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Abstract: This paper aims to numerically investigate the effects of 
parametric instability on piezoelectric energy harvesting from the 
transverse galloping of a square prism. A two degrees-of-freedom 
reduced-order model for this problem is proposed and numerically 
integrated. A usual quasi-steady galloping model is applied, where 
the transverse force coefficient is adopted as a cubic polynomial 
function with respect to the angle of attack. Time-histories of 
nondimensional prism displacement, electric voltage and power 
dissipated at both the dashpot and the electrical resistance are 
obtained as functions of the reduced velocity. Both, oscillation 
amplitude and electric voltage, increased with the reduced velocity 
for all parametric excitation conditions tested. For low values of 
reduced velocity, 2:1 parametric excitation enhances the electric 
voltage. On the other hand, for higher reduced velocities, a 1:1 
parametric excitation (i.e., the same as the natural frequency) 
enhances both oscillation amplitude and electric voltage. It has 
been also found that, depending on the parametric excitation 
frequency, the harvested electrical power can be amplified in 70% 
when compared to the case under no parametric excitation. 
Keywords: transverse galloping, energy harvesting, piezoelectricity, 
parametric instability, numerical simulations  
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1 Introduction1 

Fluid-structure interaction phenomena usually involve 
self-excited oscillations. Such Flow-Induced Vibrations 
(FIV) can be either resonant (such as, for example, 
vortex-induced vibrations - VIV) or non-resonant (flutter 
and galloping). A very common approach is to focus on FIV 
mitigation. However, there is another class of investigations 
that aims to collect part of the kinetic energy from the 
structure, converting it into another class of energy, such as 
potential or electrical energy. It is important to emphasize 
that most of the investigations on the electromechanical 
energy conversion from FIV focuses on low-power devices. 

Consider firstly energy harvesting from VIV. One of the 
pioneer devices is Vortex-Induced Vibrations Aquatic Clean 
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Energy (VIVACE). Details concerning this device can be 
found in Bernitsas et al. (2006a; 2006b). For another kind of 
vibrating systems, cables, numerical studies described in 
Grouthier et al. (2012, 2014) focused on the influence of the 
structural damping parameter and the ratio between the 
structural natural frequency and the vortex shedding 
frequency. Additionally, the authors investigated the effects 
of distributed energy harvesters on flexible cylinders. 

Energy harvesting from flutter and galloping were 
investigated from experimental point-of-view (see, e.g., 
Fernandes and Armandei (2014)) or through numerical 
simulations (Barrero-Gil et al. (2010) and Bibo and Daqaq 
(2013)). Regarding energy conversion mechanisms, 
electromagnetic effects (see Tang et al. (2009)) or 
piezoelectricity (Doaré and Michelin (2011), Mehmooh et al. 
(2013) and Xia and Michelin (2015)) are usually found in 
the literature. 

Another class of interesting dynamic problems is the 
parametric excitation, which may occur if one or more 
parameters of the equation of motion depend explicitly on 
time. A particular category of parametric excitation problem 
is composed by systems in which the stiffness depends 
harmonically on time, leading to the Mathieu’s equation. 
Depending on the values of frequency and amplitude of the 
stiffness variation, the trivial solution may become unstable, 
giving rise to oscillatory response. A common tool to check 
the stability of the undamped Mathieu’s equation is the 
Strutt’s diagram. The textbooks  written by Nayfeh and 
Mook (1979) and Meirovitch (2003) provide excellent 
didactic material on such a theme.  

Parametric excitation may occur in slender offshore 
structures such as tethers used in Tension Leg Platforms 
(TLPs) and risers. Further information regarding different 
arrangements commonly found in the offshore engineering 
scenario can be found in Faltinsen (1993). In the slender 
offshore structures aforementioned, the geometric stiffness 
is dominant. The motions of the floating units cause tension 
modulation and, hence, modulation on its geometric 
stiffness. Depending on the amplitude and, mainly, the 
frequency of the tension modulation, lateral motions may 
then be observed.  

Examples of studies on parametric instability in risers and 
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TLP’s tethers can be found in Patel and Park (1991), Simos 
and Pesce (1997), Franzini et al. (2015) and Franzini and 
Mazzilli (2016). Furthermore, the paper written by Franzini 
et al. (2016a) investigates the combined effects of 
parametric excitation and vortex-induced vibration, showing 
an enhancement of oscillation amplitudes.  

In this brief literature overview, energy harvesting from 
FIV as well as some aspects of oscillations induced by 
parametric excitation, particularly in the offshore 
engineering scenario, were mentioned. However, at least to 
the authors’ knowledge, there is a lack of investigations 
regarding the effects of parametric instability on 
piezoelectric energy harvesting from from FIV.  

It is important to highlight that the parametric excitation 
may be imposed through an active system, or naturally, 
driven by environmental conditions. An example of this 
second case is the case of Mathieu’s instability of risers and 
tethers, caused by the wave induced motion of the floating 
platform. Another possible source of parametric excitation 
may be provided by an external electro-mechanical system. 
Such closed-loop system must be designed such as to 
impose forces proportional to the displacements, emulating 
the effect of a time-dependent spring stiffness. Notice, 
however, that the energy harvesting efficiency of this latter 
system would have to take the energy provided to the 
electromechanical system into account. 

The objective of this paper is to numerically investigate 
the influence of parametric excitation on piezoelectric 
energy harvesting from the transverse galloping of a square 
prism. Oscillation amplitudes, electric voltage harvested, 
power dissipated at the electrical resistance and at the 
dashpot are investigated at two excitation frequency ratios 
with respect to the natural frequency of the system,. This 
work gives continuity to the analysis described in Franzini et 
al. (2016b), but considering a nondimensional set of 
differential equations for the electro-fluid-mechanic system, 
exploring new numerical examples and enhancing 
discussions. Furthermore, the range of reduced velocity 
hereing presented is enlarged when compared to the 
previous contribution. New findings are obtained for large 
reduced velocities. Finally, it is important to emphasize that 
this paper does not present any consideration regarding the 
power necessary to externally trigger Mathieu’s instability, 
despite the practical importance such a study might have. 

The following sections present the mathematical model 
and discussion on some results. Finally, final remarks are 
presented. 

2 Mathematical model 

The problem herein investigated concerns a rigid square 
prism of length L, cross-section dimension D and structural 
mass ms. The prism is assembled to an elastic support with 
linear damping of constant c and time-dependent stiffness 

k(t). The free-stream velocity is U . The piezoelectric 

patch is modeled by means of equivalent capacitance, 

electric resistance and electromechanical coupling terms Cp, 
R and   respectively. Fig. 1 sketches the problem herein 
investigated. 

 
Fig. 1  Schematic representation of the problem 

 
Following Franzini et al. (2016b), a model combining 

transverse galloping, parametric excitation and the 
piezoelectric phenomenon, is adopted as given in Eqs. (1) 
and (2). 
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In Eq. (1), notice that two models have been simply 
combined: the equation of motion for pure parametric 
excitation (see, for example, Patel and Park (1991) and that 
from pure galloping (Païdoussis et al. (2011). This equation 
is excited by the dynamics of the piezoelectric system, 
which follows the constitutive Eq. (2), adopted in Mehmood 
et al. (2013). 

As a fact, the used galloping model is well known in the 
literature. Likewise, Mathieu’s type parametric excitation is 
a phenomenon studied extensively. Indeed, an experimental 
investigation focusing on the concomitant effects of 
galloping and parametric excitation is not a trivial task. If 
done, would serve as a paradigmatic result for the model 
validity. This, however, has been left as a recommended 
further work. The purpose of the present paper, at this very 
moment, is, relying on the validity of such combination 
hypothesis, to assess the sensitivity of the system response 
with respect to the variation of some of the controlling 
parameters. 
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A set of nondimensional quantities may then be defined 
as: 

*
2

,, , ,s
n r

n

Y m U
y t m U

D D L D
 

 
     

 
2

1 22

1
, ,

a s P n P nm m C RC

 
 

 


 

  2
0

 
a s n

V V
v

V m m D




 


 

Beyond this point, y  indicates the derivative of the 

nondimensional variable y with respect to the 
nondimensional time  . The mathematical model can then 
be rewritten in the nondimensional form as: 
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Notice that δ and n represent, respectively, the amplitude 
and the frequency of the parametric excitation in the 
nondimensional form. Ur is usually named as reduced 
velocity. 

Herein, the cross-wise coefficient will be evaluated by 
using the quasi-steady hypothesis, together with a 
third-order polynomial approximation: 
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According Blevins (2001), the quasi-steady hypothesis is 
valid if:   
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Besides oscillations and electric voltage, we also 
investigate the harvested power from the 
electro-fluid-mechanical system; particularly, the power 
dissipated at the dashpot (PD) and the electrical power 
available in the piezoelectric material (Pel). These quantities 
are also made nondimensional, as follows: 
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Notice that the term 31 / 2 U DL   is the flux of fluid 

kinetic energy across a surface with area equal to the frontal 
area of the prism. Hence, the quantities η1 and η2 may be 
interpreted as energy harvesting efficiency parameters.  

Finally, it is interesting to compute the increase of energy 
harvesting efficiency caused by parametric excitation. In this 
sense and following Franzini et al. (2016b), the following 
parameters are introduced: 
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where the bar indicates time-averaging (considering only 
steady-state response) and the superscript 0 refers to the case 
under no parametric excitation. 

3 Simulations, results and discussion 

The system of equations that governs the 
electro-fluid-mechanic system in its nondimensional form 
(Eqs. (5) and (6)) were numerically integrated using a 4th–5th 
order Runge-Kutta scheme, using MATLAB® ode45 
function. The simulations were carried out with a time-step 
Δτ=0.01 up to the maximum nondimensional time

max 500  . Responses were considered in the interval 

400   guaranteeing a steady state regime.  

Herein, focus is put on the range 5 30rU  , extending 

the range previously investigated in Franzini et al. (2016b), 
which considered reduced velocities up to 10.  

Table 1 presents the parameters kept invariant along the 
simulations. Some comments must be made. It is well 
known that both Ca and CD are strongly dependent on the 
flow characteristics, and hence on the prism oscillations, 
what gives rise to another source of nonlinearities. The 
proper consideration of the dependence of these coefficients 
on the oscillation amplitude is, in fact, a nontrivial task, 
which is left for a further work. 

The value of added mass coefficient Ca was taken based 
on potential flow theory (see Korotkin (2009)). The drag 
coefficient CD was assumed to be equal to that obtained 
from experiments with fixed bodies. It was adopted 
CD=2.05, from Hoerner (1965). 

Table 1 Simulations parameters 

Parameter Value 
m* 5 
Ca 1.5 

s  0.01 

CD 2.2 

1  0.015 4 

2  0.2653 

A1 2.69 
A2 0 
A3 −168.4 

 

For the piezoelectric system model, the nondimensional 
parameters were obtained by considering the same values of 

, pC  and R used by Mehmood et al. (2013), previously 

adopted in Franzini et al. (2016b). The coefficients A1, A2 and 
A3 were obtained from a third-order polynomial fit for the 
cross-wise force coefficient Cy Further details regarding this 
polynomial fit can be found in Païdoussis et al. (2011). 
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Firstly, we consider two cases: (i) no parametric 
excitation and (ii) parametric excitation with 0.5  and 
two frequencies-ratio values, n, namely n=1 and n=2. 

Figs. 2 and 3 present, respectively, the standard-deviations 
of nondimensional displacement and electric voltage as 
functions of reduced velocity Ur. The mentioned plots 
clearly reveal a monotonic and upward trend of these 
quantities with Ur in case (i). 

Qualitative and quantitative differences are observed 
when parametric excitation occurs. Case (ii) at n=1 shows 
an enhancement of both the structural oscillations and the 
electric voltage at the load resistance, for practically the 
whole range of reduced velocities simulated. On the other 
hand, at n=2 the standard-deviations of both ( )y  and 

( )v  are larger than those obtained under no parametric 

excitation, in the range 20<Ur<25.  
A jump can be noticed in both ( )y  and ( )v  plots at 

20rU  , for the case n=2. A large increasing rate with Ur 

may be observed as well, for n=1, at 14rU  . In fact, such 

a sudden amplitude increase is an interesting finding, 
concerning energy harvesting, not observed in the absence 
of parametric excitation. 

 
Fig. 2  Standard-deviation of y( )  as functions of  

reduced velocity 

 
Fig. 3  Standard-deviation of v( )  as functions of  

reduced velocity 
 
Aiming at discussing the response jump at n=2, Figs. 4 

and 5 are plotted, showing the time-history ( )y   and the 

corresponding amplitude spectrum at two reduced velocities, 
namely Ur=19.7 and 20.2 Such a jump is accompanied by a 

decrease in ˆ /d d nf   , being d  the dominant 

oscillation frequency. Note that the spectral distribution at 
Ur=20.2 is narrower than that at Ur=19.7, with less 
subharmonics.  

The variation of the dominant frequency is important not 
only as an interesting aspect regarding the structural 
dynamics but also regarding the power dissipated at the 
dashpot. As shown in Eq. (9), the power dissipated at the 
dashpot depends on the velocity squared and, consequently, 
on the square of the nondimensional oscillation frequency. 

 
(a) ( )y   

 
(b) Amplitude spectrum 

Fig. 4  Time-history y( )  and respective amplitude 

spectrum; n=2, Ur=19.7 

 
(a) ( )y   

 
(b) Amplitude spectrum 

Fig. 5  Time-history y( )  and respective amplitude  

spectrum; n=2，Ur=20.2 
 

Fig. 6 presents the variation of the nondimensional 
dominant oscillation frequency as functions of Ur. Notice 
that in the no parametric excitation case, the dominant 
frequency decreases with Ur. Considering now the 
parametric excitation case n=1, a decrease in the values of 
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d̂f  is observed in the range 3.2<Ur<14. In the range Ur>14, 

a constant value መ݂ௗ is obtained. 
On the other hand, the case n=2 reveals distinct response 

regimes. For Ur<11, the dominant frequency matches the 
natural frequency of the prism under pure parametric 
excitation. In fact, this is not surprising, since systems under 
combined parametric excitation and hydrodynamic drag 
force exhibits steady-state response with frequency equal to 
the corresponding natural frequency, if the stiffness is taken 

as its averaged value k . 
Hence, for this range of reduced velocities, parametric 

instability dominates the response when compared to 
galloping phenomena. After a monotonic decreasing trend, 

the dominant frequency reaches ˆ 0.7df   in the range 

16<Ur<20. Finally, for Ur>20, the dominant oscillation 
frequency is constant and equal to 0.5. 

This puzzling behavior regarding the dominant oscillation 
frequency is certainly an interesting but non-trivial aspect to 
be explained. Perturbation methods such as, for example, the 
method of multiple scales, might be used to obtain new 
insights. 

 
Fig 6  Nondimensional dominant oscillation frequency as 

function of reduced velocity 
 
Attention is now directed to the harvested power at the 

dashpot and at the electrical resistance. As already 
mentioned, these quantities were made nondimensional and 

the quantities 1  and 2  represent the energy harvesting 

efficiency. It is interesting to point out that some 
investigations (see, for example, Grouthier et al. (2012, 
2014) and Xia and Michelin (2015)) discuss energy 
harvesting just considering the power dissipated at the 
dashpot without mentioning how to convert it into another 
form such as, for example, electrical power. In fact, the 
power dissipated at the dashpot can be converted, for 
example, in heat. Obviously, the efficiency of this 
conversion must be taken into account in the design of a 
particular device for energy harvesting from flow-induced 
vibrations. 

Figs. 7 and 8 present, respectively, the time-averaged 

nondimensional powers 1  and 2  (see Eqs. (9) and (10)) 

as functions of reduced velocity. Firstly, we analyze the 

variation of the power dissipated at the dashpot 1 . As can 

be seen in Fig. 7, there is no significant difference between 

the no parametric excitation case and those with parametric 

excitation at n=1 and n=2. For all conditions simulated, 1
presents a monotonic and practically linear upward trend 
with Ur. 

As can be seen in Fig. 8, the variations of 2  with Ur are 

more complex and depend on the parametric excitation 
frequency. Considering firstly the case with no parametric 

excitation, 2  decreases with the reduced velocity up to 

Ur>15. Beyond this value, a practically constant value is 
reached. The condition with n=1 indicates an enhancing of 
the attained time-averaged electrical power harvested for 
practically the whole range of reduced velocities simulated. 

Notice also the presence of a local maximum at 14rU  . In 

fact, it is not surprising this local maximum since an 
increase in the standard-deviation of electric voltage was 
observed (see Fig. 3).  

 
Fig. 7  Time-averaged nondimensional harvested power at 

the dashpot, η1, as functions of reduced velocity 

 
Fig. 8  Time-averaged nondimensional harvested electrical 

power, η2, as functions of reduced velocity 
 
As expected, the results at n=2 reveal some aspects 

already observed in the nondimensional electric voltage. It 

can be noticed a slight enhancement in the values of 2  for 

reduced velocities lower than 5 when compared to the no 
parametric excitation case. At Ur=20 there is a jump in the 

plot, in agreement with the jump in stdv  observed in Fig. 3. 
In the intermediate interval 5<Ur<20 the extracted power is 
significantly smaller than under no parametric excitation. 

On the other hand, at n=1, the harvested electric power is 
larger than that in the pure galloping case within a wide 
range, 8<Ur<25, being significantly larger just after the 

jump at 14.rU   

Notice that there are some ranges of reduced velocity in 
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which parametric excitation enhances the energy harvested 
from galloping. Hence, it is interesting to plot the variations 

of 1( )n  and 2( )n  - the ratios between harvested powers 

at n with respect to the pure galloping case - as defined in 
Eqs. (11) and (12), as functions of Ur. 

Fig. 9 presents the variation of γ1 with Ur. It is clearly 
noticeable that at reduced velocities lower than 9, the 
parametric excitation at n=2 enhances the power dissipated at 
the dashpot. Such an augment is close to 30% at Ur =3.2 and 
is associated to the higher oscillation frequency (see Fig. 6). 
Notice also that this result agrees with the previous findings 
herein obtained, indicating that the parametric instability at 
n=2 dominates the galloping response for low values of 
reduced velocity. Still considering this parametric excitation 
frequency, the power dissipated at the dashpot is lower than 
that obtained for the pure galloping case, for Ur>9. 

On the other hand, at n=1 the power dissipated at the 
dashpot is enhanced by less than 10% in the range 
14<Ur<30. 

 
Fig. 9  Variation of γ1, ratio of harvested power at the 

dashpot with respect to that of pure galloping case, 
as functions of the reduced velocity 

 
Fig. 10  Variation of γ2, ratio of harvested electrical power 

with respect to that of pure galloping case, as 
functions of the reduced velocity 

 

Finally, Fig. 10 shows the variation of ߛଶ  with the 
reduced velocity. At n=2, there are two ranges of reduced 
velocity in which the parametric excitation enhances the 

harvested electrical power, namely 3.2 5rU   and

20 25rU  . In both intervals, the maximum enhancement 

is close to 20%. At n=1, Fig. 10 reveals an enhancement of 

the harvested electric power for 9 28rU  , with a 

significant maximum of 70% at 14rU  . 

Focus is now put on the variation of the prism oscillations 
and the harvested powers as continuous functions of n and

 . Such analysis is made considering a particular reduced 

velocity, namely =14rU . This value corresponds to the 

peak of 2  – see Fig. 10. 

(a) ystd 

(b) 1  

(c) 2  

Fig. 11  Amplitude maps of ystd ,   and 2  with n and 

 ; Ur=14 

 
Fig. 11 presents a continuous color map for the variations 

of stdy , 1  and 2  with respect to amplitude and 

frequency of the parametric excitation. These plots reveal an 
interesting aspect. Contrary to what would be expected, the 
parametric excitation at n=2 (principal Mathieu instability) 
is not the case leading to the largest amplification in either, 
oscillations and harvested power. Notice that iso-surfaces 
arise from 1.5n  , different from what is observed in the 
transition curves of the Strutt diagrams for the linear 
Mathieu equation, at n=2. This non-intuitive result certainly 
needs a more detailed investigation from the analytical 
point-of-view. This is left for further work.Before 
addressing the conclusions, it is important to emphasize that 
the motivation of this paper lies on the fact that slender 
offshore structures are subjected to parametric excitation 
caused by the vertical motions of floating units associated to 
surface waves. In those cases, the source of parametric 
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excitation is the environmental condition and, hence, 
provided by nature.  

A last aspect that should be pointed out is the character of 
the parametric excitation found in the offshore scenario. In 
this paper, focus is put on monochromatic sinusoidal 
time-varying stiffness. However, the motions of the floating 
units and, consequently, the geometric stiffness of slender 
structures attached to them, are multi-chromatic. In fact, 
multi-frequency parametric excitation is a very important 
matter in offshore engineering applications and should be 
studied further. 

4 Conclusions 

This paper addressed the piezoelectric energy harvesting 
from galloping phenomenon combined with parametric 
excitation. A reduced-order model was proposed in 
nondimensional form and numerically integrated in time. 
Particularly, two parametric excitation frequencies were 
studied, n=1 and n=2, being n the ratio between the 
excitation frequency and the natural frequency of the 
structure under no piezoelectric coupling. 

It was found that the parametric excitation modifies both 
the structural oscillations and the electric voltage obtained at 
the load resistance. For reduced velocities higher than14, 
parametric excitation at n=1 increased both structural 
oscillations and electric voltage when compared to the pure 
galloping problem. For low values of reduced velocity, 
parametric excitation at n=2 leads to larger oscillations and 
electric voltage. This latter aspect indicates that the principal 
parametric instability (i.e., that obtained with n=2) 
dominates galloping for low reduced velocities. 

Parametric excitation also affects the power dissipated at 
both the dashpot and the electric resistance. For low values 
of reduced velocity, parametric excitation at n=2 increases 
the harvested power when compared to the pure galloping 
case. On the other hand, parametric excitation at n=1 leads 
to a marked increase in the electrical harvested power. 
Particularly, there is a maximum enhancement of harvested 
electrical power, close to 70%, at n=1 and reduced velocity 
close to14. 

A more extensive study regarding the influence of the 
different parameters that govern the dynamics of the 
electric-fluid-mechanic system on energy harvesting is 
under way. Further work may include a deeper investigation 
on the dynamics of a body subjected to concomitant 
galloping and parametric excitation, including 
Computational Fluid Dynamics simulations and 
experimental investigations. Analytical investigations on the 
equations of motion may also reveal interesting insights on 
the dynamics of the electro-fluid-mechanic system. 
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Nomenclature 

ms Structural mass  
ma Added mass 

D, L Square side and prism length, respectively 
k(t), c Stiffness and damping constant of the support

CD Drag coefficient 
Y, V Dimensional prism displacement and electrical 

voltage, respectively 
Δk, Ω Parametric excitation amplitude and frequency, 

respectively 
Cp, R, θ Capacitance, resistance and electromechanical 

coupling term of the piezoelectric circuit, 
respectively 

t, τ Time and its dimensionless form ࢁஶ Free-stream velocity 
PD, Pel Dimensional power dissipated at the dashpot 

and at the piezoelectric circuit 
y, v Dimensionless prism displacement and 

electrical voltage, respectively 
m*, Ca Mass ratio parameter and added mass 

coefficient, respectively 
ζs Structural damping ratio 
δ, n Dimensionless amplitude and frequency ratio 

of the parametric excitation, respectively 
a1, a2, a3, σ1 Dimensionless parameters of the mathematical 

model 
η1, η2 Dimensionnless power dissipated at the 

dashpot and at the piezoelectric circuit, 
respectively 
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Appendix  

An investigation on the dependence of CD  
This appendix presents a discussion on the effects of the 

mean drag coefficient on the oscillations amplitude obtained 
under combined galloping and parametric excitation. Three 
values of drag coefficients were simulated, being one of 
them that used in the above simulations; one higher and 
another below this value. 

Fig. A1 presents the standard-deviation of the prism 
displacements as a function of the reduced velocity for 
different drag coefficients considering parametric excitation 
at n=1. One clearly notices that there is no significant 
difference in the curves obtained for the three values of CD. 
As expected, the larger the drag coefficient, the smaller the 
standard-deviation of the structural oscillations. 

 
Fig. A1  Standard-deviation of y( )  as functions of reduced 

velocity for different drag coefficients at n=1 
 

The variation of ystd with the reduced velocity at n=2 is 
presented in Fig. A2. There is almost no difference between 
the results obtained with CD=1.2 and 2.05. Close to Ur=20 at 
which the jump in the curve is observed, the differences 
between the case CD=5.0 and the other values simulated are 
more pronounced. 

 
Fig. A2  Standard-deviation of y( )  as functions of reduced 

velocity for different drag coefficients at n=2 

 


