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Abstract: In this study, we examine the hydrodynamic 
characteristics of three rows of vertical slotted wall breakwaters in 
which the front and middle walls are permeable and partially 
immersed in a water channel of constant depth, whereas the third 
wall is impermeable. The wave–structure interaction and flow 
behavior of this type of breakwater arrangement are complicated 
and must be analyzed before breakwaters can be appropriately 
designed. To study the hydrodynamic breakwater performance, we 
developed a mathematical model based on the eigenfunction 
expansion method and a least squares technique for predicting wave 
interaction with three rows of vertical slotted wall breakwaters. We 
theoretically examined the wave transmission, reflection, energy 
loss, wave runup, and wave force under normal regular waves. 
Comparisons with experimental measurements show that the 
mathematical model results adequately reproduce most of the 
important features. The results of this investigation provide a better 
understanding of the hydrodynamic performance of triple-row 
vertical slotted wall breakwaters. 
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1 Introduction1 

Coastal protection structures can reduce coastal risks and 
economic losses by decreasing shoreline destruction, wave 
damage, and submergence. The improvement and use of 
coastal regions play a significant role in the national economy 
of many countries and these regions attract much human 
activity. Major concerns associated with these regions include 
the protection of the coastal area, harbors, and marinas by the 
use of the methods that have the fewest negative side effects 
on adjacent and neighboring shores, are environmentally 
friendly, and are as inexpensive as possible. 

Recently, permeable breakwaters have been recommended 
for overcoming the weaknesses of fully protected breakwaters. 
These protective structures have only minor impacts on the 
coastal environment and neighboring beaches and provide 
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more economical protection from waves and currents. 
The many types of coastal protection approaches include 

artificial beaches, nourishment, breakwaters, jetties, seawalls, 
artificial headlands, and groins. Breakwaters are commonly 
used along shorelines, channel entrances, beaches, harbors, 
and marinas. The main function of a breakwater is to provide 
shore protection by controlling the allowable wave height and 
current velocity transmitted along the coast and inside harbors. 
Breakwaters are classified according to their degree of 
protection provided: either full or partial. Full-protection 
breakwaters are commonly used and are known as 
conventional breakwaters, although they have inherent 
drawbacks, including their massive size, associated 
environmental harm and excessive reflections, and being 
uneconomical in deeper water. Partial protection, or 
nonconventional, breakwaters, on the other hand, have been 
used more recently to overcome the limitations of 
conventional breakwaters (Tsinker, 1995). 

The functional performance of the slotted breakwater is 
calculated by investigating wave reflection and transmission 
through the breakwater. Physical hydraulic tests have been 
conducted and many mathematical models developed to 
analyze wave scattering by vertical slotted breakwaters 
(Kriebel, 1992; Isaacson et al., 1998; Isaacson et al., 1999; 
Isaacson et al., 2000; Yong Liu and Yu-cheng Li, 2011; 
Elchahal et al., 2013; Koraim et al., 2014).  

This study provides key information for understanding the 
hydraulic performance of the proposed breakwater, 
comprising three rows of vertical slotteyd walls, in which the 
front and middle walls are permeable and partially immersed 
in a water channel of constant depth, and the third wall is 
impermeable. Once the permissible transmission range for a 
protected area is determined, obtaining information about the 
wave transmission characteristics becomes critical for the 
selection of the appropriate configuration for the prevailing 
wave climate. 

To meet our overall project goal, we specify the following 
two objectives: 

1) Develop a theoretical solution using the eigenfunction 
expansion method and a least squares technique to estimate 
the wave transmission, reflection, and energy-loss 
characteristics of the three rows of vertical slotted wall 
breakwaters under regular wave conditions.  
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2) Experimentally investigate these same characteristics for 
different wave climates and structural configurations.  

Below, we summarize the methodology we used to achieve 
our theoretical and experimental project goals. 

In section 3.1, we state our theoretical formulation and 
assumptions with respect to the boundary value problem of 
the interaction of water waves with the proposed breakwater 
structure. In subsection 3.1.1, we develop our mathematical 
formulation with respect to the boundary value problem. We 
divide the full domain into four regions according to each 
structural partition. In subsection 3.1.2, we generate an 
analytical solution using the eigenfunction expansion 
technique to obtain the velocity potential of each region. Then, 
we implement a least squares approach to compute the 
unknown expansion coefficients of the velocity potentials. 
Consequently, we obtain the reflection and transmission 
coefficients and the wave forces acting on the walls.  

To examine the hydrodynamic performance of three rows of 
the vertical slotted wall breakwater, it was necessary to design, 
build, and conduct a series of experiments in a wave flume. The 
wave flume dimensions were 15 m in length, 0.30 m in width, 
and 0.45 m in depth. We installed a flap-type wave generator 
with a computer at one end of the flume to generate regular 
waves of different heights and frequencies. At the other end, 
we installed a wave absorber in the form of a porous beach. 
Further details are provided in section 3.2. 

To examine the effectiveness of the proposed model, we 
used numerical examples. We then compared our theoretical 
predictions of the hydrodynamic, reflection, transmission, and 
energy-loss coefficients with those achieved numerically in 
other studies and with our own experimental research.  

The authors of numerous studies have proposed 
configurations for slotted breakwaters to improve their 
performance and to study their hydrodynamic behavior in 
reducing incident waves. Much attention has been given to the 
development of different geometric shapes, along with efforts 
to understand the physical action of breakwaters by various 
numerical models. 

Isaacson et al. (1998) presented the outlines of their 
numerical wave interaction calculations for a thin vertical 
slotted barrier extending from the water surface to some 
distance above the seabed, and described laboratory tests 
undertaken to assess their numerical model results. 
Comparisons of these model results with experimental 
measurements of the transmission, reflection, and energy-loss 
coefficients for a partially submerged slotted barrier showed 
good agreement provided certain empirical model coefficients 
had been suitably chosen. The authors’ results showed the 
capability of the numerical model to account effectively for 
the energy dissipation by the barrier.  

Isaacson et al. (1999) also presented numerical solutions 
for wave interactions with a pair of thin vertical slotted 
barriers. Their numerical method is based on the 
eigenfunction expansion method and uses a boundary 
condition at the surface of each barrier, which accounts for 
energy dissipation within the barrier. 

Isaacson et al. (2000) then presented a theoretical analysis 
and an associated numerical model for assessing the 
performance of a breakwater consisting of a perforated front 
wall and an impermeable back wall. The authors based their 
numerical model on the eigenfunction expansion method and 
utilized a boundary condition at the perforated wall to account 
for energy dissipation. They validated the numerical model by 
comparing its results with those from previous numerical 
studies of limiting cases of a permeable seawall and of a 
perforated breakwater with an impermeable back wall. The 
relevant numerical results related to the reflection coefficient, 
the wave runup, and the wave force. The authors discussed 
the effects of porosity, breakwater geometry, and relative 
wavelength and described the choice of suitable required 
parameters to model the permeability of the breakwater.  

Sahoo et al. (2000) studied the reflection coefficient of a 
single perforated wall structure. This study showed the 
reflection coefficient to be principally determined by the 
front-wall porosity and the ratio of the wave chamber width to 
the incident wavelength.  

Zhu and Chwang (2001) presented research indicating that 
the hydraulic characteristics of a slotted breakwater depend 
mainly on the porosity—the variable describing the structure’s 
permeability.  

Suh et al. (2001) developed analytical models based on 
potential flow for predicting wave reflection from a 
perforated-wall caisson breakwater. Laboratory experiments 
were also conducted with respect to irregular waves of various 
significant wave heights and chamber widths. The authors 
concluded that the reflected wave spectrum exhibits 
frequency-dependent oscillatory behavior.  

Brossard et al. (2003) conducted experimental studies on 
the hydrodynamic characteristics of partially immersed 
wave-absorbing breakwaters. 

Suh et al. (2006, 2007) described the hydrodynamic 
characteristics of pile-supported vertical wall breakwaters 
with circular and square piles under regular and random wave 
conditions. The authors used the eigenfunction expansion 
method for the analysis and estimated the reflection, 
transmission, runup, and wave forces acting on the breakwater. 
They then extended this method to random waves. 

Rageh et al. (2009) used physical models to study the 
efficiency of a breakwater consisting of caissons supported on 
two or three rows of piles. This efficiency was described as a 
function of wave transmission and reflection and wave energy 
dissipation coefficients. 

Rageh and Koraim (2010) experimentally and theoretically 
studied the hydrodynamic performance of a vertical wall with 
a permeable lower part under normal regular waves. The 
authors developed a theoretical model based on the 
eigenfunction expansion method and the least squares 
technique. 

A mathematical model developed by Ji and Suh (2010) 
computed various hydrodynamic characteristics of a multiple- 
row curtainwall-pile breakwater. The authors proved that the 
transmission coefficient decreases with an increase in relative 
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water depth, whereas the reflection coefficient, runup, and 
force exhibit the opposite trend. 

Koraim (2011) theoretically and experimentally 
investigated the wave transmission, reflection, and energy 
dissipation of the double vertical wall breakwater with a 
permeable lower part with horizontal slots and one row with 
vertical slots under normal regular waves. The author 
developed a simple theoretical model based on an 
eigenfunction and found the transmission coefficient to 
decrease with increasing values of a dimensionless wave 
number, increasing wave steepness, and decreasing 
breakwater porosity. He concluded that the theoretical model 
can be used to predict the performance of slotted breakwaters 
and the hydrodynamic forces exerted on these structures. 

Ahmed et al. (2011) and Ahmed and Schlenkhoff (2014) 
developed a numerical model based on the eigenfunction 
expansion method for regular linear wave interactions with 
single and double vertical slotted walls and nonlinear, Stokes 
second-order wave interactions with a single vertical slotted 
wall. The authors validated the numerical model by 
comparing its results with those of previous studies and their 
own experimental results. They found f and the coefficient of 
porosity ε to have significant influence on the reflection CR, 
transmission CT, and energy losses CL of the permeable 
breakwaters, whereas the influence of the added mass 
coefficient Cm is minimal and can be omitted for this 
configuration.  

Koraim (2011) theoretically and experimentally studied the 
wave reflection, transmission, and energy dissipation of a 
double vertical wall with a permeable lower part under 
normal regular waves. The authors investigated the effect of 
different wave and structural parameters on hydrodynamic 
characteristics including the wave length, upper-part drafts, 
porosities, and the space between the double walls. 

Liu and Li (2011) examined the hydrodynamic 
performance of a wave-absorbing double curtain-wall 
breakwater consisting of a seaward perforated wall and a 
shoreward impermeable wall. The authors calculated the 
reflection coefficient, transmission coefficient, and wave 
forces acting on the walls and found the obtained numerical 
results for limiting cases to agree very well with previous 
predictions for single and double partially immersed 
impermeable walls.  

Elchahal et al. (2013) developed algorithms to determine 
the optimal shape and location of detached breakwaters in 
ports subject to wave disturbance and navigational constraints. 
Furthermore, three-dimensional Navier–Stokes equation-type 
numerical models have been used to study the interaction of 
water waves with impermeable structures (Ha et al., 2013; 
Higuera et al., 2013a). 

Koraim et al. (2014) experimentally and theoretically 
studied the wave transmission, reflection, and energy 
dissipation of double rows of vertical piles suspending 
horizontal steel C-shaped bars under normal regular waves. 
The authors investigated different wave and structural 
parameters, e.g., the wave length, the C-shaped bars draft and 

spacing, the supporting piles diameter and spacing, and the 
space between the double rows. Also, they developed a 
theoretical model based on the eigenfunction expansion 
method and a least squares approach to study the 
hydrodynamic breakwater performance. 

Liu et al. (2014) analytically and experimentally studied the 
wave motion over a submerged Jarlan-type breakwater 
comprising a solid rear wall and a perforated front wall. The 
authors generated an explanatory result utilizing matched 
eigenfunction expansions. The calculated results showed the 
submerged Jarlan-type perforated breakwater to have lower 
wave forces and better wave-absorbing performance. For 
engineering designs, they found the ideal porosity values for 
the front wall, the relative immersed depth of the breakwater, 
and the relative chamber width between the front and rear 
walls to be 0.1-0.2, 0.1-0.2, and 0.3-0.4, respectively. 

Liu et al. (2016) analyzed the oblique wave interaction of 
perforated caisson breakwaters with perforated partition walls 
by deriving solutions for some special existing breakwater 
cases. They also validated their analytical results by 
comparing them with their experimental data, including 
reflection coefficients, wave forces, and surface amplitudes.  

Vílchez et al. (2016) numerically calculated hydraulic 
performance for wave–breakwater interaction. The authors 
generated a characteristic friction diagram to evaluate the 
friction in a porous medium for different breakwater types. 
The results showed one friction coefficient to be sufficient for 
accurately calculating the friction forces. The numerical 
computations provided optimal reflection and transmission 
coefficients. 

Xiao et al. (2016) investigated wave attenuation, wave 
runup, motion response, and mooring force. The authors 
found these four aspects to increase significantly with 
decreasing porosity of the breakwater. In addition, they found 
wave attenuation and wave runup to be frequency-dependent 
with multiple peaks and incident wave amplitude to 
significantly affect the energy dissipation of short waves.  

Ji et al. (2016) proposed four types of floating breakwaters 
and found the mesh cage to be the best type for wave 
attenuation, the motion responses and mooring forces of the 
porous type to be the smallest, and the porous structure based 
on a mesh cage to be most promising. 

Gayen and Mondal (2016) investigated the wave 
interaction associated with two symmetric inclined porous 
plates and computed the physical quantities using the 
solutions of two hypersingular integral equations of the 
second kind. The authors also numerically estimated the 
reflection and transmission coefficients, amplitudes of the 
hydrodynamic forces and moments, and the wave dissipation 
coefficient. 

Elbisy et al. (2016) studied the hydrodynamic performance 
of multiple-row vertical slotted breakwaters and constructed a 
mathematical technique based on the eigenfunction and least 
squares methods. The authors compared their results with 
their experimental data regarding the reflection, transmission, 
and dissipation coefficients as a function of k0h. They found 
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the mathematical model to satisfy most of the important 
features in double- and triple-row breakwaters. 

2 Research methodology 

2.1 Theoretical formulation and assumptions 
2.1.1 Mathematical formulation 

Let us consider the triple-row vertical slotted wall 
breakwater diagrammed in Fig. 1, in which the front and 
middle walls are permeable and partially immersed in a 
water channel of constant depth h, whereas the third wall is 
impermeable. In the figure, the draft of the breakwater d is 
constant and  is the thickness of the wall. The chamber 
width (the separation between the front and rear walls) is B 
(Fig. 1). The perforated breakwater is subject to normally 
incident regular waves of height H and wave length L. We 
define a Cartesian coordinate system (x and z) with the 
positive x directed from left to right from a point on the first 
wall and the vertical coordinate z measured vertically 
upward from the water line. 

 

 
 
Fig. 1  Schematic and definitions of triple vertical slotted 

wall breakwater 
 
The water wave problem has a free surface boundary that 

moves with the water particle velocity. This velocity is one 
of the unknown variables. Therefore, prior to computation, 
the position of the free surface boundary is also an unknown 
variable. The fluid domain is divided into four regions by 
the three walls. Assuming an incompressible fluid and 
irrotational flow motion, a velocity potential exists that 
satisfies the Laplace equation. For monochromatic incident 
waves with angular frequency  and time t, we obtain the 
following boundary value problem for the velocity potential 
(x, z, t) in each region: 

   i( , , ) Re , e tx z t x z      (1) 

where Re[ ] denotes the real part of the argument, denotes 

the spatial velocity potential, and i 1  . Assuming an 
incompressible fluid and irrotational flow motion, the 
velocity potential satisfies the Laplace equation. We obtain 
the following boundary value problem for the spatial 
velocity in each region: 

 
2 2

2 2
0, for 1,2,3,4j j j

x z

  
  

 
 (2) 

where the subscript j represents variables in the region j. 
These potentials must also satisfy appropriate boundary 
conditions on the free surface, as follows: 
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where k0 is the incident wave number, g is the gravitational 
acceleration, and R  is the velocity potential of the 

reflected waves. Moreover, we obtain the reduced velocity 
potentials   using the eigenfunction expansion method 

used by Isaacson et al. (1998) and Suh et al. (2006). We 
express the velocity potentials in a series of infinite 
solutions. The solutions to Eq. (2) that satisfy the boundary 
conditions of Eqs. (3)–(6), are given by the following: 
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where nR , nA , nB , nC , nD , and 
nT  (n = 0, 1, 2, …) 

are the coefficients of the component waves propagating 
forward and backward, respectively. The wave numbers 

, 1,2,...nn nk    are solutions to the first-order 

dispersion relation, 2 tan( )n ng k k h    (Chakrabarti, 

1987; Sarpkaya et al., 1982), which have an infinite discrete 
set of real roots nk  for ( 1n  ) for non-propagating 

evanescent waves and a pair of imaginary roots 0 0ik    

for propagating waves. Here we take the negative sign so 
that the propagating waves in Eqs. (7)–(10) correspond to 
the reflected and transmitted waves, respectively. We also 
take the positive roots of 1n   so that the non-propagating 
waves vanish exponentially with distance from the wall. In 
Eqs. (7)–(10), the depth-dependent functions Zn(z) (n = 0, 1, 
2, …) are given by the following: 
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Equations (7)–(10) satisfy all the relevant boundaries and 
automatically satisfy the requirement that the horizontal 
velocities be matched at the breakwater. Therefore, the 
velocity potentials must satisfy the following boundary 
conditions at the interfaces of the breakwater, as follows: 
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Following Chwang (1983) and Yu (1995), we express G  
as follows: 
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where ‘G’ is the permeability parameter of a thin perforated 

wall, which is generally complex, and   is the argument 
of the complex G. We note that when waves pass through a 
thin perforated wall, both a wave energy dissipation and a 
phase shift in the wave motion may occur. The energy 
dissipation due to the resistance effect of the wall is relevant 
to the real part of G. However, the phase shift due to the 
inertial effect of the wall is relevant to the imaginary part of 
G. When G  equals zero, the perforated wall reduces to an 

impermeable wall, whereas when G  tends toward infinity, 

the wall becomes entirely transparent.  is the wall thickness 
and f is the friction coefficient. We denote the distance 
between the centers of two adjacent legs as 2 and the width 
of the opening between the legs as 2. We denote the 
porosity of the perforated part of the wall as  =/ and 
the inertia coefficient as s, as given by the following: 
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where Cm represents the added mass coefficient, which is 
treated as a constant. In this study, f = 2.0 and we treated Cm 
as a constant (Cm = 0), as suggested by Isaacson et al. 

(1998).  

2.1.2 Analytic solution 
The expressions for , 1, 2, 3, 4j j   satisfy the seabed, 

free surface, and convection conditions, as well as the above 
mentioned boundary conditions for x = xi. For convenience, 
we reduce these matching boundary conditions in Eqs. (12) - 
(20) as follows: 
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Substituting the expressions for the velocity potentials in 
Eqs. (7) and (8) into the boundary condition shown in Eq. 
(23) yields the following: 
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Substituting Eqs. (7) and (8) into the boundary condition 
shown in Eqs. (24) and (25), with the aid of Eqs. (32) and 
(33), yields the following: 
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Also, substituting Eqs. (8) and (9) into the boundary 
condition shown in Eq. (26) yields the following: 
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Substituting Eqs. (8) and (9) into the boundary condition 
shown in Eqs. (27) and (28), with the aid of Eq. (36), yields 
the following: 
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Finally, substituting Eqs. (9) and (10) into the boundary 
condition shown in Eq. (29) yields the following: 

 ( )e 0, 0,1,2,...n b a
n n nB D T n       (39) 

Substituting Eqs. (9) and (10) into the boundary condition 
shown in Eqs. (30) and (31) yields the following: 
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Equations (34), (35), (36), (37), (38), (40), and (41) are 
known as series relations, as described by Dalrymple and 
Martin (1990), and are solved for the values of the 
coefficients by the least squares method. Every condition 
specifies the potential along the z-axis such that the function 
S(z) denotes the boundary condition of the wall as follows: 
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 2.1.3 Least squares technique 
The least squares technique, as suggested by Dalrymple 

and Martin (1990), may be used to determine the six 
coefficients, and requires that: 
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 Minimizing these integrals with respect to each 
coefficient, for example mA , leads to the following: 
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where *(z)S is the complex conjugate of (z)S . Then, 

integrating with respect to z in Eq. (50) and truncating after 
N terms yields the following set of linear equations: 
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where 
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2.1.4 Calculation of the reflection, transmission, energy-loss 
coefficients, and wave forces 

We can obtain the unknown coefficients *
nA , *

nB , *
nC , 

and *
nD  by solving the linear Eqs. (51)–(54). Subsequently, 

we determine all the unknown expansion coefficients in the 
velocity potentials. We note that the first part at the 
right-hand side of Eq. (7) denotes incident waves 
propagating in the positive x-direction, the second part 
denotes reflected waves from the break water, and the third 
part denotes a series of evanescent modes decaying in the 
negative x-direction. In addition, the first part at the 
right-hand of Eq. (10) denotes transmitted waves 
propagating in the positive x-direction and the second part 
denotes a series of evanescent modes decaying in the 
positive x-direction. Once the wave potentials are calculated, 
we can obtain various engineering wave properties. We 
define the real reflection coefficient CR as the ratio of the 
reflected wave height to the incident wave height as follows: 

 0RC R  (67) 

We define the real transmission coefficients CT as the 
ratio of the transmitted wave height to the incident wave 
height, as follows: 

 0TC T  (68) 

We can calculate the energy-loss coefficient CL as 
follows: 

 2 21L R TC C C    (69) 

and when G  tends toward infinity or equals zero, this 

energy-loss coefficient is zero.  
We can obtain the wave force acting on each wall by 

integrating the dynamic pressure along the structure. The 
magnitude of the horizontal wave force on the unit width of 
the front wall Ff is as follows: 
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The magnitude of the horizontal wave force on the unit 
width of the rear wall Fr is as follows: 
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We define the dimensionless wave forces CFf and CFr on 
the front and rear walls as follows:  

 f
Ff

F
C

gHh
  (74) 

 r
Fr

F
C

gHh
  (75) 

2.2 Experimental setup and measurements  
We conducted the experiments in the hydraulics 

laboratory wave flume of the Civil Engineering Department 
at Umm Al-Qura University, Saudi Arabia. The proposed 
breakwater contained a partially immersed vertical wall 
close to the free surface. In hydraulic model tests of sea 
waves, typically, the viscosity and surface tension of water 
do not play a significant controlling role, and the inertia and 
gravity forces are considered to be the predominant 
governing forces.  

In this series of experiments in the wave flume, we 
examined the hydrodynamic wave absorption performance 
of three rows of vertical slotted wall breakwaters. The wave 
flume dimensions, as shown in Fig. 2, were 15 m in length, 
0.30 m in width, and 0.45 m in depth. We installed a 
flap-type wave generator at one end of the flume to generate 
regular waves of different heights and frequencies, and a 
wave absorber at the other end in the form of a porous beach. 
We conducted the experiments at a constant water depth (h) 
of 30 cm and generated regular waves with different wave 
periods (T = 0.5 to 2 s). During the experiments, we used 
various curtain-wall arrangements, spaces between rows, 
and porosities. We placed the first vertical wall to be tested 
at the middle of the wave flume, fixed the space between the 
first and third walls as 3 1 2x x h  , and varied the 

location of the second wall such that Δx1 was 0.5h, 1.0h, and 
1.5h. 
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Fig. 2  Schematics diagram of the experimental setup 
 
We constructed the vertical panels of the proposed 

breakwater models with a width of 0.025 m and thickness of 
0.025 m. We fixed the porosity of the slotted walls at 

0.5   and fabricated the models from aluminum. 
For testing purposes, we measured the water surface with 

four wave probes, three of which we kept at a distance of 
about the longest wave length from the front of the model to 
the second wall. We adjusted the spacing between the first 
three probes for each wave period to calculate the reflection 
coefficient according to the three-probe method of Mansard 
and Funke (1980). We used three wave probes to reduce the 
amplitude and phase measurement errors (Mansard and 
Funke, 1980). We measured wave transmission with the 
wave probe at the rear side of the model at a distance of 2.0 
m from the model. 

To measure the coefficients of reflection (CR), 
transmission (CT), and dimensionless runup (Ru/H), where 
Ru is the runup height and H is the wave height, we used five 
different wave periods (T = 0.50, 0.57, 0.67, 0.80, 1.00 s). 
Table 1 shows the measured incident wave heights, the 
reflection and transmission coefficients, and the runup on 
the first wall of the triple vertical slotted wall breakwater. 

3 Results and discussion  

We computed the numerical results for the triple vertical 
slotted wall breakwater and compared these with our 
experimental results with respect to regular waves, a fixed 
water depth h, and a constant porosity  for the permeable 
part. We varied the spacing of the second wall with respect 
to the first and third walls in the experiments. We present 
and discuss the results below. 

We determined the wave interactions for the triple vertical 
slotted wall breakwater by its reflection, transmission, and 
energy-loss characteristics. We quantified the energy of the 
reflected waves from the first permeable wall in terms of its 
reflection coefficient CR, which we defined as the ratio of 
the reflected wave height to the incident wave height. A CR 
value of one corresponds to total reflection and zero 
corresponds to either total wave transmission or total wave 
absorption. We quantified the energy of the waves 
transmitted through the breakwater in terms of the 
transmission coefficient CT. The energy loss through the 
permeable part corresponds to the difference in the energy of 
the incident wave and the sum of the energy of the reflected 

and transmitted waves. We express the energy-loss 
coefficient CL as follows: 

 2 21L R TC C C    (76) 

We express the wave runup on the upwave side of the first 
row of the breakwater as follows: 
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3.1 Comparisons with Porter and Evans (1995) 
To validated our proposed mathematical model, we 

compared its results for limiting cases with the results of 
Porter and Evans (1995). Figure 3 shows the transmission 
and reflection coefficients for a triple vertical slotted wall 
breakwater as a function of dk0 (Fig. 3). When |G| tends to 
infinity, the front and second walls vanish so the three walls 
reduce to a single impermeable wall, as shown in Fig. 3 by 
Porter and Evans (1995). We can see from this figure that 
the agreements are acceptable between the results of our 
study and those of Porter and Evans (1995) at k0h=1.5, 
d/h=0.5, and |G| = infinity. 

 

 
Fig. 3  Comparison of our study results with those of 

Porter and Evans (1995) for G=∞, k0h=1.5, 
d/h=0.5 

3.2 Comparisons with predicted and measured data of 
Isaacson et al. (1998) 

Next, we validated our mathematical model by comparing 
its results with the predicted and measured results of 
Isaacson et al. (1998) with porosity = 0, such that the 
Isaacson et al. (1998) model becomes a single impermeable 
wall. Figure 4 shows a plot of the predicted and measured 
data of Isaacson et al. (1998) for the reflection coefficient 
CR and transmission coefficient CT, respectively, and those 
of our study model. In this figure, we plotted CR and CT as a 
function of dk0, and we can see that the results obtained by 
our model agree approximately with the predicted and 
measured results of Isaacson et al. (1998). 
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Fig. 4  Comparison of our study results with the 

predicted and measured results of Isaacson 
(1998) for G = ∞, k0h = 1.5, d/h = 0.5 

 

 

Fig. 5  Comparison of our study results and the 
experimental data for G = ∞, k0h = 1.5, d/h = 0.5 

 

 
(a) d/h = 0 

 

 
(b) d/h = 1.0 

Fig. 6  Effects of d/h on CR and CT: k0h = 1.6, G = 0.5 e0i, 
x1 = 0.5d, and x2 = 0.5d 

 

 
 

(a) G = 0.5e0i 

 
(b) G = ∞ 

Fig. 7  Effects of |G| on CR and CT: k0h = 1.6, d/h = 0.5, 
and x1 = 0.5d; x2 = 0.5d 

 

 
(a) x1 = 0.5d, x2 = 1.5d 

 

 
(b) x1 = 1.5d, x2 = 0.5d 

Fig. 8  Effects of changes in the row spacing on CR and CT 
at G = 0.5 e0i: k0h = 1.6, d/h = 0 
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Table 1  Some experimental results for triple vertical 

slotted wall breakwaters 

1x

d


 2x

d


 

d

h
 T/s H/cm CR CT

uR

H
0.0 2.0 0.25 0.50 0.010 0.89 0.02 0.98

0.0 2.0 0.25 0.57 0.015 0.81 0.08 0.79

0.0 2.0 0.25 0.67 0.020 0.73 0.16 0.69

0.0 2.0 0.25 0.80 0.025 0.64 0.24 0.62

0.0 2.0 0.25 1.00 0.030 0.56 0.34 0.61

0.5 1.5 0.25 0.50 0.013 0.87 0.04 0.97

0.5 1.5 0.25 0.57 0.017 0.76 0.12 0.74

0.5 1.5 0.25 0.67 0.022 0.66 0.23 0.62

0.5 1.5 0.25 0.80 0.026 0.61 0.33 0.59

0.5 1.5 0.25 1.00 0.033 0.49 0.39 0.57

1.0 1.0 0.25 0.50 0.012 0.88 0.03 0.98

1.0 1.0 0.25 0.57 0.016 0.79 0.09 0.78

1.0 1.0 0.25 0.67 0.021 0.68 0.18 0.67

1.0 1.0 0.25 0.80 0.027 0.63 0.27 0.61

1.0 1.0 0.25 1.00 0.031 0.52 0.36 0.59

0.0 2.0 0.50 0.50 0.009 0.91 0.02 0.97

0.0 2.0 0.50 0.57 0.014 0.83 0.07 0.77

0.0 2.0 0.50 0.67 0.019 0.75 0.14 0.68

0.0 2.0 0.50 0.80 0.023 0.65 0.22 0.60

0.0 2.0 0.50 1.00 0.029 0.57 0.31 0.59

0.5 1.5 0.50 0.50 0.012 0.89 0.03 0.96

0.5 1.5 0.50 0.57 0.015 0.78 0.11 0.73

0.5 1.5 0.50 0.67 0.021 0.67 0.21 0.61

0.5 1.5 0.50 0.80 0.025 0.63 0.30 0.58

0.5 1.5 0.50 1.00 0.032 0.52 0.37 0.56

1.0 1.0 0.50 0.50 0.011 0.90 0.02 0.97

1.0 1.0 0.50 0.57 0.015 0.81 0.08 0.76

1.0 1.0 0.50 0.67 0.020 0.69 0.16 0.66

1.0 1.0 0.50 0.80 0.024 0.65 0.25 0.59

1.0 1.0 0.50 1.00 0.030 0.54 0.34 0.58

0.0 2.0 0.75 0.50 0.008 0.93 0.02 0.96

0.0 2.0 0.75 0.57 0.013 0.84 0.06 0.76

0.0 2.0 0.75 0.67 0.018 0.76 0.13 0.68

0.0 2.0 0.75 0.80 0.022 0.67 0.21 0.59

0.0 2.0 0.75 1.00 0.028 0.59 0.31 0.58

0.5 1.5 0.75 0.50 0.011 0.90 0.03 0.96

0.5 1.5 0.75 0.57 0.014 0.79 0.09 0.72

0.5 1.5 0.75 0.67 0.020 0.69 0.21 0.60

0.5 1.5 0.75 0.80 0.024 0.64 0.29 0.57

0.5 1.5 0.75 1.00 0.031 0.52 0.36 0.55

1.0 1.0 0.75 0.50 0.010 0.91 0.03 0.95

1.0 1.0 0.75 0.57 0.014 0.82 0.08 0.75

1.0 1.0 0.75 0.67 0.019 0.71 0.15 0.64

1.0 1.0 0.75 0.80 0.023 0.66 0.24 0.58

1.0 1.0 0.75 1.00 0.029 0.55 0.32 0.57

 

 
(a) x1 = 0.5d, x2 = 1.5d 

 

 
(b) x1 = 1.5d, x2 = 0.5d 

Fig. 9  Effects of changes in the row spacing on CR and CT 
at G = 1.0 e0i: k0h = 1.6, d/h = 0.5 

3.3 Comparison with experimental data 
We also validated our proposed mathematical model by 

comparing its results for limiting cases with our 
experimental data at k0h = 1.5, d/h = 0.5, and |G| = infinity. 
Fig. 5 shows the transmission and reflection coefficients for 
a triple vertical slotted wall breakwater as a function of dk0. 
We can see from these figures that the agreements are 
acceptable between our model and the experimental data 
results. 

Fig. 6 shows the effects of the relative draft d/h of the 
breakwater as a function of the relative wave chamber width 
B/L on CR and CT at k0h = 1.6, with the energy dissipation G = 
0.5e0i the only real part, as given in the definition of Eq. (21) 
and x1 = 0.5d and x2 = 0.5d. In this figure, we derived the 
reflection and transmission coefficients from the proposed 
model and the experimental data, and plotted them as a 
function of the relative wave chamber width B/L. In general, 
the numerical solution satisfactorily reproduces the 
experimental data records. The reflection coefficient CR 
increases with increasing d/h for a fixed B/L. The transmission 
coefficient CT exhibits the opposite trend. We note that the 
model’s transmission coefficient is maximum at d/h = 0 and 
minimum when d/h=1, i.e., the reflection coefficient is 
maximum for a wall, whereas the transmission coefficient for 
the same case is CT = 0. It is obvious that the reflection and 
transmission coefficients are approximately zero and one, 
respectively, for d/h = 0. 
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(a) x1 = 0.5d, x2 = 1.5d 

 
(b) x1 = 1.5d, x2 = 0.5d 

Fig. 10  Effects of changes in the row spacing on CR and 
CT at G = 2.0e0i: k0h = 1.6, d/h = 0.5 

 

 
(a) x1 = 0.5d, x2 = 1.5d 

 
(b) x1 = 1.5d, x2 = 0.5d 

Fig. 11  Effects of changes in the row spacing on CR and 
CT at G =∞: k0h = 1.6, d/h = 0.5 

 

Fig. 7 shows the effects of |G| of the perforated walls as a 
function of the relative wave chamber width B/L on CR and CT 
at k0h = 1.6, d/h = 0.5, and G = |G|e0i. The results follow the 
expected trends, wherein the reflection coefficient CR 
decreases with increasing G, while the transmission 
coefficient CT increases with increasing G for a fixed B/L, and 
the energy-loss coefficient CL is nonzero. When |G| 
approaches infinity, the front and middle walls disappear and 
then the values of both CR and CT are constants for different 
values of B/L. We validated our numerical results for the triple 
vertical slotted wall breakwater by comparing them with the 
experimental data. As shown in Fig. 7, the numerical results 
of our study converge with the experimental data. 

Figure 8 shows the effects of changes in row spacing on CR 
and CT at G = 0.5e0i: k0h = 1.6, d/h = 0.5 for three different 
triple-row breakwater cases in which the structural parameters 
of the three rows are the same. We fixed the distance between 
the first and third rows at x = 2.0d and changed the location 
of the second row so that in Fig. 8a, x1 = 0.5d, x2 = 1.5d; 
and for Fig. 8b x1 = 1.5d, x2 = 0.5d. It is interesting that the 
calculated transmission coefficients decrease with increasing 
x1 for a fixed B/L, whereas the calculated reflection 
coefficients slowly increase with increasing x1. We obtained 
the same results in Fig. 9 at G = 1.0e0i, Fig. 10 at G = 2.0e0i, 
and Fig. 11 at G = ∞. When |G| approaches infinity in Fig. 11, 
the values of both CR and CT remain constant for different 
values of B/L. We obtained the same results in Fig. 9 at G = 
1.0e0i, Fig. 10 at G = 2.0e0i, and Fig. 11 at G = ∞. When |G| 
approaches infinity in Fig. 11, the values of both CR and CT 
remain constant for different values of B/L. 

Figs. 12–14 show the effects of changes in the row spacing 
on CR and CT at k0h = 0.4 for Fig. 12, k0h = 1.6 for Fig. 13, k0h 
= 2.2 in Fig. 14 when G = 0.2/(0.4/1*.02*(9-1i)) of Liu and Li 
(2011), d/h = 0.5 for (a) x1 = 0.5d, x2 = 1.5d, and (b) x1 = 
1.5d; x2 = 0.5d. We can see that the calculated transmission 
coefficients decrease with increasing x1 for a fixed B/L, 
whereas the calculated reflection coefficients slowly increase 
with increasing x1. The oscillation of the calculated 
transmission and reflection coefficients both increase with 
increasing k0h values. 

Figs. 15 and 16 show comparisons between the predicted 
hydrodynamic characteristics as a function of k0h for various 
distances between rows of the three walls. We fixed the 
distance between the first and third rows at x = 2.0d and 
changed the location of the second row so that x1 = 0.0d, x1 
= 0.5d, x1 = 1.0d, x1 = 1.5d, and x1 = 2.0d with G = 
0.2/(0.4/1*.02*(9-1i)) at d/h = 0.8 in Fig. 15, and d/h = 0.2 in 
Fig. 16. The dimensions of all rows were the same. We can 
see in Figs. 15 and 16 that CR increases with increasing k0h at 
a fixed d/h and increases with decreasing d/h at a fixed k0h, 
and that CT follows the opposite trend. We validated the 
numerical results for the triple vertical slotted wall breakwater 
by comparing its results with our experimental data and the 
figures show good agreement. 
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(a) x1 = 0.5d, x2 = 1.5d 

 
(b) x1 = 1.5d, x2 = 0.5d 

Fig. 12 Effects of changes in the row spacing on CR and CT 
at k0h = 0.4: G = 0.2/(0.4/1*.02*(9-1i)), d/h = 0.5 

 
(a) x1 = 0.5d, x2 = 1.5d 

 
(b) x1 = 1.5d, x2 = 0.5d 

Fig. 13  Effects of changes in the row spacing on CR and 
CT at k0h = 1.6: G = 0.2/(0.4/1*.02*(9-1i)), d/h = 
0.5 

 

 
(a) x1 = 0.5d, x2 = 1.5d 

 
(b) x1 = 1.5d, x2 = 0.5d 

Fig. 14  Effects of changes in the row spacing on CR and CT 
at k0h = 2.2: G = 0.2/(0.4/1*.02*(9-1i)), d/h = 0.5 

 
(a) Reflection coefficient CR 

 
(b) Transmission coefficient CR 

Fig. 15  Predicted hydrodynamic characteristics as a 
function of k0h for various distances between 
the rows of the triple-row walls with G = 
0.2/(0.4/1*.02*(9-1i)), at d/h = 0.8  
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a) Reflection coefficient CR 

 
(b) Transmission coefficient CR 

Fig. 16  Predicted hydrodynamic characteristics as a 
function of k0h for various distances between 
the rows of triple-row breakwaters with G = 
0.2/(0.4/1*.02*(9-1i)) at d/h = 0.2  

 

Fig. 17  Comparison of dimensionless wave force on the 
front wall in double-row and triple-row 
breakwaters as a function of k0h, with G = 
0.2/(0.4/1*.02*(9-1i)) and d/h = 0.5 

 

Fig. 17 shows a comparison of the dimensionless wave 
force on the front wall of double-row and triple-row 
breakwaters as a function of k0h, with G = 
0.2/(0.4/1*.02*(9-1i)) and d/h = 0.5. The wave force on the 
front wall of the triple-row is less than that on an equivalent 
double-row. As expected, Fig. 18 shows that the 
dimensionless wave force on the rear wall of the double-row 
and triple-row breakwaters are considerably smaller.  

Fig. 19 shows wave runup as a function of k0h, with G = 
0.2/(0.4/1*.02*(9-1i)) and d/h = 0.5 for a single-wall, 

double-row, and triple-row breakwater. The maximum wave 
runup occurs only at the first row of the breakwater, since the 
second and triple row values are generally smaller than those 
of the first row. 
 

 
Fig. 18  Comparison of the dimensionless wave force on 

rear wall of double-row and triple-row 
breakwaters as a function of k0h, with G = 
0.2/(0.4/1*.02*(9-1i)) and d/h = 0.5 

 

 

Fig. 19  Comparison of calculated runups for single-, 
double-, and triple-row breakwaters as a 
function of k0h, with G = 0.2/(0.4/1*.02*(9-1i)) 
and d/h = 0.5 

4 Conclusions 

In this paper, we proposed a mathematical model for 
evaluating the hydrodynamic performance of triple vertical 
slotted wall breakwaters. We developed an analytical 
method for calculating the hydrodynamic characteristics of 
triple vertical slotted wall breakwaters in which the front 
and middle walls are permeable and partially immersed in a 
water channel of constant depth and the third wall is 
impermeable. We based our approach on the eigenfunction 
expansion method and a least squares technique. To validate 
the correctness of the proposed method, we compared its 
numerical results with those from laboratory tests. 
Specifically, we compared the CR, CT, and CL coefficients 
for a partially submerged slotted barrier and found there to 
be good agreement between our numerical and experimental 
results, which indicates that the mathematical model can 
adequately reproduce most of the important features of the 
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experimental results.  
Our numerical solutions show that the reflection 

coefficient CR and transmission coefficient CT of the 
breakwater are generally dependent on the relative wave 
chamber width B/L, the relative draft d/h, the permeability 
parameter of the walls G, and the incident wave number k0h. 

An increasing d/h value for a fixed B/L leads to an 
increase in the reflection coefficient CR. The transmission 
coefficient CT follows the opposite trend. We note that the 
transmission coefficient for the model is maximum at d/h=0 
and minimum at d/h=1, i.e., the reflection coefficient is 
maximum for a wall, whereas the transmission coefficient 
for the same case is CT = 0. It is obvious that the reflection 
and transmission coefficients are approximately zero and 
one, respectively, for d/h = 0.  

The reflection coefficient CR decreases with increasing G, 
whereas the transmission coefficient CT increases with 
increasing G for a fixed B/L. When |G| approaches infinity, 
the front and middle walls disappear and the CR and CT 
values remain constant for different values of B/L. When G 
increases, the calculated transmission coefficients decrease 
with increased spacing between the first and second rows 
(x1) for a fixed B/L. The calculated reflection coefficients, 
in contrast, slowly increase with increasing x1, and when 
|G| approaches infinity, both the CR and CT values reamin 
constant for different B/L values.  

When k0h increases, the calculated transmission 
coefficients decrease with increasing x1 for a fixed B/L, 
whereas the calculated reflection coefficients slowly 
increase with increasing x1. The oscillation of the 
calculated transmission and reflection coefficients increase 
with increased k0h values. The predicted hydrodynamic 
characteristics as a function of k0h for various distances 
between the rows of the triple-row breakwaters show that CR 
increases with increasing k0h at a fixed d/h, and increases 
with decreasing d/h at a fixed k0h. CT follows the opposite 
trend.  

In a comparison between the dimensionless wave force on 
the front wall in double-row and triple-row breakwaters as a 
function of k0h, we found the wave force on the front wall of 
the triple-row to be less than the force on the equivalent 
double-row.  

The study results show the wave runup to be a function of 
k0h, in single-wall, double-row, and triple-row breakwaters. 
The maximum wave runup occurs only at the first row of the 
breakwater, since these values are generally smaller at the 
second and third rows. 
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