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Abstract
The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the
presence of step-type bottoms under the assumptions of small amplitude water waves and the structural response theory in finite
water depth. The modified mild-slope equation along with suitable jump conditions and the least squares approximation method
are used to handle the mathematical boundary value problem. Four types of edge conditions, i.e., clamped-moored, clamped-free,
moored-free, and moored-moored, are considered to keep the barrier at a desired position of interest. The role of the flexible
porous barrier is studied by analyzing the reflection coefficient, surface elevation, and wave forces on the barrier and the rigid
wall. The effects of step-type bottoms, incidence angle, barrier length, structural rigidity, porosity, and mooring angle are
discussed. The study reveals that in the presence of a step bottom, full reflection can be found periodically with an increase in
(i) wave number and (ii) distance between the barrier and the rigid wall. Moreover, nearly zero reflection can be found with a
suitable combination of wave and structural parameters, which is desirable for creating a calm region near a rigid wall in the
presence of a step bottom.

Keywords Oblique incidentwave .Wave trapping . Surface-piercing . Flexible porous barrier .Mild-slope approximation . Least
squares approximation

1 Introduction

Over the past few decades, the problem of wave interaction
with vertical porous barriers is of considerable interest to the
scientific community for the protection of offshore facilities
from different wave attacks. Various analytical, numerical,
and experimental approaches have been performed to investi-
gate the importance of vertical porous barriers with different
configurations. The study on wave interaction with a

perforated wall breakwater started after Jarlan (1961). Since
then, various modified Jarlan-type breakwaters have been
proposed and investigated for reducing wave force
depending on applications. Sahoo et al. (2000) studied the
wave trapping by a partial porous barrier near a rigid wall
using the least squares approximation method. They found
that the curves of reflection coefficients are periodic and each
curve repeats itself in every half-wavelength, which is similar
to that of a fully submerged porous barrier studied by Chwang
and Dong (1984). Li et al. (2003) conducted a research on the
reflection of oblique incident waves by breakwaters with
double-layered perforated walls. They observed that if a
single-layered perforated caisson could reduce the wave re-
flection notably, it is not necessary to place a second perforat-
ed wall in such a single-perforated caisson. Nevertheless, if
the single-layered perforated caisson produces little reduction
on wave reflection, installing a second perforated wall can
significantly reduce the wave reflection. Liu et al. (2007a)
examined the wave interactionwith a newmodified perforated
breakwater, consisting of a perforated front wall, a solid back
wall, and a wave-absorbing chamber between them with a
two-layer rock-filled core. The reflection of oblique waves
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from a structure consisting of an infinite array of partially
perforated caissons was also investigated by Liu et al.
(2007b). A thorough review of the developments on wave
interaction with various perforated breakwaters can be found
in Huang et al. (2011) and the literature cited therein.

On the other side, there is a wide interest on wave interac-
tion with flexible porous structures as these structures are light
in weight, economical, reusable, and environmentally friendly.
These kinds of structures are often used for temporary
protection of coastal infrastructures/facilities and in construc-
tion sites. For example, the use of flexible barriers for chord
grass seedling, oil spilling, and pollution control is well stud-
ied in the literature. Williams (1996) investigated the hydro-
dynamic properties of a flexible floating breakwater consisting
of a membrane structure attached to a small float restrained by
moorings. Cho et al. (1998) developed an analytical solution
to study oblique wave interaction with a dual vertical flexible
membrane wave barrier hinged at the seafloor in the context of
the two-dimensional linear wave-body interaction theory.
Moreover, they have compared the analytical results with their
developed boundary element method results. Using
eigenfunction expansions for the velocity potential and linear
membrane theory, Lo (1998) studied the performance of a
wave barrier consisting of two vertical flexible membranes
spaced at a fixed distance apart. Later, Lo (2000) investigated
the interaction of water waves with a vertical flexible mem-
brane of a finite extent which is less than the water depth.
Yip et al. (2002) studied wave trapping by a partial flexible
porous barrier near a rigid wall. Behera et al. (2013) inves-
tigated the performance of a partial flexible porous struc-
ture on wave trapping in a two-layer fluid. Karmakar et al.
(2013) investigated gravity wave scattering by multiple
surface-piercing floating porous membranes. Later,
Karmakar and Soares (2014) considered oblique wave scat-
tering by multiple bottom-standing flexible porous barriers
by using the least squares method. Recently, using Green’s
function technique, Koley et al. (2015) investigated the ef-
fects of a bottom-standing and surface-piercing flexible po-
rous plate on wave scattering. Afterwards, Kaligatla et al.
(2015) have extended their study on wave trapping by a
vertical submerged flexible porous plate located near a ver-
tical rigid wall. Most recently, Koley and Sahoo (2017)
investigated oblique wave trapping by vertical permeable
membrane barriers located near a wall.

In the aforementioned studies, the problems are considered
in the case of uniform water depth or in the presence of a
vertical step. However, there are few studies on wave interac-
tion with vertical partial structures near a rigid wall in the
presence of a step-type bottom bed. Using the Galerkin
eigenfunction method, an analytical model has been devel-
oped by Suh and Park (1995) to predict the reflection coeffi-
cient of a perforated wall caisson mounted on a rubble mound
foundation when waves are obliquely incident to the

breakwater at an arbitrary angle. Using the extended modified
mild-slope equation along with suitable jump conditions de-
veloped by Porter and Staziker (1995), Behera et al. (2015)
investigated wave trapping by a fully extended porous barrier
near a rigid wall in the presence of an undulated bottom. Later,
Behera et al. (2016) studied wave scattering by a bottom-
standing flexible porous barrier in the presence of various step
bottoms. However, there is a negligible number of investiga-
tions on wave trapping by single/double flexible permeable/
impermeable barriers near a rigid wall in the presence of an
undulated bottom.

In the current study, wave interaction with a surface-
piercing flexible porous barrier near a rigid wall is considered
in the presence of sloping step-type bottoms. To determine the
velocity potential in an undulated region, the modified mild-
slope equation as in Porter and Staziker (1995) is used and
solved by using the Runge-Kutta method, while the
eigenfunction expansion method is used to find out the veloc-
ity potentials in the fluid domain having a uniform water
depth. It is worth pointing out that although the modified
mild-slope approximation method is a classic one, it still has
to be used properly in various mathematical models in order to
achieve the solution efficiently. Moreover, the least squares
approximation method is used for finding the solutions in
the presence of a partial surface-piercing flexible porous bar-
rier. To keep the barrier at a desired position of interest,
clamped-moored, clamped-free, moored-free, and moored-
moored edge conditions are considered. The effects of the step
bottom, porous-effect parameter and rigidity of the flexible
barriers, oblique angle of incidence, and other wave and struc-
tural parameters are analyzed on wave reflection, free surface
elevations, and wave forces on the barrier as well as the rigid
wall.

2 Mathematical Formulation

Oblique wave trapping by a surface-piercing flexible porous
barrier near a rigid wall in the presence of an undulated bottom
bed is investigated under the assumptions of the linearized
water wave theory and small amplitude structural response.
The problem is considered in the three-dimensional Cartesian
coordinate system with x − y being the horizontal plane and
the z-axis being the vertically downward negative direction as
in Fig. 1. It is apprehended that the undulated bottom bed
occupies the region 0 < x < L with variable depth h(x)
and the uniform open water regions − ∞ < x < 0 and
L < x < ∞ with constant water depths h1 and h2, respec-
tively. The flexible porous barrier of length a is located at a
distanceD and L1 from the rigid wall and end edge of the step,
respectively. The fluid is supposed to be extended horizontally
along the y− axis over y < ∞. Assuming that the fluid is
inviscid and incompressible, and the motion is irrotational
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and simple harmonic in time with angular frequency ω, the
form of the velocity potential for four different regions with
j = 1 , 2 , 3 , 4 i s g i v e n b y Φ j x; y; z; tð Þ ¼
Re ϕ j x; zð Þe−i kyyþωtð Þn o

, where θ is the incidence angle with

the x-axis and ky = k10 sin θwith k10 being the wave number
of the incident wave in region 1. Hb = (−a, 0) and
Hg = (−h2, −a) denote the regions of the barrier and the
gap along the vertical z− direction, respectively. The spatial
velocity potential ϕj(x, z) for j = 1,2,3,4 satisfies the
governing partial differential equation given by

∇ 2
xz − k2y

� �
ϕ j ¼ 0 ð1Þ

where ∇ 2
xz ¼ ∂2=∂x2 þ ∂2=∂z2

� �
. The linearized free

surface boundary condition is given by

∂ϕ j

∂z
− Kϕ j ¼ 0 on z ¼ 0; for j ¼ 1; 2; 3; 4; ð2Þ

where K = ω2/g and g is the acceleration due to gravity.
Further, the rigid uniform bottom boundary condition is given
by

∂ϕ j

∂z
¼ 0 on z ¼ −hi ð3Þ

where i = 1 for j = 1 and i = 2 for j = 3, 4. On the
other hand, the bottom boundary condition for the undulated
region 2 on z = − h(x) is given by

∂ϕ2

∂z
þ dh

dx

∂ϕ2

∂x
¼ 0 ð4Þ

The horizontal velocity on the rigid wall vanishes, which is
given as

∂ϕ4

∂x
¼ 0 on x ¼ M 2 ð5Þ

where M2 = M1 + D with M1 = L + L1. The flexible
barrier is undertaken to be oscillating in the horizontal direc-
t ion with a displacement of the form ξ y; z; tð Þ ¼
Re ζ zð Þe−i kyy−ωtð Þn o

, where ζ(z) is the complex deflection

amplitude of the flexible porous barrier. Thus, the boundary
condition on the flexible porous barrier at x = M1 is given
by

∂ϕ j

∂x
¼ ik10G ϕ3 − ϕ4ð Þ−iωζ; for

j ¼ 3; 4; z∈Hb

ð6Þ

where G is the complex porous-effect parameter as in
Kaligatla et al. (2015). The equation of motion of the barrier
acted upon by fluid pressure yields

EI
d2

dz2
− k2y

� �2

ζ þ Q
d2

dz2
− k2y

� �
ζ − msω

2ζ

¼ iρω ϕ3 − ϕ4ð Þ; z∈Hb ð7Þ

Further, EI ¼ Ed3s=12 1 − ν2ð Þ is the rigidity of the bar-
rier, E is the Young modulus, ds is the thickness of the barrier,
ν is the Poisson ratio, Q is the uniform compressive force
acting on the barrier, ms = ρsds is the uniform mass per unit
length with ρs being the barrier density, and ρ is the density of
water. The continuity of pressure and normal velocity along
the gap is given by

ϕ3 ¼ ϕ4;
∂ϕ3

∂x
¼ ∂ϕ4

∂x
; on x ¼ M 1; z∈Hg: ð8Þ

To keep the barrier in position and for the unique solution
of the boundary value problem, four different types of edge
conditions can be used, which are as follows:

(i) Clamped-free: In this case, the barrier is assumed to be
clamped at the upper end at (M1, 0) and free at the lower
end at (M1, −a).

(ii) Clamped-moored: In this case, the barrier is assumed to
be clamped at the upper end at (M1, 0) and moored at the
lower end at (M1, −a).

(iii) Moored-free: In this case, the barrier is assumed to be
moored at the upper end at (M1, 0) and free at the lower
end at (M1, −a).

(iv) Moored-moored: In this case, the barrier is assumed to
be moored at the upper and lower ends at (M1, 0) and
(M1, −a), respectively.

(v) In the case of the clamped edge, barrier deflection and
the slope of the barrier deflection will be vanished which
are given as
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Fig. 1 Schematic diagrams of wave interaction with a flexible porous
barrier near a rigid wall



ζ zð Þ ¼ 0; ζ
0
zð Þ ¼ 0 at z ¼ lu; ð9Þ

while in the case of the moored edge, the bending moment
will be vanished and the horizontal components of the

dynamic mooring line tensions relate the restoring forces
due to the axial load to the shearing forces, which are
given as

d2

dz2
− νk2y

� �
ζ zð Þ ¼ 0

EI
d2

dz2
− 2 − νð Þk2y

� 	
d

dz
þ Q

d

dz


 �
ζ zð Þ ¼ 2Kmsin

2 σmð Þζ zð Þ

9>>=
>>; at z ¼ lu ð10Þ

where Km is the mooring line stiffness and σm is the mooring
line angle in the static position. It may be noted that for
σm = 0, Eq. (10) will be the free edge condition at which
the bendingmoment and shear force are zero. In Eqs. (9)–(10),
lu is 0, − b as appropriate.

The far field boundary conditions are given by

ϕ1 ¼ I0eip10x þ R0e
−ip10x

� �
f 10 k10; zð Þ; as x → −∞

ð11Þ

where R0 is the complex amplitude of the reflected wave and
I0 is the incident wave amplitude. Further, k10 is the real root of

the dispersion relation in region 1 with p10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k210 − k2y

q
and f10(k10, z) is the associated vertical eigenfunction.

3 Method of Solution

This section briefly describes the method of solution for the
wave interaction with the surface-piercing flexible porous bar-
rier in the presence of bottom undulation. Using the expansion
formulae, the form of the spatial velocity potentials ϕj(x, z) for
j = 1,2,3,4 in each region is expressed as

ϕ j x; zð Þ ¼

I0eip10x f 10 k10; zð Þ þ ∑
∞

n¼0
Rne

−ip1nx f 1n k1n; zð Þ; x < 0; j ¼ 1

∑
∞

n ¼ 0
ψn xð Þ Wn h xð Þ; zð Þ; 0 < x < L; j ¼ 2

∑
∞

n ¼ 0
Ane

ip2nx þ Bne
−ip2nx

� �
f 2n k2n; zð Þ; L < x < M 1; j ¼ 3

∑
∞

n ¼ 0
Tncosp2n x − M 2ð Þ f 2n k2n; zð Þ; M 1 < x < M 2; j ¼ 4

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

where fin(kin, z) for i = 1, 2 and n = 0,1,2,3, ⋯ are the
eigenfunctions and given as

f in kin; zð Þ ¼ cosh kin z þ hið Þ
cosh kinhi

ð13Þ

and pin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2in − k2y

q
with k10 and k20 are the positive real

roots, kin for n = 1,2,3, ⋯ are the purely imaginary roots
that satisfy the dispersion relation

ω2 ¼ gkintanh kinhi: ð14Þ

Further, in Eq. (12), ψn(x)s are unknown functions and the
eigenfunctions Wn are expressed as

Wn ¼ cosh ~k ∼n z þ hð Þ
cosh ~k ∼nh

ð15Þ

where ~pn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2
n − k2y

q
. The wave number ~k0 is a positive

real root and ~k1; ~k2; ~k3;⋯ are purely imaginary roots of the
dispersion relation

ω2 ¼ g ~k ∼ntanh ~k ∼nh: ð16Þ

It may bementioned that the roots ~k0; ~k1; ~k2; ~k3… are func-
tions of the bottom profile h(x) and the eigenfunctions Wns
which are borrowed from the flat bottom solution as in Porter
and Staziker (1995). Rn, An, Bn, and Tn are unknown constants
to be determined. Hereafter, the infinite series associated with
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the evanescent modes for the velocity potentials are truncated
afterN terms. Using the procedure of extendedmodified mild-
slope equation (MMSE) as in Porter and Staziker (1995) to
obtain ψn(x) for the undulated region, it is derived that

d

dx
an

dψn

dx

� �

þ ∑
N

m¼0
bmn − bnmð Þ dh

dx

dψm

dx
þ bmn

d2h

dx2
þ cmn

dh

dx

� �2

þ dmn − k2yan

( )
ψm

" #

¼ 0

ð17Þ

where

an hð Þ ¼ ∫0−hW
2
n dz; bmn hð Þ ¼ ∫0−hWn

∂Wm

∂h
dz;

cmn hð Þ ¼ dbmn
dh

− ∫0−h
∂Wm

∂h
∂Wn

∂h
dz; dmn hð Þ

¼ ∫0−hWn
∂2Wm

∂z2
dz

for n = 0,1,2, ⋯, N. Taking the velocity potential as in Eq.
(12) and continuity of pressure across the interfaces x = 0
and x = L yields

ψ0 xð Þ ¼ I0eip10x þ R0e
−ip10x0:2cm

ψn xð Þ ¼ Rne
−ip1nx

	
at x

¼ 0 for n ¼ 1; 2;⋯;N ð18Þ

and

ψn xð Þ ¼ Aneip2nx þ Bne−ip2nx at x ¼ L for n

¼ 0; 1; 2;⋯;N : ð19Þ

Using Eqs. (18) and (19) and the conservation of mass
across the interface boundaries similar to Porter and Staziker
(1995) at x = 0 and L brings out the jump conditions which
are given by

a0
dψ0

dx
þ ip10a0ψ0 þ h

0
∑
N

m ¼ 0
bm0ψm − 2ip10a0I0 ¼ 0;

an
dψn

dx
þ ip1nanψn þ h

0
∑
N

m ¼ 0
bmnψm ¼ 0;

9>>=
>>; at x ¼ 0þ; n

¼ 1; 2;⋯;N ð20Þ
and

an
dψn

dx
− ip2nanψn

þ h
0

∑
N

m ¼ 0
bmnψm − 2ianp2nBne

−ip2nx

¼ 0 at x ¼ L−; n ¼ 0; 1; 2;⋯;N : ð21Þ

Considering the velocity potentials ϕj for j = 3, 4 as in
Eq. (12) and continuity of velocity conditions at x = M1 as

in Eq. (8) along with the orthogonal characteristics of the
eigenfunctions f2n(k2n, z), the following is derived

An − Bne−2ip2nM1 ¼ −iTnsinp2nD at x ¼ M 1; n

¼ 0; 1; 2;⋯: ð22Þ

The plate deflection ξ(z) is obtained by using Eq. (12) in
Eq. (7),

ζ zð Þ ¼ ∑
4

m ¼ 1
Cmgm zð Þ

þ ∑
∞

n ¼ 0
enAn þ dnTnð Þ f 2n k2n; zð Þ; z∈Hb;

ð23Þ

where en = β1ntn, dn = β2ntn with β1n ¼ 2e−ip2nM1 ,
β 2 n = i s i n p 2 n D − c o s p 2 n D , tn ¼

iρω
EIp42n þ Qp22n − msω2 , g1 zð Þ ¼ cosh τ1z

cosh τ1h2
, g2 zð Þ ¼ sinh τ2z

sinh τ2h2

; g3 zð Þ ¼ sinh τ2z
sinh τ2h2

; and g4 zð Þ ¼ sinh τ2z
sinh τ2h2

. Further, Cm (for

m = 1,2,3,4) are the unknowns and τns are the roots of the

characteristic equation EI τ2n−k
2
y

� �
2 þ Q τ2n−k

2
y

� �
− ms

ω2 ¼ 0 with τn = iτn for n = 3, 4. By making use of
ζ(z) (from Eq. (23)) in Eq. (6), a series relation for the un-
knowns is derived as

∑
∞

n ¼ 0
HnAn þ GnTnð Þ f 2n zð Þ þ iω ∑

4

m ¼ 1
Cmgm zð Þ

¼ 0; for z∈Hb ð24Þ

where Hn = iωen − ik10Gβ1n and Gn = p2n sin
p2nD + iωentn − ik10Gtn. Moreover, using the continuity
of the velocity potential as in Eq. (8) and the relations in Eq.
(22), another series relation is obtained,

∑
∞

n ¼ 0
β1nAn þ β2nTnð Þ f 2n zð Þ ¼ 0; for z∈Hg: ð25Þ

The series relations in Eqs. (24) and (25) are satisfied in
disjoint intervals and are referred to as dual series relations.
These dual series relations are rewritten as

S zð Þ ¼ ∑
∞

n ¼ 0
Un zð Þ þ Vn zð ÞTnf g ¼ 0; −h2

< z < 0 ð26Þ

where

Un zð Þ ¼
β1nAn f 2n zð Þ; for z∈Hg

HnAn f 2n zð Þ þ ∑
4

m ¼ 1
Cmgm zð Þ; for z∈Hb

8<
:

Vn zð Þ ¼ β2n f 2n zð Þ; for z∈Hg;
Gn f 2n zð Þ; for z∈Hb;

�
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and let SN zð Þ be the Nth partial sum of the series S zð Þ. With
help of the least squares approximation method, Eq. (26) can
be written as

∫0−h2S*
M zð ÞSTn zð Þdz ¼ 0; for n

¼ 0; 1; 2; 3;⋯;M ð27Þ

where ∗ denotes the complex conjugate and STn zð Þ is the
derivative of SM zð Þ with respect to Tn. Thereafter, using Eq.
(26) in Eq. (27), a system of linear equations is obtained as
follows:

∑
N

m ¼ 0
T*
mYmn ¼ J n; for n ¼ 0; 1; 2;⋯;M ; ð28Þ

where

J n ¼ ∫0−h2U*
n zð ÞUn zð Þdz; Ymn

¼ ∫0−h2V*
n zð ÞVn zð Þdz; for m; n

¼ 0; 1; 2;⋯;M : ð29Þ

Once and for all, Eq. (17) is solved using the fourth-order
Runge-Kutta method to determine the unknown function ψn

for specific bed profile h(x). A system of 6N equations is
derived from Eqs. (18)–(22) and (28) by using the computed
values of ψn. Another four linear equations are obtained from
the edge conditions as in Eqs. (9) and (10). The set of 6N +
4 linear equations are then solved for the various physical
quantities of interest.

4 Numerical Results and Discussion

In this section, we discuss results for a wide range of param-
eters, generated by a MATLAB code which has been

developed for investigating the effect of various wave and
structural parameters on wave reflection, free surface eleva-
tions, and hydrodynamic forces on the barrier and rigid back
wall. In the present study, time period T = 8 s, acceleration
due to gravity g = 9.81 m/s2, depth ratio h2/h1 = 0.5, L/
h1 = 0.5, L1/λ1 = 0.5, D/λ1 = 0.25, λ1 = 2π/k10, γ ¼
EI= ρgh42

� � ¼ 0:01, β ¼ Q= ρgh22
� � ¼ 0:1, υ = ms/

(ρh2) = 0.1, ν = 0.3, a/h2 = 0.8, σm = 45∘, Km =
103 Nm‐1, and θ = 30∘ are kept fixed unless it is mentioned
otherwise. The reflection coefficient is defined by

Kr ¼ R0

I0










 ð30Þ

The magnitude of the horizontal wave forces acting on the
porous barrier Kf and on the rigid wall Kw is defined as

K f ¼ iρω∫0−h2
n
ϕ4 x; zð Þ − ϕ3

�
x; z

�o



x ¼ M1

dz; ð31Þ

Kw ¼ iρω∫0−h2ϕ4 x; zð Þ




x ¼ M2

dz: ð32Þ

Further, the non-dimensional form of the horizontal wave
forces on the barrier Cf and rigid wall Cw is derived using the
formulae

C f ¼ jK f j
ρgh22

and Cw ¼ jKwj
ρgh22

: ð33Þ

The undulated bed profile is considered using the bed func-
tion h(x) as

h xð Þ ¼ h1 − c 1 − α 1 − x=Lð Þ2 þ α − 1ð Þ 1 − x=Lð Þ
n o

; 0

< x < L ð34Þ

Fig. 2 Variation of Kr versus
k10h1 for different values of a h2/
h1 with G = 1 and b G with h2/
h1 = 0.5. The other parameters
are γ = 5, β = 0, a/h2 = 1,
D/h1 = 1, L/h1 = 0.1, and
θ = 30∘
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where c = h1 − h2. From the bed function h(x) as in Eq.
(34), various bed profiles can be obtained for different values
of α such as the following: (i) α = 0 refers to the sloping
step-type bed, (ii) α > 1 refers to the protrusion above the
depth h2, (iii) for −1 ≤ α < 0 the bed is concave, and (iv)
an increase in the depression of the bed profile will occur for
α < − 1 (more details can be found in Behera et al. (2018)).

In Fig. 2a, b, the reflection coefficients Kr versus the non-
dimensional wave number k10h1 are plotted for different
values of depth ratio h2/h1 and porous-effect parameter G,
respectively. In Fig. 2a, the results for h2/h1 = 0.5 and the
larger rigidity of the fully extended barrier agrees well with the
result of Li et al. (2003; Fig. 8) in the case of wave interaction
with the porous barrier near a rigid wall in the presence of a
vertical step. This figure shows that there is a right shift of full
and minimum reflections with an increase in water depth for
k10h1 < 5.8. However, for k10h1 > 5.8, there is a negligi-
ble effect of depth ratio h2/h1 in the wave reflection. From both
figures, it is found that full reflection occurs periodically with
an increase in k10h1. In the case of uniform water depth, full
reflection occurs with a period 3.6, while in the presence of a
step, the period decreases. With an increase in absolute value
of the porous-effect parameter G, more wave energy passes
through the porous barrier and is reflected by the rigid wall,
and thus, the wave reflection increases with an increase in

absolute value of the porous-effect parameter as shown in
Fig. 2b.

Reflection coefficients Kr against the dimensionless wave
number k10h1 are plotted in Fig. 3a, b to check the effects of
various edge conditions and the non-dimensional distance be-
tween the barrier and the rigid wall D/h1, respectively. Figure
3a depicts that the wave reflection is more in the case of the
moored-free edge condition, whereas the wave reflection is
less for the clamped-moored edge condition. This is due to
the fact that in the case of the moored-free edge, more waves
get transmitted through the barrier and then reflected by the
rigid wall which results in more wave reflection as compared
to the other edge conditions. However, the clamped-moored
edge condition results in less flexibility at the edges of the
barrier; thus, less waves get transmitted through the barrier
and as a result, the wave reflection is less in this case. It may
be noted that in other figures throughout the manuscript, the
clamped-moored edge condition is used. Figure 3b shows that
the number of full reflections increases due to the increase in
distance between the barrier and rigid wall (D/h1) with a peri-
od 0.25 of D/h1. It is also observed that for D/h1 ≥ 0.5 at
k10h1 = 6.2, full reflection is obtained for each interval ofD/
h1 = 0.5. Further, the wave reflection attains a minimum
value between two consecutive wave numbers for which full
reflection occurs.

Fig. 3 Variation of Kr as a
function of k10h1 for different a
edge conditions with D/h1 = 1
and b values of D/h1 with the
clamped-moored edge condition.
For both panels, γ = 0.01, h2/
h1 = 0.5, β = 0, a/h2 = 1,
G = 1, L/h1 = 0.1, and θ =
0∘

Fig. 4 Variation of Kr with
respect to D/λ1 for different
values of a/h2 with β = 0,
G = 1, θ = 30∘, and h2/
h1 = 0.5. a γ = 5 (rigid
porous barrier). b γ = 0.01
(flexible porous barrier)
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The comparative study of the performance of (i) partial and
fully extended and (ii) rigid and flexible porous barriers is
presented in Fig. 4a, b. In Fig. 4a, the rigid porous barrier is
considered, while the flexible porous barrier is considered in
Fig. 4b with γ = 0.01. From both figures, it is seen that the
reflection coefficient diminishes with an increase in the length
of the barrier. This is due to the dissipation of more wave
energy by the porous barrier as an increase in the length of
the barrier. In the case of the rigid partial porous barrier
(Fig. 4a), wave reflection is greater compared to the flexible
partial porous barrier (Fig. 4b). However, in the case of the
fully extended barrier (a/h2 = 1), an opposite trend is ob-
served. In literature, it is examined that in the case of a uniform
bottom, full reflection is observed periodically when the dis-
tance between the porous barrier and the rigid wall becomes
an integer multiple of half of the wavelength of the incident
waves (see Yip et al. (2002) and Kaligatla et al. (2015)).
However, from Fig. 4a, b, it is seen that in the presence of a
step, full reflection can be found when the distance between
the porous barrier and the rigid wall becomes an integer mul-
tiple of less than half of the wavelength of the incident waves.
Moreover, it is observed that one minimum in the wave re-
flection occurs in between two consecutive maxima and it
increases when the step height decreases.

The influences of non-dimensional flexural rigidity γ and
compressive force β on the variation of reflection coefficients
Kr are elaborated in Fig. 5a, b. It is observed that the reflection
increases with increase of flexural rigidity as shown in Fig. 5a.
Such a conclusion was also made earlier by Yip et al. (2002)
and Kaligatla et al. (2015) in the case of wave trapping by
flexible porous plates in a uniform water bottom. However,
with an increase in compressive force β, the wave reflection
increases.

Mooring angle ϑ and porous-effect parameter G are two
monumental parameters. The dependence of the reflection
coefficients Kr on ϑ and G (as a function of γ) is shown in
Fig. 6a and b, respectively. From both figures, it is ob-
served that the reflection coefficient decreases until it
reaches a uniform pattern with an increase in the structural
rigidity. Figure 6a shows that for less structural rigidity,
wave reflection decreases with an increase of the mooring
angle, while in the case of the highly flexible barrier, the
mooring angle has a negligible effect on the wave reflec-
tion which may be due to the predominant role of higher
modes of vibration of the highly flexible plate. On the
other hand, with an increase in absolute value of the
porous-effect parameter, the wave reflection increases as
shown in Fig. 6b.

Fig. 5 Mutation of Kr as a
function of D/λ1 for a different γ
with β = 0 and b different β
with γ = 0.01, and in both, h2/
h1 = 0.5, a/h2 = 0.8,G = 1,
and θ = 30∘

Fig. 6 Variation ofKr versus γ for
different values of a σm with
G = 1 and b G with σm =
45∘, when h2/h1 = 0.5, a/
h2 = 0.8, and θ = 30∘
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In Fig. 7a, b, the reflection coefficients Kr versus the non-
dimensional slope length L/λ1 are plotted for the different
values’ protrusion and depression parameter α of the bed
function h(x) and porous-effect parameter G, respectively. In
the case of a larger sloping length, the water depth in all
regions becomes the same; thus, with an increase in the slop-
ing length, the oscillatory pattern of the wave reflection de-
creases as shown in both figures. Figure 7a depicts that wave
reflection is greater in the case of protrusion in the step, while
wave reflection is less for the step having depression. From
Fig. 7b, it is manifested that the reflection coefficient de-
creases with an increase in length of the barrier which is be-
cause of the dissipation of more amount of wave energy by the
porous barrier.

Figure 8 displays the parametric results in the Kr − θ
plane system for two different values of water depth, h2/
h1 = 1 (panel a) and h2/h1 = 0.5 (panel b). Figure 8a indi-
cates that for θ = 0∘, full reflection occurs periodically with
the period D/λ1 = 0.5 which follows the same as in Fig. 4a
and is analogous to earlier results of Sahoo et al. (2000).
However, full reflection does not occur at the same period in
the presence of a step as shown in Fig. 8b. Moreover, in both
cases, with an increase in D/λ1, the minimum of the wave
reflection exponentially increases with respect to θ. It is also
seen that the number of full reflections is less in the presence

of a step. Figure 8b shows that at θ = 72∘, full reflection
occurs at each interval D/λ = 0.5, and this angle is said to
be a critical angle.

The changes of wave forces exerted on the barrier Cf and
the rigid wall Cw versus the non-dimensional wave number
k10 for several values of the porous-effect parameter G are
plotted in Fig. 9a and b, respectively. In general, with an in-
crease inG, more wave energy passes through the pores of the
barrier; thus, the wave force decreases on the barrier and it
increases on the rigid wall as the absolute value of the porous-
effect parameter G increases. A comparison between Figs. 3b
and 9a, b suggests the values of k10 for which full reflection
occurs correspond to zero wave force on the barrier, and min-
imum reflection corresponds to maximum wave force on the
rigid wall.

Panels a and b of Fig. 10 reveal the free surface elevations
in open water (η1/h1) and confined (η4/h1) regions, respective-
ly, for various values of the porous-effect parameter G. It is
found that the amplitude of the free surface elevation in the
confined region η4/h1 is less as compared to the open water
region’s free surface amplitude, which is due to the dissipation
of wave energy by the porous structure. It is also seen that with
an increase in the absolute value of the porous-effect parame-
ter G, the amplitude of the free surface elevations decreases in
both regions. In Fig. 10b, the deflection of the flexible barrier

Fig. 7 Variation ofKr versus L/λ1
for different values of a α with a/
h2 = 0.8 and b a/h2 with α =
0. The other parameters are
G = 1, σm = 45∘, h2/h1 =
0.5, and θ = 30∘

Fig. 8 Change of Kr in terms of θ
for different values of D/λ1 in a
h2/h1 = 1 and in b h2/h1 = 0.5
with a/h2 = 0.8, α = 0,
G = 1, and σm = 45∘
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is plotted for various values of the porous-effect parameter G.
It is observed that with an increase in the barrier rigidity γ, the
barrier deflection decreases. Since the barrier is fixed near the
free surface and moored near the submerged end, the deflec-
tion is zero at the upper end and non-zero at the other end.
Moreover, the barrier deflection decreases with an increase in
the absolute value of the porous-effect parameter.

5 Conclusion

The influence of a surface-piercing flexible porous barrier
near a rigid wall in the presence of step-type bottoms is exam-
ined based on the linearized theory of water waves. The bar-
rier is analyzed under (i) clamped-free, (ii) clamped-moored,
(iii) moored-free, and (iv) moored-moored edge conditions to
determine its preference as a breakwater in the lee side of the
coastal region. The associated boundary value problem is
solved by using the modified mild-slope approximation meth-
od along with the least squares approximation method.
Numerical results are computed for reflection coefficients,
free surface elevations, and wave forces on the barrier and
the rigid wall. The computed results are validated with avail-
able results in the literature in the case of wave interaction with
the flexible porous barrier near a rigid wall in uniform water

depth. The study reveals that the edge conditions play an im-
portant role not only for keeping the flexible barrier in position
but also for the reduction of wave reflection. It is seen that the
wave reflection is reduced for the clamped-moored barrier as
compared to the barrier having the other edge conditions.
Apart from uniform water depth, it is found that in the pres-
ence of a step, full reflection occurs periodically. However, the
period for full reflection is less in the case of the step bottom as
compared to the uniform bottom. It is observed that full re-
flection occurs in the periodD/h1 = 0.25 with an increase in
the scaled wave number k10h1, and it is also seen that full
reflection occurs in each interval at k10h1 = 6.2 for
D/h1 ≥ 0.5. Further, at k10h1 = 1.2, nearly zero reflection
occurs for certain values of wave and structural parameters,
which is referred to as nearly full wave trapping in the con-
fined zone. In the case of the uniform bottom, full reflection
was obtained at θ = 0∘ and D/λ1 = 0.5, while it does not
occur at θ = 0∘ and D/λ1 = 0.5 in the presence of a step.
But full reflection was observed at each period of D/λ1 =
0.5 when the angle θ = 72∘. It is found that full reflection is
associated with zero force on the barrier and maximum force
on the rigid wall, and the maximum wave force on the barrier
is associated with less force on the rigid wall. Further, in the
confined region, the amplitude of the free surface elevation
reduced significantly due to the dissipation of wave energy by

Fig. 9 Dependence of a Cf and b
Cw on k10h1 for different values of
G with h2/h1 = 0.5, a/h2 =
0.8, α = 0, D/h1 = 1, θ =
30∘, and σm = 45∘

Fig. 10 Curves of a surface
elevations ηj with γ = 0.01 and
b barrier deflection ζ for different
values of G with h2/h1 = 0.5, a/
h2 = 0.8, α = 0, θ = 30∘,
and σm = 45∘
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the porous barrier. Finally, the overall conclusion is that with a
suitable combination of wave and structural parameters, the
surface-piercing partial flexible porous barrier can be used as
an effective breakwater, and the above important observations
may help ocean engineers in the design of a perforated break-
water to create a calm region near sea walls, ports, and harbor
walls.
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