the Outer Analytical Domain

In the outer analytical domain, the radiation and diffrac-
tion potentials can be represented using eigenfunctions
which automatically satisfy the free-surface and bottom
boundary conditions and the far-field radiation condition
exactly:

φj =
∞∑

n=0

[
αn
0

H
(1)
n (k0R)

|H(1)
n (k0RC)|

Y0

+
∞∑
i=1

αn
i

Kn(kiR)

Kn(kiRC)
Yi

]
cos nθ (21)

where

Yi(y) =
{
cosh k0(y + 1)/

√
N0, if i = 0

cos ki(y + 1)/
√

Ni, if i = 1, 2, . . .
(22)

and

Ni =
{ 1

2 [1 + sinh(2k0)/2k0], if i = 0
1
2 [1 + sin(2ki)/2ki], if i = 1, 2, . . .

(23)

In the above equations, H
(1)
n is the Hankel function of the

first kind and Kn is the modified Bessel function of the
second kind. The normalization factors of |H(1)

n (k0RC)|
and Kn(kiRC) are included so that the unknown constant
coefficients αn

0 and αn
i are suitably scaled for arbitrary

choice of RC . The values of k0 and ki are given by the
dispersion relations:

σ 2 = k0 tanh(k0)

σ 2 = ki tan(ki) for i = 1, 2, . . . (24)

Again, only cosine circumferential modes need to be
retained because of the symmetry.

3.3 Numerical Procedure

In the inner domain, Eq. 14 is solved numerically by
discretizing the contour s(i) into a sequence of NT linear
panels s

(i)
j where j = 1, 2, . . . , NT as shown in Fig. 2.

The panels are numbered in the counterclockwise direction
with panels s

(i)
1 to s

(i)
NC

covering the matching boundary sC .
The portion of the free surface sF external to the body is
represented by panels s

(i)
NC+1 to s

(i)
N2
. The submerged portion

of the body sB consists of panels s
(i)
N2+1 to s

(i)
N3
. Finally,

the internal moonpool section of the free surface sF is
discretized into panels s

(i)
N3+1 to s

(i)
NT

.
Each circumferential mode of the diffraction potential ϕn

7
and the heave radiation potential φ2 = ϕ0

2 can be solved
independently following the same procedure apart from
the different boundary conditions on sB . Therefore, in this
section, we shall simply use ϕn to represent the unknown
potential component and reserve the subscript for the panel
number. The values of ϕn and ∂ϕn/∂ν are assumed to be
constant on each panel with ϕn = ϕn

j and ∂ϕn/∂ν =
(∂ϕn/∂ν)j on s

(i)
j . The constant panel approximation used

here is found to be adequately fast and accurate. The field
point P is placed at the midpoint of the i-th panel (Ri, yi).

Fig. 2 Discrete representation of contour s(i) = sC ∪ sF ∪ sB .The
contours sC , sF , and sB are the intersections between the half plane of
θ = 0 and �C , �

(i)
F , and SB , respectively
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With the above assumptions and the free-surface boundary
condition given in Eq. 7, Eq. 14 can be put into the following
discrete form:

2πϕn
i −

NC∑
j=1

Mij

(
∂ϕn

∂R

)

j

+
NC∑
j=1

Nijϕ
n
j

+
N2∑

j=NC+1

(Nij − σ 2Mij )ϕ
n
j +

N3∑
j=N2+1

Nijϕ
n
j

+
NT∑

j=N3+1

(Nij − σ 2Mij )ϕ
n
j

=
N3∑

j=N2+1

Mij

(
∂ϕn

∂ν

)

j

(25)

where i = 1, 2, . . . , NT and

Mij =
∫

s
(i)
j

√
R/Ri Cn(Ri, yi;R, η) ds

Nij =
∫

s
(i)
j

R√
Ri

∂

∂ν

(
Cn

√
R

)
ds (26)

The function Cn is given by Eq. 16. The integration over
each linear panel in Eq. 26 is carried out numerically using
the five-point Gauss-Legendre quadrature if the field point
P is not on the panel. If P is on s

(i)
j , the function Cn has

a logarithmic singularity. In this case, the integration over a
small region near the singular point occupied by P is carried
out analytically with the remaining parts of the panel on
each side of the singular point integrated using the five-point
quadrature as usual.

Finally, to close the system of equations given in Eq. 25,
the continuity of the velocity potential and its normal
derivative across the matching boundary R = RC needs to
be enforced with the help of the analytical eigenfunction
solution in the external flow domain D(o). From Eq. 21,
the radiation potentials and their normal derivatives on the
matching shell can be expressed in terms of the constant
coefficients αn

j ’s:

φi =
∞∑

j=0

Aijα
n
j and

(
∂φ

∂R

)

i

=
∞∑

j=0

Bijα
n
j (27)

where

Aij =

⎧
⎪⎨
⎪⎩

H
(1)
n (k0RC)

|H(1)
n (k0RC)|

Y0(yi) if j = 0

Yj (yi) if j = 1, 2, . . .

(28)

and

Bij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k0
H

(1)′
n (k0RC)

|H(1)
n (k0RC)|

Y0(yi) if j = 0

kj

K ′
n(kjRC)

Kn(kjRC)
Yj (yi) if j = 1, 2, . . .

(29)

For implementation, the infinite sums in Eq. 27 need to
be truncated. For convenience, we shall only keep the first
NC terms to match the number of panels we have on the
matching boundary.

With Eq. 27, we can rewrite Eq. 25 into the following
form:

2πϕn
i +

NC∑
j=1

[
Nij − (MBA−1)ij

]
ϕn

j

+
N2∑

j=NC+1

(Nij − σ 2Mij )ϕ
n
j +

N3∑
j=N2+1

Nijϕ
n
j

+
NT∑

j=N3+1

(Nij − σ 2Mij )ϕ
n
j

=
N3∑

j=N2+1

Mij

(
∂ϕn

∂ν

)

j

(30)

The right-hand side is known from the boundary conditions
on the body surface. More specifically, the body boundary
condition of φ2 = ϕ0

2 is given by Eq. 5 while the boundary
condition for the diffraction potential component ϕn

7 can be
constructed from Eqs. 2 and 6 with the help of the ring-wave
decomposition given in Eq. 3. Equation 30 is a well-posed
problem and can be easily solved for the unknown potentials
on the contour s(i).

3.4 Radiation andWave Excitation Forces

The radiation force associated with the body heave motion is
given in terms of the heave added masses and wave damping
coefficients. The non-dimensional added mass and damping
coefficient are given by:

μ22 + iλ22 = μ22 + iλ22
σ

πρ a3
= 2

a3

∫

sB

φ2Rn2 ds (31)

where a = a/h is the characteristic radius of the body.
There are two ways to obtain the complex heave wave

excitation force. First, we can directly integrate the scattered
potential φs = φ0 + φ7 on the body surface:

X2 = X2

πρ g a2
= iσ

πa2

∫∫

SB

φsn2 dS (32)

where X2 is the complex amplitude of the wave force in
heave per unit incident wave amplitude. In fact, only the
axisymmetric n = 0 mode of the scattered potential has a
nonzero contribution to X2, and there is no need to compute
the higher-order circumferential modes of φ7 if only the
heave force is of interest.
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Alternatively, X2 can be obtained indirectly from the far-
field heave radiation potential (Wehausen 1971; Wehausen
et al. 2016) using the Haskind relation (Haskind 1957).

X2 = − 4iα0
0

√
N0

πa2 cosh(k0)|H(1)
n (k0RC)|

(33)

The complex constant coefficient α0
0 comes from the

outer analytical solution of φ2. These coefficients can be
determined from Eq. 27 once the radiation potential on the
matching boundary RC is solved. Similar expressions also
exist for the wave excitation force and moment in the surge
and pitch directions (Yeung 1981; Bachynski et al. 2012).
This indirect approach completely removes the need to solve
for the diffraction potential when determining the wave
excitation forces and moments. Nevertheless, it can still be
beneficial to solve for the diffraction potential if information
on the wave field is needed or as a numerical check since the
wave forces and moments computed using the two methods
should closely agree with each other.

4 Numerical Results

The hybrid integral-equation method is applied to investi-
gate the hydrodynamic properties of two different axisym-
metric structures with a moonpool: a thick-walled moon-
pool with a bottom plate that restricts opening and a spar-
like structure with a diverging bottom opening. The latter
geometry in particular involves sloped walls that make the
method of matched eigenfunctions very tedious to apply but
can be effortlessly accommodated using the current hybrid
method.

4.1 Thick-WalledMoonpool with Bottom Plate

The body geometry being considered in this section is
illustrated in Fig. 3. The moonpool wall has a draft of d and
an outer radius of a which is taken as the characteristic body
radius for computing μ22, λ22, and X2 as defined in Eqs. 31

Fig. 3 Cross section of a thick-walled moonpool with bottom plate in
a vertical plane of constant θ

and 32. The moonpool radius and depth (measured to the
top of the bottom plate) are a1 and d1, respectively. The
bottom plate has a center opening of radius a0 (a0 ≤ a1).
For all subsequent results, both sC and sF are discretized
into 100 panels. On the body surface, we have used a panel
size of 0.002. The radius of the matching boundary is set to
RC = 1.5a. The exact choice of RC does not impact the
results as long as enough panels are used to properly resolve
the free surface of the inner numerical domain.

The effects of the opening size a0 on the moonpool
behavior and the hydrodynamic properties of the structure
are of primary interest. However, as a validation, we shall
first consider two cases with no bottom plate, i.e. a0/a1 = 1,
and different wall thickness. The geometric parameters are
d = 1/6, a1 = 0.5, and a = 0.6 or 0.9. The computed heave
added mass, wave damping coefficient, and the magnitude
of wave excitation force in heave are shown in Fig. 4. The
added mass and damping coefficient computed using the
method of matched eigenfunctions (Mavrakos 1988) are
also included for comparison, showing good agreement with
the current results. Furthermore, the wave forces computed
both directly from the scattered potential and indirectly from
the radiation potential are consistent with each other as
shown in Fig. 4c, further validating the current method.

The first zero-damping frequency, associated with the
Helmholtz (pumping) mode of moonpool resonance, is
observed at approximately σ 2a1/g = 1.22 and 1.47 for
a = 0.9 and 0.6, respectively. Two higher-order resonance
modes of the moonpool are found at around σ 2a1/g = 3.88
and 7.03 for both geometries. At these frequencies, added
mass and damping coefficient show prominent spikes with
added mass switching sign across the resonance frequency.
These higher-order resonance modes, which are associated
with standing waves inside the moonpool, are primarily
influenced by the moonpool radius, which is the same for
both geometries, and the wall thickness has little influence
on the locations of the higher-order modes. At these
resonance frequencies, the amplitudes of the radiated waves
inside the moonpool are unrealistically large because of a
lack of viscous damping; however, the overall shape of the
free-surface elevation η(R, θ, t) inside the moonpool is still
of significant practical interest. The moonpool wave fields
computed from the heave radiation potential are shown in
Fig. 5 near the Helmholtz mode and the first two higher-
order modes for the case of a = 0.6. For the first and
second higher-order resonances shown in Figs. 5b and c,
about half and one period of standing wave fit in the radial
direction inside the moonpool, respectively. This behavior is
essentially the three-dimensional axisymmetric analogy of
what is observed in a two-dimensional moonpool between
two infinitely long cylinders (Yeung and Seah 2007).

Next, a bottom plate with thickness (d − d1)/d = 0.05
is added to the thick-walled moonpool with draft d = 1/6
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Fig. 4 Heave added mass (a), wave damping coefficient (b), and the
magnitude of wave excitation force in heave (c) of a thick-walled
moonpool with no bottom plate (a0/a1 = 1). d = 1/6, a1 = 0.5, and
a = 0.6 and 0.9. In (a) and (b), the curves are results from the cur-
rent hybrid integral-equation method, and the symbols are solutions

of the matched eigenfunction method by Mavrakos (1988). In (c), the
curves represent wave force computed indirectly from the heave radia-
tion potential while the symbols are obtained through direct integration
of the scattered potential

and outer and inner radii of a = 0.9 and a1 = 0.5,
respectively. The opening size of the bottom plate is varied
from a0/a1 = 0.2 to 1.0. The computed heave added
mass, damping coefficient, and wave excitation force are
shown in Fig. 6a–c. For comparison, the hydrodynamic
coefficients of a simple truncated cylinder with the same
draft and outer radius as the moonpool are also included
(labeled a0/a1 = 0). Several interesting observations can
be made. First, the zero-damping frequency associated with
the pumping-mode resonance increases with the opening
size of the bottom plate. As a0 decreases, a progressively
more prominent peak in heave added mass develops at

a frequency slightly higher than the pumping-mode zero-
damping frequency (see Fig. 6a). Furthermore, no negative
added mass is observed with intermediate opening sizes of
a0/a1 = 0.4 to 0.8 for the range of frequencies shown.
Negative added mass is only observed at the two extremes
of no bottom plate a0/a1 = 1.0 and very small opening
size of a0/a1 = 0.2. Away from the moonpool resonance,
heave added mass increases with decreasing opening size
as expected. In Fig. 6b, the peak in damping preceding
(at a lower frequency) the zero-damping frequency of the
pumping-mode resonance diminishes as the bottom-plate
opening size decreases while a prominent spike in damping
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Fig. 5 Free-surface elevation (normalized by the amplitude of body
heave motion) inside the moonpool at the time instant with maxi-
mum wave elevation at the center (R = 0). Panels (a), (b), and (c)
are obtained near the zero-damping frequencies associated with the

pumping-mode resonance and the first and second higher-order res-
onances, respectively. The dark circle represents the calm waterline
inside the moonpool. a0/a1 = 1, d = 1/6, a1 = 0.5, and a = 0.6

Fig. 6 Heave added mass (a), damping coefficient (b), the magnitude
of the wave excitation force in heave (c), and the normalized shape
of the moonpool free surface, at the time instant of maximum wave

elevation at the moonpool center (R = 0), obtained near the zero-
damping frequency associated with the pumping-mode resonance (d).
(d − d1)/d = 0.05, d = 1/6, a1 = 0.5, and a = 0.9
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develops right after the zero-damping frequency. The spikes
in damping are located at slightly higher frequencies than
the spikes in added mass. The magnitude of the wave
force follows a similar trend as the damping coefficient
(see Fig. 6c). As the frequency approaches zeros, the wave
excitation forces in heave all approach 0.69 which is the
ratio of the waterplane area of the moonpool wall to that of
a simple truncated cylinder with the same outer radius.

The shapes of the free surface in the moonpool near
the zero-damping frequency of pumping-mode resonance
are computed from the radiation potential and compared
in Fig. 6d. Interestingly, even for very large openings of
the bottom plate, the cross section of the moonpool free
surface “flips” with maximum wave amplitude occurring at
the wall of the moonpool instead of the center as in the case
with no bottom plate. Maximum variation of the moonpool
wave amplitude with radius is observed for the intermediate
opening size of a0/a1 = 0.4. Near the zero-damping
frequency of pumping-mode resonance, the oscillation of
the moonpool free surface and the body heave motion are
always out-of-phase by approximately one-half period for
all opening sizes; as the structure moves downward, part of
the water displaced by the structure enters the moonpool
through the opening of the bottom plate, leading to a net
increase of free-surface elevation inside the moonpool. This
means that, as far as inviscid fluid is concerned, the flow
will never approach that with a completely closed bottom
plate, which requires moonpool free-surface oscillation to
be in phase with the body motion at all times, no matter
how small the bottom opening size a0 becomes. This may
partially explain the emergence of a spike in heave added

mass near the pumping-mode resonance frequency for small
bottom opening radius a0: water needs to rapidly accelerate
to enter or exit the moonpool through the small opening at
high speed, thus increasing the added mass experienced by
the structure.

4.2 Spar with Diverging BottomOpening

A spar-shaped body with a moonpool and a diverging
bottom opening shown in Fig. 7 is investigated. This
particular geometry is inspired by designs of floating OWCs
(Falcão et al. 2012).

As shown in Fig. 7a, the outer surface of the spar has
two sloped sections at the top and bottom connected by a
vertical section of radius a1 in the middle; the inner surface
facing the moonpool consists of only a vertical section and a
sloped section at the bottom. The gap between the inner and
outer surfaces at the bottom edge is closed by a semicircular
cap of diameter δ = a1 − a0 which is the thickness of the
moonpool wall. The radius and draft at the lower end of the
outer surface is a2 and d, respectively. The radius of the
moonpool is a0. To investigate the effect of the diverging
bottom opening, the value of a2 is increased from a1 (i.e.
vertical wall) to a, the outer radius of the structure at the
calm waterline, while all the other geometric parameters are
fixed with a = 1/6, a0 = 1/30, a1 = 1/20, and d = 1/2.
The moonpool is considered to be open to the air, and we
will not attempt to model the effects of the air chamber and
turbine above the moonpool as in an actual OWC which
is beyond the scope of the current paper. Furthermore,
the narrowness of the moonpool means that, in the range

Fig. 7 Geometry of an OWC-
inspired spar with moonpool. a
Cross section of the spar in a
plane of constant θ . b Three-
dimensional view of the wetted
surface of the spar with the inner
surface and the rounded bottom
edge in light gray and the outer
surface transparent
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of frequency of practical interest, only the pumping-mode
resonance will be encountered. All results shown in this
section are computed using a non-dimensional panel size
of 0.01. The matching boundary and the inner-domain free
surface (moonpool free surface included) both consist of
100 panels. The radius of the matching boundary is chosen
to be RC = 1.5a.

The hydrodynamic properties are shown in Fig. 8 for
several different values of a2. As a2 increases, the frequency
of zero damping increases, following the same trend
observed in Section 4.1 where the zero-damping frequency
associated with the pumping-mode resonance increases with
the radius of the bottom-plate opening.

As shown in Fig. 8a, the heave added mass of the
spar when a2/a1 = 1 is similar to that of a thick-
walled moonpool with no bottom plate shown in Fig. 4a.
A trough in heave added mass is observed slightly before
the pumping-mode zero-damping frequency. However, for
the current spar geometry, the trough is extremely narrow-
banded as a consequence of the narrowness of the
moonpool relative to the wavelength. As a2/a1 increases,
a progressively more prominent positive spike followed
by a negative one in heave added mass develops. Again,
the negative spike is located at a frequency slightly
lower than the pumping-mode zero-damping frequency.
The bandwidths of the peak and trough also increase

Fig. 8 Heave added mass (a), wave damping coefficient (b), and the magnitude (c) and phase (d) of the wave excitation force in heave of a spar-
like structure with moonpool. a = 1/6, a0 = 1/30, a1 = 1/20, and d = 1/2. The wave excitation forces are computed indirectly from the heave
radiation potential
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slightly with a2. Away from the moonpool resonance
frequency, the heave added mass increases with the
size of the bottom opening as expected which should
lead to a lower heave resonance frequency of the spar
itself.

In Fig. 8b, a spike in damping is observed at a
frequency slightly lower than that of zero damping, and the
magnitude of the spike increases rapidly with increasing
a2. Interestingly, this is the opposite of the observation
made in Section 4.1 where a spike in damping develops at
a frequency slightly higher than the pumping-mode zero-
damping frequency when the opening is being restricted
by the bottom plate. Furthermore, a larger bottom opening
surprisingly results in lower wave damping coefficient away
from the moonpool resonance frequency. The magnitude of
the wave excitation force follows approximately the same
trend as that of the damping coefficient.

The phase of the wave force given in Fig. 8d shows
interesting behaviors. The phase of X2 increases rapidly

but smoothly at a frequency slightly lower than the zero-
damping frequency. The halfway point of this phase shift
roughly aligns with the spike in damping shown in Fig. 8b.
At the frequency of zero damping, however, the phase of
X2 jumps back discontinuously by approximately one half
period, canceling the previous phase shift. Away from the
resonance frequency, the phase of X2 is the same for all four
geometries.

If the spar is allowed to heave (one degree of freedom)
with complex amplitude A2 under the excitation of a regular
incident wave with potential given by Eq. 2, the Response
Amplitude Operator (RAO2) of the body can be computed
using the following equation:

RAO2 = A2

A
= X2

−(m + μ22)σ
2 + K22 − iλ22σ

(34)

where m and K22 = πρ g(a2 − a20) are the mass and
hydrostatic spring constant of the spar structure. The free

Fig. 9 The magnitudes (a) and phases (b) of the spatially averaged moonpool wave amplitude and heave RAO of the spar. a = 1/6, a0 = 1/30,
a1 = 1/20, a2 = a and d = 1/2
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Fig. 10 Wave fields near the spar at the time instant of maximum pos-
itive moonpool free-surface elevation. σ 2a2/g = 0.087 (near heave
resonance of the spar), a = 1/6, a0 = 1/30, a1 = 1/20, a2 = a and

d = 1/2. The scattered, radiated, and total wave elevations, normal-
ized by the incident wave amplitude, are shown in (a), (b), and (c),
respectively

surface of the moonpool remains approximately flat because
of the small radius of the moonpool relative to the wave
length. Therefore, the motion of the internal free surface
can be effectively represented using a complex amplitude
Am = Am,S + Am,2 averaged over the moonpool area. The
two components Am,S and Am,2 are contributions from the
scattered waves and the radiated waves from body heave
motion, respectively. To further investigate the behavior of
the moonpool free surface and the body motion, the values
of RAO2, Am/A, Am,S/A, and Am,2/A are all computed
and shown in Fig. 9 for the case with a = 1/6, a0 = 1/30,
a1 = 1/20, a2 = a and d = 1/2.

Heave resonance of the spar occurs at σ 2a0/g = 0.086,
lower than the zero-damping frequency associated with
moonpool resonance at 0.095 (see Fig. 9a). At the zero-
damping frequency, the magnitude of RAO2 is zero because
of zero wave force. The contribution to moonpool wave
from the scattered potential, |Am,S/A|, shows a spike at a
frequency slightly lower than the zero-damping frequency.
A spike in |Am,2/A| is also observed at the same frequency.
Away from this point, |Am,2/A| more or less follows the
same trend as |RAO2| with a zero at the zero-damping
frequency. Interestingly, around the spikes in |Am,S/A| and
|Am,2/A|, both Am,S and Am,2 undergo a rapid but smooth
increase in phase while approximately stay out-of-phase
by one-half period from each other (see Fig. 9b). As a
result, the contributions from scattered waves and radiated
waves roughly cancel each other, and a more moderate spike
is observed at this frequency in the total moonpool wave
amplitude |Am/A|. The highest moonpool wave amplitude
is, in fact, observed at the heave resonance frequency of the
spar with the scattered waves having negligible contribution
to the pumping motion of the moonpool free surface.

Finally, the wave fields near the spar at the time instant
of maximum positive moonpool free-surface elevation are
shown in Fig. 10. The spar is experiencing heave resonance
with σ 2a0/g = 0.087 which leads to maximum moonpool

wave amplitude. The blank area in the center is occupied by
the spar. The moonpool free-surface is not shown because it
is effectively flat. The dark circle surrounding the blank area
marks the matching boundary between in the inner and outer
domains used in the computation. Good solution matching
between the two domains is achieved as indicated by the
smooth wave fields at the domain boundary.

5 Conclusions

An efficient and robust hybrid integral-equation method
for solving the wave radiation and diffraction problems
about axisymmetric bodies of arbitrary cross sections is
presented. The method utilizes an analytical eigenfunction
representation of the velocity potential in the semi-infinite
outer domain and a “two-dimensional” boundary element
method in the numerical inner domain containing the
body. Ring sources and dipoles are utilized to exploit the
body symmetry for more efficient computation, and the
continuity of flux and pressure is enforced on the matching
boundary between the two domains.

The solutions of the hybrid method are first validated
through comparison with existing results for a thick-
walled moonpool computed using the method of matched
eigenfunctions. Subsequently, the hybrid method is applied
to two different axisymmetric bodies with a circular
moonpool that are of significant practical interest: a thick-
walled moonpool with a bottom plate the restricts the
opening and a spar-like structure with a diverging bottom
opening inspired by designs of floating Oscillating Water
Columns (OWCs). For both geometries, the effects of
the size of the bottom opening on the hydrodynamic
properties of the structures are investigated. In particular, it
is discovered that, for both geometries, the zero-damping
frequency associated with the Helmholtz (pumping-mode)
resonance of the moonpool generally increases with
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increasing radius of the bottom opening. For the thick-
walled moonpool with bottom plate, the shape of the
moonpool free surface near the pumping-mode zero-
damping frequency is investigated. It is observed that the
bottom plate, even with relatively large opening, tends to
cause the moonpool free surface to “flip” with maximum
amplitude observed at the moonpool wall instead of the
center as is the case with no bottom plate. Finally, the
motion of the OWC-inspired spar-like structure is computed
by allowing it to heave freely under the excitation of
regular incident waves. Both the radiation and scattered
components lead to significant moonpool motion at a
frequency slightly below the pumping-mode zero-damping
frequency. However, the two contributions are out-of-phase
by one-half period from each other, potentially resulting
in significant cancellation and a more moderate total
moonpool wave amplitude. The strongest moonpool motion
is, in fact, observed at the heave resonance frequency of
the structure itself with negligible contribution from the
scattered waves.
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