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Abstract: Trapping of oblique surface gravity waves by dual 
porous barriers near a wall is studied in the presence of step type 
varying bottom bed that is connected on both sides by water of 
uniform depths. The porous barriers are assumed to be fixed at a 
certain distance in front of a vertical rigid wall. Using linear water 
wave theory and Darcy's law for flow past porous structure, the 
physical problem is converted into a boundary value problem. 
Using eigenfunction expansion in the uniform bottom bed region 
and modified mild-slope equation in the varying bottom bed region, 
the mathematical problem is handled for solution. Moreover, 
certain jump conditions are used to account for mass conservation 
at slope discontinuities in the bottom bed profile. To understand the 
effect of dual porous barriers in creating tranquility zone and 
minimum load on the sea wall, reflection coefficient, wave forces 
acting on the barrier and the wall, and surface wave elevation are 
computed and analyzed for different values of depth ratio, 
porous-effect parameter, incident wave angle, gap between the 
barriers and wall and slope length of undulated bottom.  The 
study reveals that with moderate porosity and suitable gap between 
barriers and sea wall, using dual barriers an effective wave trapping 
system can be developed which will exert less wave force on the 
barriers and the rigid wall. The proposed wave trapping system is 
likely to be of immense help for protecting various facilities/ 
infrastructures in coastal environment. 
Keywords: porous barriers, mild-slope equation, reflection 
coefficient, wave trapping, porous-effect parameter 
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1 Introduction1 

Gravity wave transformation due to change in bottom 
topography is of fundamental importance in the 
understanding of wave energy distribution in continental 
shelves and is a key issue in coastal zone management. Due 
to global warming, there is a rise in the occurrences of 
storm surges which adversely affect coastal regions. As a 
part of the development of warning system for disaster 
mitigation, several measures are taken to predict the effect 
of wave transformation in coastal regions. Among various 
costal processes associated with wave transformation due to 
variation in bottom bed geometry, combined effect of 
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refraction and diffraction of waves is well attributed by the  
mild-slope type models which are also known as 
depth-integrated equations. The mild-slope model is based 
on the assumption that bottom slope is mild and was first 
derived by Berkhoff (1972) using vertical averaging 
procedure which was re-derived by Smith and Sprinks 
(1975) using Green's second identity in a lucid manner. 
However, Berkhoff's equation neglects the terms concerned 
with higher order bottom effects namely square of the 
bottom slope and bottom curvature with the mild-slope 
assumption. Using variational principle and retaining these 
neglected terms Chamberlain and Porter (1995) derived a 
new depth-integrated equation, known as the Modified 
Mild-Slope Equation (MMSE). It was shown that the effects 
of both the curvature and slope-squared terms are important 
in understanding combined refraction and diffraction. 
Further, Porter and Staziker (1995) extended the MMSE to 
include the influence of any number of evanescent modes 
and provided expressions to be used at the bottom slope 
discontinuities to ensure mass conservation at those points. 
The MMSE with mass conserving jump conditions works 
very well for bottom slopes up to 1. Also, in the case of 
sinusoidal ripple beds, results from MMSE were verified by 
the experimental data of Davies and Heathershaw (1984) 
and found favorable agreement. A good treatment of 
mild-slope equations can be found in Porter (2003). An 
extensive literature on mild-slope models and the 
development of boundary element method for solving 
mild-slope equations can also be obtained from Cerrato et al. 
(2016). In addition, the MMSE was extended to study water 
wave scattering by floating structures over uneven bottom 
such as a floating ice-sheet which has been modeled as an 
elastic plate (see Porter and Porter (2004)), a flexible 
membrane (see Manam and Kaligatla, 2012; Kaligatla and 
Manam, 2016). 

Of late, study on wave interaction with coastal structures 
such as breakwaters has received considerable progress 
because of their direct impact on various coastal activities 
including shore protection, creation of tranquility zones in 
ports and harbors, environmental protection, recreation and 
miliary operations. Especially, for reduction of wave 
reflection and load on coastal infrastructures, wave absorbing 
structures such as porous structures have often been used due 
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to their ability in dissipating wave energy. Models involving 
porous structures fixed near sea walls have been proposed for 
creating tranquility zones near harbors/ports/bays. Use of 
such breakwaters with dissipation characteristics is much 
acceptable due to their well performance in reducing wave 
loads on rigid sea walls. 

Michael et al. (1998) analyzed interaction between waves 
and surface-piercing partial vertical slotted barrier by using 
eigenfunction expansion method. The excellent review of 
Chwang and Chan (1998) illustrates the theory for waves 
past porous structures as well as the use of those structures 
as wavemakers and as breakwaters to reduce resonance in 
harbors. Sahoo et al. (2000b) investigated the role of thin 
partial porous barrier in various vertical positions in 
trapping and generation of waves in semi-infinite fluid 
region by using the method of eigen function expansion and 
the least square method while the problem was again 
considered by Sahoo et al. (2000a) for oblique waves. 
Huang et al. (2011) reviewed the  recent progress on the 
hydraulic performance and wave loadings of perforated/ 
slotted coastal structures. Koley et al. (2014) considered a 
wave trapping system consisting of porous barriers of finite 
width kept in front of a sea wall and solved the problem by 
applying eigen function expansion method and multi- 
domain boundary-element method. Apart from the use of 
single barriers, there is a significant interest in the use of 
dual barriers which can act as an effective breakwater 
system for protecting marine facilities. Liu and Li (2011) 
investigated the effectiveness of dual barriers which consists 
of pervious barrier in the seaside and rigid impervious 
barrier in the shoreward as a wave absorber. Karmakar et al. 
(2013) studied the performance of multiple surface- piercing 
permeable membrane wave barriers and  have shown the 
occurrence of Bragg resonance in reflection coefficient. 
Karmakar and Soares (2014) studied scattering of water 
waves by multiple bottom-standing flexible porous wave 
barriers and found that the transmitted wave height can be 
reduced significantly due to the presence of multiple 
barriers. Mondal and Gayen (2015) investigated wave 
interaction with dual circular porous plates in deep water 
using hyper singular integral equation technique. Recently, 
Mandal et al. (2015) analyzed wave scattering by multiple 
porous flexible barriers, arranged in uniform depth of water, 
by applying wide-spacing approximation method. 

However, when waves reach from open sea to shoreline, 
they bring with them and remove sand and other debris. 
Clay or mud and small rocks deposited by waves result in 
silting up of deep water channels/harbours which is often 
act as a hindrance in the navigational passage. One of the 
simplest ways for overcoming this awkward situation is 
achieved by introducing a step down in sea bottom bed near 
the bay/harbor mouth (see Billingham and King (2000)). 
The consideration of step down bottoms in the design of 
wave trapping models motivates to study its effect on waves 
that are incident on step while interacting with coastal 
structures. Suh and Park (1995) developed a model for 

predicting wave reflection from a perforated-wall caisson 
breakwater mounted on rubble mound foundation. They 
employed Galerkin eigen function method of Massel (1993) 
which is associated with depth-integrated model and studied 
reflection of oblique waves from that structure. Applying 
the matched eigen function expansion method Bhattacharjee 
and Guedes Soares (2011) studied diffraction of obliquely 
incident waves by a floating rigid structure near a wall with 
a bottom of vertical step. Das and Bora (2014) considered a 
model consisting of a porous structure on multi-step type 
bottom before a sea wall and analyzed oblique wave 
damping by the porous structure. Some of the recent 
developments on wave-structure interaction problems 
involving step type bottom can be found in Dhillon et al. 
(2016). But, a bottom with varying step is more realistic 
than a bottom with vertical step(s). Behera et al. (2015) 
developed a wave trapping model involving a sea bottom 
with varying step and a thin porous barrier placed near a sea 
wall.  In the wave trapping problem studied in this paper, 
emphasis was given to find the criteria for creating a 
tranquility zone with minimum load on the sea wall. They 
used MMSE with interfacial matching conditions of  
Porter and Staziker (1995) in the varying bottom region and 
obtained reflection coefficient of waves, force on the barrier 
and wall. Behera et al. (2016) studied the oblique wave 
scattering by a bottom-standing or surface-piercing flexible 
porous barrier in water of finite depth having bottom 
undulation using the methods of least-squares and 
multi-mode approximation associated with the modified  
mild-slope equation. In most of the studies in the literature 
concerned with wave trapping by porous barrier near a wall, 
emphasis was given on the role of single porous barrier of 
varied configurations for creating minimum load on the 
barrier and the sea wall. 

In the present study, oblique wave trapping by a pair of 
porous barriers located near a rigid wall is analyzed in the 
presence of undulated bottom bed. The physical problem is 
studied under the assumption of small amplitude water 
wave theory and Darcy's law is used to analyze wave past 
porous structures whilst, modified mild-slope equation is 
used to deal with the uneven bottom bed. In the uniform 
water depth regions, velocity potentials are expanded using 
the eigen function expansions. On the other hand, in the 
region of variable bottom, the modified mild-slope model is 
used to obtain the velocity potentials. Then, the solution of 
the MMSE is matched with the velocity potentials in the 
uniform bed regions to obtain a system of equations for the 
determination of unknown physical quantities. Moreover, 
mass conserving jump conditions are applied to account for 
slope discontinuity in bottom bed profile. Various physical 
quantities such as reflection coefficient and wave forces on 
the wall and the porous barriers, and surface wave elevation  
are computed and analyzed to understand the roles of depth 
ratio, angle of incidence, structural porosity, length of 
varying bottom, gap between the barriers and wall for an 
effective wave trapping system. 



R.B. Kaligatla, et al. Wave Trapping by Dual Porous Barriers Near a Wall in the Presence of Bottom Undulation  288 

2 Formulation of the boundary value problem 

In this Section, oblique wave trapping by a pair of thin 
porous barriers is formulated in the Cartesian coordinate 
system in the presence of varying bottom topography. The 
physical problem is studied under the assumption of the 
linearized water wave theory and the porous barrier is 
assumed to have fine pores. The problem is considered in the 
three dimensional Cartesian co-ordinate system with x-y 
plane being the mean free surface in the horizontal direction 
and negative z-axis being in the vertically downward 
direction. The problem is formulated assuming that the fluid 
is inviscid and incompressible and the flow is irrotational and 
simple harmonic in time. The fluid domain is divided into 
five sub-regions based on the geometry of the problem as 
shown in Fig. 1. Two thin porous barriers having fine pores 
are considered and are fixed vertically from bottom to free 
surface at finite distances in front of a rigid wall. In this 
arrangement, first barrier is the one which is close to the 
undulated bed whilst, the second barrier is the one which is 
close to rigid wall. Moreover, the distance between the two 
barriers is assumed to be L1 and the gap between the second 
barrier and the wall is assumed to be L as in the Fig. 1. 
Assuming the bottom bed is uniform in y-direction, the 
varying bottom bed profile is represented by ( )z h x  and it 

is connected by two unequal uniform bottom levels 1z h 

and 2z h  with h1 > h2. For simplicity, the open sea 

0,  x y        is of uniform depth 1z h  . The 

wave motion is assumed to be simple harmonic in time with 
angular frequency ω and the incident wave make an angle θ 
with x-axis. All these fluid and wave assumptions ensure the 
existence of the velocity potentials j in the form 

 i( )( , , , ) Re ( , )e y y t
j jx y z t x z      with βy=β0 sin θ and β0 

being the wavenumber of incident wave in the region 1. It 
may be noted that subscripts j=1, 2, 3, 4, 5 represent the fluid 
regions shown in Fig. 1. Under the above assumptions, the 
spatial velocity potentials ϕj(x,z) for  j=1, 2, 3, 4, 5 satisfy 
the Helmholtz equation 
 

 
 
Fig. 1 Schematic diagram of wave trapping system 

involving dual porous barriers 
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where K= ω2 / g and g is the gravitational constant. 
The boundary condition on the uniform bottoms are given 

by 
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and the boundary condition for the varying bottom is written 
as 
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On the rigid vertical wall, the no flow condition in the 
horizontal direction yields 
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The boundary conditions on the porous barriers at x = L3 +L2 
and x =L3 + L2 + L1 are given by (as in Behera et al., 2015) 
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respectively, where G1 and G2  are complex porous effect 
parameters. In general, according to Yu (1995) the complex 
porous effect parameters have been defined as  

 1 1 1 2 2 2
1 22 2 2 2

0 1 1 1 0 2 2 2

( i ) ( i )
,      

( ) ( )

f s f s
G G

d f s d f s
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 
     (8) 

with 1 2,    are the porosity of the barriers, f1, f2 are the 

resistance coefficients, s1, s2 are the inertial coefficients, d1, 
d2 the thickness of the porous barriers. The real and 
imaginary parts of the complex porous-effect parameters in 
G1 and G2 correspond to the linearized resistance effect of the 
porous medium against the flow and inertia effect of the fluid 
inside the porous medium, respectively. The inertial 
coefficients s1, s2 may simply be taken as unity (see Li et al., 
2006; Suh et al., 2011). The values of the resistance 
coefficients f1, f2 must be estimated through experiments. An 
empirical formula for this resistance coefficient was 
provided by Suh et al. (2011). The transparency of the porous 
structure may be increased by increasing both the parts of the 
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porous parameter. The porous-effect parameter can be 
considered as a real number (Chwang, 1983) when the 
resistance effect of the porous medium dominates the inertial 
effect. 

Finally, the radiation condition is given by 

 0 0i i 0 1
1 0 0

0 1

cosh ( )
e e      as   

cosh
p x p x z h

A R x
h




 
      (9) 

where A0 is prescribed incident wave amplitude and R0 is 
corresponding reflected wave amplitude that is to be 
determined and p0 = β0 cos θ .  

3 Method of solution 

For the solution of the physical problem described above, 
method of eigen function expansion is applied in each 
subdomain and solutions are matched at the interface 
boundaries. Since the bottom is varying in the finite interval 
(0, L3) and is uniform outside this interval, MMSE is 
employed in (0, L3). The bottom profile is assumed to be 
continuously differentiable function in (0, L3) and is allowed 
to have slope discontinuities at x=0 and x=L3. The solution 
of the MMSE is matched with the solutions in the uniform 
bottom regions at these slope discontinuous points. Moreover, 
mass conserving jump conditions as in Porter and Staziker 
(1995) are used at these points. In region 1, the unknown 
velocity potential ϕ1 is written as 
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The constant A0 is a known amplitude of an incident wave 
and R0 being an unknown amplitude of the corresponding 
reflected wave that is to be determined along with the 
unknowns Rn. Here, β0 is the positive real root and βn for n=1, 
2, 3, … are the purely imaginary roots of the dispersion 
equation β tanh βh1 =K  in β . These roots can be found 
numerically. In region 2, the velocity potential ϕ2 is written as 
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The wave number k0 is a positive real root and k1, k2, k3, … 
are purely imaginary roots of the dispersion equation k tanh 
kh=K in k. In contrast to the uniform bottom case, here the 
roots k0, k1, k2, k3 … are functions of x as they depend on the 
bottom function h(x). The eigenfunctions Zn are borrowed 
from the flat bottom solution and kn is being considered as 
function of x. This is the key assumption for the development 
of mild-slope equations. It is to be noted that Eq. (11) is an 
approximation for the velocity potential ϕ2(x, z). In the 

regions 3, 4 and 5, the velocity potentials ϕ3, ϕ4 and ϕ5 are 
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i i
3

0

i i
4

0

5 1
0

        ( , ) ( e e ) ( , )                 (12)

        ( , ) ( e e ) ( , )                (13)

and    ( , ) cos ( ) ( , )                 (14)

n n

n n

q x q x
n n n n

n

q x q x
n n n n

n

n n n n
n

x z B C g z

x z D E g z

x z M q x x g z

 

 

 















 

 

 






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unknown constants, x1 = L3 + L2 + L1 + L, 0  is a positive 

real root and 1 2 3,  ,  ,  ...   are purely imaginary roots of the 

dispersion equation 2tanh h K   in  . Hereafter, the 

expansions of the velocity potentials will be truncated after 
finite number of terms and the number of terms will be 
chosen suitable taking the convergence of the solution into 
account. 

  A differential equation for the unknown function ( )n x   

in (11) is derived here by using the method of Green's second 
identity suggested by Smith and Sprinks (1975). The Green's 
identity for the functions ϕ2 and Zm, yields 
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It may be noted that the function Zm satisfies 
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On utilizing Eqs. (1), (2), (4) and (16) in the expression 
(15), we get 

2
0 2 22 2

2 22

d
d     (17)

dm m m y mh
z h

h
k Z Z z Z

x x x

   




                


  
The approximation (11) for ϕ2 can be sought and then 

Eq. (17) becomes 
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where '  and ''h h are first and second order derivatives of h 
respectively. This equation can further be simplified by 
applying the following identity which is derived by Leibniz 
rule. 
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Finally, using the orthogonal property
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Eq. (20) can be solved numerically for the functions 
( )     ( 0,  1,  2,  ..., )n x n N   in region 2 for different bottom 

profiles h(x). It may be observed that when ߠ = 0○ Eq. (20) 
reduces to the equation (4.11) of Porter and Staziker (1995). 
Next, at the interface boundaries x=0 and x=L3, continuity of 
pressure yields 
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Further, to ensure the conservation of mass across the 
interface boundaries at x=0 and L3, using expressions for 

( )n x in Eqs. (21) and (22), the jump conditions in terms of

n are derived as 
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Finally, the expansions in Eqs. (12)-(14) are used in the 
conditions in Eqs. (6) and (7) which yield 
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Eq. (20) provides a system of N+1 second order coupled 
linear ordinary differential equations. In the present paper, for 
numerical results we have used only one mild-slope equation 
related to propagating wave mode which is referred as the 
single mode approximation in literature as in Chamberlain and 
Porter (1995). For a large class of mild-slope models, the 
single mode approximation gives reasonable accuracy for 
realistic physical problems. For example, Bennetts et al. (2009) 
observed that higher modes have negligible contribution in the 
study of interaction of flexural gravity waves with periodic 
geometry in a floating ice sheet. As the mild-slope equation in

0 is of second order, its general solution has two unknown 

constants K1, K2 (say). Thus, the unknown constants B0, C0, D0, 
E0, M0, R0 along with K1 and K2 can be determined by solving 
numerically Eqs. (21)-(26). 

4 Numerical results 

  In this Section, numerical results are presented to analyze 
the role of dual barriers in trapping surface gravity waves. In 
order to solve the modified mild-slope equation numerically, 
the in-built function NDSolve is employed in Mathematica. 
For numerical results, a fixed wave length of plane gravity 
wave 1 02π /   in region 1 is used to represent physical 

parameters in non-dimensional form. Moreover, time period 
T=8 s. and the acceleration due to gravity g=9.81 m/s2 are 
used throughout the computation. Reflection coefficient Kr, 
horizontal wave forces acting on the porous barriers and the 
rigid wall are defined as  
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where Cf , Cg and Cw  are the forces acting on the first and 
second barriers and on the wall respectively. Further, the 
non-dimensional forms of the horizontal wave forces on the 
porous barriers and rigid wall are denoted as F1, F2 and Fw 
and are given by 

1 22 2 2
1 1 1

,      and                 (31)
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        Fig. 2  Bottom profiles for different values of α 

 
Here, the bed profiles shown in Fig. 2 are considered using 

the bed function h(x) as 
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where α = 0 corresponds to a plane sloping step type bed, α ≥ 
1 corresponds to a protrusion above the depth h2, and for

1 0   corresponds to concave bed whilst, an  increase 

in depression in bed profile will occur for 1   . The above 
physical quantities are calculated for these bed profiles that 
are chosen from Porter and Porter (2000). 
  In Figs. 3(a) and (b), results of the present problem are 
compared with Figs. 2 and 4 of Twu and Lin (1990) 
pertaining to wave trapping by two porous barriers and a wall 
in the presence of uniform bottom. Results of Twu and Lin 
(1990) are recovered by choosing h2/h1 almost one in 
computation as a limiting case. The parameter values

0, = 0 ,    1/ 0.25,  L   3 1/ 1.0L   are fixed for both 

the figures. Fig. 3(a) depicts the reflection coefficient Kr 
versus the non-dimensional distance L1/λ1 between two 
porous barriers for different values of depth ratio h2/h1.  

For each value of the depth ratio h2/h1 reflection 
coefficient is periodic as in Twu and Lin (1990) and it 
increases significantly for smaller values of h2/h1. Moreover, 
phase shift in the reflection coefficient is observed when 
h2/h1 decreases form one and the points L1/λ1 at which 
minimum reflection occurs increase as the depth ratio h2/h1 
decreases due to the presence of step type varying bottom. 
Fig. 3(b) shows reflection coefficient versus porous effect 
parameter G where G1=G, G2=2G for different values of 
depth ratio h2/h1. In water of uniform depth, Twu and Lin 
(1990) showed that when the distance between the wall and 
porous barrier is half of the distance between two porous 
barriers, whether G1=G, G2=2G or G1=2G, G2=G there was 
no change in the reflection coefficient and full wave was 
trapped at G=1.5. However, this is not the case in the 

presence of varying bottom and the minimum in reflection 
increases as the depth ratio h2/h1 decreases. In Fig. 3(b) it can 
be seen that higher reflection of wave occurs for larger 
absolute values of G and smaller values of depth ratio h2/h1. 

 

 
(a) 

 
(b) 

Fig. 3  Reflection coefficient Kr versus (a) L1/λ1 with G=5, 
L2/λ1=0.4 and (b) porous effect parameter G where 
G1=G, G2=2G with L1/λ1=0.5, L2/λ1=0.5 for different 
values of depth ratio h2/h1 

 

 
(a) 

 
(b) 

Fig. 4  Reflection coefficient Kr versus L3/λ1 for different 
values of α and for (a) θ=0o and (b) θ=30o with 
G1=1+i, G2=1+i, h2/h1=0.25, L/λ1=0.4, L1/λ1=0.4, 
L2/λ1=0.4 
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  The reflection coefficient Kr is plotted versus the 
non-dimensional horizontal length of the varying bed L3/λ1 
for various values of bed shape parameter α for normally 
incident waves in Fig. 4(a) and for oblique incident waves 
with θ=30o in Fig. 4(b). In general, wave reflection is more 
in case of normally incident waves compared to obliquely 
incident waves. Moreover, wave reflection is highest in 
case of 1  and lowest for bed having depression with

1   . 
Further, wave reflection is very small for smaller values of 

L3/λ1 which attains an oscillatory steady state as L3/λ1 

increases. However, the amplitude in the oscillatory pattern 
decreases for larger values of L3/λ1. A comparison with Fig. 3 
of Behera et al. (2015) reveals that there is a significant 
reduction in wave reflection in case of wave trapping by 
two barriers compared to that of the single barrier. 
 

 
(a) 

 
(b) 

Fig. 5  Reflection coefficient Kr versus L3/λ1 for different 
values of (a) G1 while G2=1+i is fixed and (b) G2 

while G1=1+i is fixed, with θ=30o, α=0, h2/h1=0.25, 
L2/λ1=0.4, L1/λ1=0.4, L/λ1=0.4 

 
In the subsequent discussion, the results are computed and 

analyzed for plane sloping bed which corresponds to α=0. 
Figs. 5(a) and (b) show the variations of the reflection 
coefficient versus the non-dimensional horizontal length of 
the varying bed L3/λ1 for different values of the porous-effect 
parameters of the barriers. Both the figures reveal that with 
an increase in the absolute value of the porous-effect 
parameter of the first barrier, there is a significant reduction 
in wave reflection compared to the second barrier. However, 
for smaller values of L3/λ1, wave reflection is more for first 
barrier compared to the second barrier. Further, minimum 
wave reflection is observed for G1 =2+2i and G2 =1+i for the 

first barrier and for G1 =1+i and G2 =2+2i for the second 
barrier. 

 

 
(a) 

 
(b) 

Fig. 6  Reflection coefficient Kr versus (a) L/λ1 for fixed 
L1/λ1=0.4 and (b) L1/λ1 for fixed L/λ1=0.4 and for 
different values of h2/h1 with G1=2+2i, G2=1+i,  
θ=0o, L2/λ1=0.4, L3/λ1=1 

 
  Fig. 6(a) shows the variations of the reflection coefficient 
versus the non-dimensional distance L/λ1 between the 
second barrier and the rigid wall for different values of 
depth ratio h2/h1. Fig. 6(a) demonstrates that wave reflection 
follows an oscillatory periodic pattern as the distance L/λ1 

increases. However, as depth ratio h2/h1 increases, the 
amplitude of the oscillatory pattern in wave reflection 
increases. The increase in amplitude may be due to the fact 
that effect of wave transformation due to increase in the 
depth ratio h2/h1 is decreasing significantly. Further, there is 
a phase shift in the oscillatory pattern of wave reflection due 
to an increase in depth ratio h2/h1. Fig. 6(b) shows the 
variations of the reflection coefficient versus the 
non-dimensional distance L1/λ1 between the two barriers for 
different values of depth ratio h2/h1. Fig. 6(b) illustrates that 
for higher values of depth ratio h2/h1, minimum reflection 
increases significantly as depth ratio h2/h1 increases. 
Moreover, as the distance between the barriers increases, 
wave reflection follows an oscillatory periodic pattern 
which is similar to that observed in Fig. 6(a). Both the 
figures reveal that with an increase in depth ratio h2/h1, 
number of optima in wave reflection decreases for fixed gap 
length between the barriers as well as the barrier and the 
rigid wall. 

Fig. 7 shows the variations of the reflection coefficient 
versus the non-dimensional distance L/λ1 between second 
barrier and the rigid wall for different values of porous-effect 
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parameters. Both the figures reveal that the reflection 
coefficient follows a periodic oscillatory pattern as the 
distance between the second barrier and the wall increases 
which is similar to Fig. 6. A comparison between Figs. 7(a) 
and 7(b) shows that more wave energy is reflected with an 
increase in the absolute value of the porous-effect parameter 
G2 of the barrier close to the rigid wall which demonstrates 
that more wave energy is trapped due to the barrier close to 
the undulated bed. Further, Fig. 7(b) reveals that a major 
increase in the maximum values of wave reflection occur due 
to the change in the porosity of the second barrier. 
 

 
(a) 

 

 
(b) 

Fig. 7  Variations of reflection coefficient Kr versus L/λ1 for 
(a) different values of G1 while G2=1+i is fixed and (b) 
different values of G2 while G1=1+i is fixed, with 
h2/h1=0.25, θ=0o, L1/λ1=0.4, L2/λ1=0.4, L3/λ1=1 

 
  Fig. 8 demonstrates the variations of the reflection 
coefficient versus the non-dimensional distance L1/λ1 
between the two barriers for different values of 
porous-effect parameters. These figures depict that wave 
reflection follows an oscillatory periodic pattern as the 
non-dimensional distance L1/λ1 increases which is similar to 
the observation made in Fig.7. Fig. 8(a) reveals that with an 
increase in the absolute value of the porous-effect parameter 
G1 of the first barrier, wave reflection decreases 
considerably. On the other hand, a reverse trend in wave 
reflection is observed with an increase in the absolute value 
of the porous-effect parameter G2 of the second barrier. A 
comparison between Figs. 8(a) and 8(b) illustrates that the 
first barrier having higher porosity plays a significant role in 
trapping most of the wave energy. 

 
(a) 

 
(b) 

Fig. 8  Variations of reflection coefficient Kr versus L1/λ1 for 
(a) different values of G1 while G2=1+i is fixed and (b) 
different values of G2 while G1=2+2i is fixed, with 
h2/h1=0.25, θ=0o, L/λ1=0.3, L2/λ1=0.4, L3/λ1=1 

 
Fig. 9 illustrates the variations of the reflection coefficient 

as a function of angle of incident θ. Particularly, Fig. 9(a) 
demonstrates Kr for varying depth ratio h2/h1 while Figs. 9(b) 
and 9(c) represent Kr for varying porous-effect parameter. 
Fig. 9(a) depicts that there exist two minima in reflection 
when h2/h1=0.25 and a sharp variation in reflection is arising 
at larger incident wave angles in the range 80o - 90o. This is 
due to linear slopping bed with small depth ratio values. 
However, the sharp variation is diminishing remarkably as 
the depth ratio h2/h1 is tending to one. As a result, the two 
minima in wave reflection reduces to a single minimum. 
Also, it is observed that in the case of almost flat bottom, 
minimum in wave reflection occurs for smaller angles 
between 0o and 15o. In Figs. 9(b) and 9(c), effect of variation 
of porous-effect parameter on wave reflection is explored for 
smaller depth ratio h2/h1=0.25. Both the figures illustrate that 
due to the presence of two barriers, there exist two minima in 
the reflection coefficients for two different angles of 
incidence for certain values of porous-effect parameters and 
often zero minimum in reflection is also observed. Fig. 9(b) 
reveals that with an increase in the absolute value of the 
porous-effect parameter G1 of the first barrier, one of the 
minima in reflection occurs for smaller angle of incidence. 
This shift in reflection may be due to a change in phase of the 
incident and reflected waves as the absolute value of the 
porous-effect parameter increases. On the other hand, Fig. 
9(c) depicts that with an increase in the absolute value of the 
porous-effect parameter G2 of the second barrier, one of the 
minima is disappearing which may be due to dissipation of 
incident wave energy by the porous barriers. 
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(a) 
 

(b) 

 
(c) 

Fig. 9  Variation of reflection coefficient Kr versus the angle 
of incidence θ for (a) different values of depth ratio 
h2/h1=0.25 with G1=1+i and G2=1+i, (b) different 
values of G1 with G2=1+i and (c) different values of 
G2 with G1=2+2i. Various fixed parameters are 
h2/h1=0.25, L/λ1=0.3, L1/λ1=0.3, L2/λ1=0.4, L3/λ1=1 

 
  In Figs. 10(a) and (b), reflection coefficients versus angle 
of incidence θ are plotted for different values of 
non-dimensional distance L/λ1 between the second barrier 
and the wall, and L1/λ1 between the two porous barriers 
respectively. It is observed that with an increase in L/λ1, 
there is a right shift in the minima with an increase in θ and 
the minimum in wave reflection which occurs for higher 
angle of incidence diminishes. A similar pattern is also 
observed in Fig. 10(b) when the non-dimensional distance 
L1/λ1 between the porous barriers increases. Thus, both the 
figures demonstrate that the minima close to the higher 
angle of incidence diminishes with an increase in the gap 
between the barriers, or the barrier and wall. However, 
when the gap between the barriers increases more waves 
will be trapped in comparison to the increase in the distance 

between the second barrier and the wall for smaller angle of 
incidence. 
 

 
(a) 

 
(b) 

Fig. 10  Reflection coefficient Kr versus the angle incidence 
θ for (a) different values of L/λ1 while L1/λ1=0.3 is 
fixed and (b) different values of L1/λ1 while L/λ1=0.3 
is fixed, with G1=2+2i, G2=1+i, h2/h1=0.25, L2/λ1=0.4, 
L3/λ1=1 

 
  Figs. 11(a) and (b) show the variations of horizontal wave 
force acting on the rigid wall Fw versus the non-dimensional 
distance L/λ1  between the second barrier and the wall for 
different values of porous-effect parameters. In Fig. 11(a), 
as the absolute value of the porous-effect parameter of the 
first barrier G1 increases, horizontal forces acting on the 
wall increase which is similar to that of wave trapping by 
single barrier as in Behera et al. (2015). However, wave 
forces acting on the wall in the presence of single barrier 
demonstrates that there is a significant reduction in wave 
forces acting on the wall due to the presence of double 
barrier as most of the wave energy will be dissipated by the 
porous structures. Figs. 11(a) and 11(b) show that less wave 
force is exerted on the wall due to the rise in the absolute 
value of the porous-effect parameter of the second barrier 
G2 compared to that of the first barrier. However, certain 
phase shift in the optima of the oscillatory pattern of the 
wave forces are observed with the increase in the absolute 
value of G2. A comparison of Figs. 7(b) and 11(b) 
demonstrates that minimum wave reflection is associated 
with the maximum force exerted on the rigid wall which is 
similar to wave trapping by single barrier. 
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(a) 

 
(b) 

Fig. 11  Variations of force on the wall Fw versus the 
frequency parameter L/λ1 for (a) different values 
of G1 while G2=1+i is fixed and (b) different values 
of G2 while G1=1+i is fixed with h2/h1=0.25, θ=30o, 
L1/λ1=0.4, L2/λ1=0.4, L3/λ1=1 

 

 
(a) 

 

 
(b) 

Fig. 12  (a) Variations of force F1 on the first barrier versus 
L1/λ1 for different values of G1 with G2=1+i and (b) 
variations of force F2 on the second barrier versus 
L1/λ1 for different values of G2 with G1=1+i, whilst 
h2/h1=0.25, θ=30o, L/λ1=0.4, L2/λ1=0.4, L3/λ1=1 

 
  Figs. 12(a, b) show the variations of horizontal wave 

forces acting on the barriers versus the non-dimensional 
distance L1/λ1 between the barriers for different values of 
porous-effect parameters. Wave forces on the barrier change 
in an oscillatory manner with an increase in the gap between 
the barriers. Moreover, with an increase in the absolute 
values of porous-effect parameters, wave forces on the 
barrier decrease due to the increase in wave energy 
dissipation and transmission of more energy through the 
porous structures. A comparison with Fig. 11 reveals that 
maxima in wave force on the porous barriers is associated 
with minima in wave forces on the rigid wall and vice versa. 
Further, a comparison with Fig. 7 depicts that maximum 
wave reflection by the barrier is associated with maximum 
wave forces on the barriers. Thus, by suitable positioning of 
the barriers between the wall the undulated bottom, wave 
load on the wall can be reduced and a tranquility zone can 
be created. 
  Surface wave elevation in non-dimensional form Re{η}/A0 
is plotted in Fig. 13 versus horizontal length x/λ1 for different 
values of porous effect parameter G . In general for smaller 
values of the complex porous-effect parameter|ܩ|, amplitude 
in free surface elevation is less which is due to dissipation of 
a major part of the incident wave energy by the porous 
barriers. Further, certain increase in wave amplitude is 
observed in the undulated bed region compared to the open 
water region due to decrease in water depth. Moreover, for 
moderate value of the complex porous-effect parameter |ܩ|	wave amplitude in the confined zones between the 
barriers, and the second barrier and the rigid wall are smaller 
than that of the open water region. On the other hand, wave 
amplitude is high in wave trapping zones for higher values of 
the complex porous-effect parameter |ܩ| which is due to 
more transmission through the porous barriers. Moreover, 
due to discontinuity in pressure on both sides of the porous 
barriers, certain discontinuity in surface wave elevation is 
observed across the porous barriers. Thus, Fig. 13 illustrates 
that more wave energy has been trapped for larger porosity of 
the barriers. 
 

 
 
Fig. 13  Variations of surface elevation Re{η}/A0 versus 

x/λ1 for different values of G(G1=G2=G) with 
h2/h1=0.25, θ=0o, L3/λ1=1, L/λ1=L1/λ1=L2/λ1=0.4 
and α=0 

 



R.B. Kaligatla, et al. Wave Trapping by Dual Porous Barriers Near a Wall in the Presence of Bottom Undulation  296 

 
Fig. 14  Variations of surface elevation Re{η}/A0 versus 

x/λ1 for different values of θ with h2/h1=0.25, 
G1=G2=1+i, L3/λ1=1, L/λ1=L1/λ1=L2/λ1=0.4 and α=0 

 
  Fig. 14 shows the free surface elevation against horizontal 
length x/λ1 for different values of incident wave angle θ for 
G1=G2=1+i. The general pattern in wave amplitude is similar 
to that observed in Fig. 13. However, for large values of 
incident angle wave amplitude is less within the confined 
zones than that in the open water regions due to loss of 
energy by the porous structures. 

5 Conclusions 

In the present manuscript, oblique wave trapping by dual 
porous barriers located near a rigid wall is studied in the 
presence of undulated bottom bed of varied configurations.  
The mathematical boundary value problem is handled for 
solution using the eigenfunction expansion method for the 
uniform bed region and modified mild-slope approximation 
for the undulated bed region. For understanding the 
effectiveness of dual porous barriers and steps of varied 
configurations in creating an effective wave trapping system, 
the reflection coefficient, free surface elevation, and wave 
load on porous barriers and rigid wall are computed and 
analyzed for various wave and structural parameters. The 
study reveals that wave reflection increases with an increase 
in the variation in water depth as the wave propagate from 
deep water region to shallower depth. Further, wave 
reflection vary significantly due to change in bottom profile 
for smaller horizontal length of bottom undulation. For 
oblique incident waves, reflection is less compared to that of 
the normalized incident wave and there is a significant 
reduction in wave reflection due to the presence of dual 
porous barriers. Moreover, in the presence of dual barriers, 
minimum wave reflection can occur for two different angles 
of incidence and one of the minima will be diminishing for 
higher porosity. It is observed that for moderate structural 
porosity, by adjusting the gap between the dual porous 
barriers and gap between the barrier and the rigid wall, an 
efficient wave trapping system can be developed which will 
exert negligible wave force on the rigid porous barriers and 
the rigid wall. The concept and methodology can be extended 
to analyze wave scattering/trapping by an array of porous 
barriers having bottom undulation and the study will be of 

immense support to marine scientists/engineers engaged in 
the design of coastal structures for shore protection and 
creation of tranquility zones in marine environment in an 
effective manner. 
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