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Abstract: In the present paper, we examine the performance of an 
efficient type of wave-absorbing porous marine structure under the 
attack of regular oblique waves by using a Multi-Domain 
Boundary Element Method (MDBEM). The structure consists of 
two perforated vertical thin barriers creating what can be called a 
wave absorbing chamber system. The barriers are surface piercing, 
thereby eliminating wave overtopping. The problem of the 
interaction of obliquely incident linear waves upon a pair of 
perforated barriers is first formulated in the context of linear 
diffraction theory. The resulting boundary integral equation, which 
is matched with far-field solutions presented in terms of analytical 
series with unknown coefficients, as well as the appropriate 
boundary conditions at the free surface, seabed, and barriers, is 
then solved numerically using MDBEM. Dissipation of the wave 
energy due to the presence of the perforated barriers is represented 
by a simple yet effective relation in terms of the porosity parameter 
appropriate for thin perforated walls. The results are presented in 
terms of reflection and transmission coefficients. The effects of the 
incident wave angles, relative water depths, porosities, depths of 
the walls, and other major parameters of interest are explored.  
Keywords: oblique waves, porous breakwater, perforated thin 
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1 Introduction1 

Breakwaters are important costal structures used to prevent 
the passage of incident waves and currents; their primary 
function is to reduce wave transmission to protect shores and 
create calmer areas, such as in ports and marinas, for the safer 
operation of maritime transport.  

Perforated vertical barriers are sometimes used as 
breakwaters in special cases. The porosity provided by 
perforations enhances wave dissipation and, hence, reduces 
wave reflection and transmission. At the same time, the 
exchange of waters between the sea and shore sides of the 
perforated walls is not completely inhibited. Barriers 
perforations are usually made by leaving out square or 

                                                        
Received date: 25-Nov-2016 
Accepted date: 11-Apr-2017 
*Corresponding author Email: hamoudi_benameur@yahoo.fr 
 

© Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2017 

circular openings in the walls as respectively shown in Figs. 1 
and 2.  

 

 
Fig. 1  Perforated wall breakwater of the Dalian Chemical 

Production Terminal, China, in Huang et al. (2011) 
 

 
Fig. 2  Perforated wall breakwater of Dieppe, France, in 

Bélorgey et al. (2003) 
 
Over the last three decades, a tremendous amount of 

research, both experimental and theoretical, has been 
dedicated to the study of barriers as breakwaters for 
perpendicular wave incidences. A highly useful review on the 
subject was given by Huang et al. (2011). Most of the works 
referred to in this work were carried out to achieve a 
reduction in wave reflections and transmissions primarily, and 
structure stability at the same time. Numerical methods have 
helped in the validation work and the setting up of simple 
analytical tools for quick evaluations. These methods are now 
well established and used with confidence to analyze a 
variety of breakwater configurations.  

For normal wave incidence, Hagiwara (1984) developed 
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analytical solutions of the reflection and transmission 
coefficients based on an integral equation upon single- and 
double-porous walls; the results of this study compared well 
with experimental measurements. Isaacson et al. (1999) 
studied the interaction of normal waves with a pair of slotted 
barriers using an eigenfunction expansion method and 
compared results with experimental measurements. The 
authors found results that were in generally satisfactory 
agreement provided that the relevant empirical coefficients 
representing the energy dissipation were suitably chosen. 
Huang (2007) estimated the reflection and transmission 
coefficients of single- and double-slotted thin walls using 
simple algebraic expressions with reasonable accuracy.  

To assess the hydrodynamic performance of a surface 
piercing wave absorbing double curtain-wall breakwater with 
a porous front wall and an impermeable back wall, Liu and Li 
(2011) developed an analytical solution based on the 
eigenfunction expansion and least-squares methods; they then 
showed that, with appropriate structure parameters, both the 
reflection and transmission coefficients of the breakwater 
may be maintained below 0.5 over a wide range of relative 
water depths. Liu et al. (2014) employed the eigenfunction 
expansion method to investigate the wave motion over a 
submerged Jarlan-type breakwater consisting of a perforated 
front wall and a solid rear wall and compared results with 
experimental measurements; these scholars showed that 
interchanging the front and rear walls exerts no effects on the 
transmission coefficient, but that adopting a seaside 
perforated wall would result in a smaller reflection 
coefficient.  

In comparison with porous barriers, which have been 
extensively investigated experimentally for perpendicular 
wave attacks, oblique waves have been considered less 
because of several important experimental shortcomings. 
Investigating oblique waves in wave flumes is nearly 
impossible due to reflections arising from the side walls. Thus, 
unless the waves are damped on the flume side to prevent the 
occurrence of these added reflections, one cannot carry out 
such investigations.  

The effects of oblique wave attacks are often assumed to be 
less extensive than those induced by perpendicular wave 
attacks. This assumption, however, seems to be very 
conservative. Experimental works on porous barriers with 
oblique waves are fairly scarce due to the problems described 
previously. The only works we found in the literature that are 
related to this subject are those of Ijima et al. (1978) and Li et 
al. (2002).  

Theoretical works on the interaction of oblique waves and 
barriers (single and double walls) are widely available in the 
literature. On the basis of integral equations and the Galerkin 
method, Porter (1995) and Porter and Evans (1995) 
developed accurate solutions of the scattering of normal and 
obliquely incident waves by single and double impermeable 
vertical barriers with gaps. Using the same method, Das et al. 
(1997) investigated oblique water wave diffraction by two 
equally thin, parallel, fixed impermeable vertical barriers with 

gaps present in uniform water depth. The authors found that 
waves are better reflected by a double barrier system than by 
a single barrier.  

Suh and Park (1995) developed an analytical model based 
on the Galerkin eigenfunction method to investigate the 
performance of a perforated wall caisson in oblique waves 
and then compared their numerical results with the 
experimental measurements of Ijima et al. (1978), who 
experimentally studied the interaction of oblique waves with 
a similar type of breakwater in a wave basin for three incident 
wave angles (40°, 50°, and 60°). Overall, the agreement 
between the measurements and calculations was acceptable. 
A similar study was undertaken both analytically and 
experimentally for three incident wave angles (0°, 22.5°, and 
45°) by Li et al. (2002), who found good agreement between 
the experimental data and analytical results once more. Teng 
et al. (2004) employed the eigenfunction expansion method 
to study the interaction of obliquely incident waves with an 
infinite number of perforated caissons and found that the 
reflection coefficients of obliquely incident waves are smaller 
when the length of caissons is shorter at a low frequency.  

Using the same method, Liu et al. (2007) examined the 
reflection of obliquely incident waves by an infinite array of 
partially perforated caissons and discussed the effects of a 
number of parameters in detail. This type of breakwater was 
found to be more efficient than the caisson breakwater with a 
fully perforated front wall. Liu et al. (2012) extended the 
work of Teng et al. (2004) for an infinite array of 
multi-chamber perforated caissons. Liu et al. (2009) 
examined the interaction of oblique waves with a perforated 
front wall breakwater partially filled with rocks in its wave 
chamber by means of the matched eigenfunction expansion 
method and found that increasing the thickness of the rock fill 
will generally increase the refection coefficient. However, 
increasing the incident angle of the wave causes the reflection 
coefficient of the breakwater to first decrease, reaching a 
minimum value, and then increase monotonously. Liu and Li 
(2010) developed analytical solutions based on the 
eigenfunction expansion and least-squares methods to 
examine the interaction of oblique waves with a partially 
immersed wave absorbing breakwater consisting of a 
perforated front barrier and a solid rear barrier. The absorptive 
performance of the breakwater was found to be sensitive to 
the relative space between the two barriers, the angle of 
incident waves, the relative draft of the breakwater, and the 
porosity of the front barrier.  

Other researchers included the effects of the seabed 
configuration, structural rigidity, and even two later fluids in 
their investigations. Behera et al. (2015a) developed a 
semi-analytical solution based on the eigenfunction expansion 
method for oblique waves trapped by a rigid porous barrier 
near a rigid wall in the presence of varied configurations. The 
authors found that, compared with a flat bed, reflections show 
trends depending on the type of bed configuration applied. 
Using the eigenfunction expansion method and the 
Multi-Domain Boundary Element Method (MDBEM) 
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separately, Koley et al. (2015) studied oblique wave trapping 
by bottom-standing and surface-piercing porous structures in 
front of a vertical rigid wall. Behera et al. (2015b) extended 
this study for scattering and trapping in two layer fluids. In 
wave trapping, a surface-piercing porous structure will 
always act as a better wave-trapping system than a 
bottom-standing structure regardless of the wave incidence 
angle. In oblique wave scattering, zero wave reflection can be 
achieved by a partial porous structure at moderate angles of 
incidence.  

Yueh and Chuang (2012) applied MDBEM to investigate 
the performance of a vertical porous plate with a single 
degree of freedom in front of a solid wall and in normal 
waves. These authors found that the minimum reflection is 
increased as the system becomes less stiff, and that the system 
would behave exactly in the same manner as the caisson type 
breakwater with a rigid porous wall in front when the 
stiffness is increased beyond a certain value. Similar 
conclusions were made by Kaligatla et al. (2015), who 
studied the trapping of oblique surface gravity waves by a 
vertical submerged flexible porous thin plate located near a 
rigid wall using integral equations. Mandal et al. (2016) 
studied oblique wave scattering using multiple porous and 
flexible surface-piercing and bottom-standing partial barriers 
in a two-layer fluid and found that both structural flexibility 
and a moderate choice of porosity could dissipate the 
maximum wave energy and create an effective protection 
system.  

In this work, the interaction of oblique regular waves with 
a surface piercing breakwater of double vertical porous thin 
walls is studied. Specifically, the effects of the leeward side 
porous wall are examined. A multi-domain boundary element 
method is developed for the present analysis.  

2 Theoretical formulation 

2.1 Governing equations and boundary conditions 
The idealized geometry of the three-dimensional problem 

is shown in Fig. 3. Regular waves of small amplitude a, 
period T, and wavelength Li impinge from the left at an angle 
α with respect to the direction of the axis x in water of depth d. 
Assuming an irrotational flow and incompressible fluid 
motion, the problem is formulated using a velocity potential 

i( - )(     ) = Re[  (  ) e  ]zk z ωtΦ x, y, z, t x, y   

where Re denotes the real component, ) ( yx,  is the 

time-independent spatial velocity potential, 

i 1, 2πω  /  T    is the wave angular frequency, t is the 

time, and zk  is the z component of the wave number 

2 ik π L  . Here k is the solution to the dispersion relation 
2tanh(  ) .gk kd ω   The x and z components of k are 

presented in terms of the angle of incidence α as 
cos xk = k α  and sin zk = k α . The wave field can be 

completely specified if ) ( yx,  is known.  

We consider a pair of porous walls of height HW  

separated by a distance B (width of the absorbing chamber) 
and extending from above the water surface to a certain 
distance above the channel floor. With this disposition, the 
total fluid domain is divided in three regions: region 1 is in 
front of the left wall (seaward side), region 3 is behind the 
right wall (leeward side), and region 2 is between both walls. 
With sufficient wall porosity, waves are transmitted to the 
leeward side. The flow in each region could still be 
described by a velocity potential because of the assumptions 
of linear wave theory. Special matching conditions at the 
interfaces of the flow regions ensure the smooth transfer of 
mass flow from one region to the next. Note that at this 
stage in this study, the perforated walls are treated as solid 
homogeneous porous materials.  

 

 
Fig. 3  Problem definitions for a breakwater system of 

double porous walls of height WH 
 
The spatial velocity potential in each region (j) satisfies 

the following boundary conditions:  
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   (4) 

where g is the gravitational acceleration, n is the normal to 

the boundary pointing out of a flow region, and   I is the 

incident velocity potential.  
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At the interfaces of flow regions (1) and (2) and flow 
regions (2) and (3), special matching conditions are imposed. 

Along the fictitious boundaries 0   and 0 
, continuity 

requires that:  

(1) (2)
(1) (2)

(2) (3)
(2) (3)

    and      =       

     for /2   and  -  

     and      =       
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     (5) 

For the porous walls (boundaries 2   and 2   

respectively relate to the front and back sides of each porous 
wall), the boundary condition for slotted/perforated walls 
given by Yu (1995) is imposed:  
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      (6) 

G is a dimensionless complex quantity, and the subscripts 1 
and 2 refer to the front and back walls, respectively. This 
quantity is known as the porous effect parameter and can be 
evaluated by different methods (Huang, 2011). The method 
of Yu (1995) is adopted in this study for its simplicity:  

i e       for  0 π/2
( i. )

θP
G G θ

k δ f s
    

  
     (7) 

where δ  is the thickness of the wall, f is the linearized 
resistance coefficient,  1 (1 )ms C P / P    is an inertia 

coefficient, P is the wall porosity, and θ  is the argument 
of the complex part of G. For thin perforated walls, the 
argument θ, which is associated with the added mass (Cm), 
is usually not significant and can be treated as zero 
( 0 and 0mθ C  ); hence, s = 1 is customarily used. The 
linearized resistance coefficient f is estimated from the 
empirical relation of Li et al. (2006) 

23338.7(  / ) 82.769(  / ) 8.711f δ d δ d    , which has been 

reported to work quite well in the 
range  0.0094  /   0.05δ d  .  

2.2 Numerical solution by the multi-domain boundary 
element method  

To solve the problem, the radiation condition of Eq. (4) is 
treated by truncating regions (1) and (3) at two fictitious 

vertical boundaries with distances of x = –l (boundary 3
 ) 

and x = +l (boundary 3
 ), respectively. The velocity 

potentials at these boundaries are presented in terms of 
simple relations with unknown coefficients to be solved as 
part of the numerical method:  

 

 

(1) (1)
i ( ) i ( )(1)

0 0

-
3

(3) (3)
i ( )(3)

0 0

3

  
= e e ( )  ;  =

  

     for     (boundary  )

  
= e ( )    ;     =

  

     for    (boundary  )

x x

x

k x l k x l

k x l

R I y
n x

 x l

T I y
n x

 x l

 



 



   





 
    

  


  
 


  

   (8) 

where 0

cosh[ ( )]
( )= 

sinh( )

iaL k y+d
I y

T kd
   and 0R  and 0T  are 

unknown complex coefficients to be determined.  
The physical problem described previously by Eq. (1) and 

the boundary conditions given by Eqs. (2), (3), (5), (6), and 
(8) present a boundary value problem that is first 
transformed into integral equations using Green's theorem 
and then solved by MDBEM. For smooth (constant) 
elements, the general form of the integral equation is written 
as:  

1 ( ', ')
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2
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This equation relates the potentials j
i of the source 

points, ),( yxP , to j  and its normal derivative  / nj   

of the field points, )','(' yxP , lying on a boundary j  of 

a flow region (j = 1, 2, 3). The boundary 
1
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specified for region (2), and the boundary 
3

1 3 4 2 0             is specified for region (3) 

(Fig. 3). Q, the free space fundamental solution of the 
Modified Helmholtz equation (Eq. 1), depends only on the 

distance 22 )'()'( yyxxr   and is given together 

with its normal derivative as:  
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0K  and 1K  are the respective zeroth and first orders of 

the modified Bessel functions of the second kind. The 
quantity )/( nr   defines the direction cosines of the 

normal to an element. When r→0, 0K  shows asymptotic 

behavior and can be approximated as 

 0 ( ) 0.5772 ln( / 2)z zK k r k r      

Eq. (9) is applied consecutively to all source points in 
each fluid region (j). To implement MDBEM numerically, 

the total boundary j  of each region is discretized into a 

number of jN  elements ( 321  ,  , NNN  corresponding to 

the numbers of element-nodes for regions 1, 2, and 3, 
respectively). The variations of the variables over the 
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elements are assumed to be constant, and the unknowns are 
defined at the mid-element nodes. The resulting discretized 
integral equations are written in the following general 
discrete forms:  
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where m  is the length of an element (m) of the boundary 

Γ j  and imδ  is the Kronecker delta. The discretized form 

of a region (j) can be rewritten in matrix form as:  
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These coefficients relate a source point (i) to a field point (m) 

belonging to an element m . The integrals in Eq. (13) are 

evaluated using Gaussian quadrature rules, and the 
discretized system in Eq. (13) is further expanded to include 
all flow regions (j = 1, 2, 3) in one system:  
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where N is the total number of constant elements from all 

flow regions, e.g., 321 NNNN  . 
Finally, the boundary conditions, which are expressed by 

Eqs. (2), (3), (5), (6), and (8), are introduced to Eq. (14). 

The resulting algebraic system of equations is further 
rearranged such that all unknowns are moved to one side. 
The equation is then solved numerically using a Gaussian 
elimination algorithm to yield the vector of unknowns 

(diffracted velocity potentials   (or  n  ) and the 

coefficients 0R  and 0T ). The reflection and transmission 

coefficients are determined from the following expressions:  

0 0= | |     and      = | |r tC R C T    (15) 

The wave energy loss coefficient  dC , which describes 
the portion of the incident wave energy dissipated by the 
perforated walls, is given by:  

2 21 ( ) ( )d r tC C C           (16) 

Fully extended porous walls are treated simply by setting 
WH = d. Single porous wall breakwaters are solved by 
setting the porosity of the front wall to be sufficiently large 
(G1 = ∞ or P1 = 1). This way, the front wall vanishes and the 
structure is reduced to a single porous wall of porosity P2 
and porous parameter G2. In all subsequent computations, a 
large value of G1 = ∞ is taken as 108.  

3 Validation of the numerical method 

To demonstrate the validity of the present method, the 
numerical results of the boundary element formulation for a 
number of limiting cases are compared against those of 
other investigators in normal (α = 0°) and oblique waves. 

The first case examined is a structure of double partially 
immersed impermeable barriers (|G1| = |G2| = 0) separated 
by a distance B such that the relative wall depth WH/d = 
0.2 and B/d = 0.6. This case was previously studied by Das 
et al. (1997) and Liu and Li (2011), who produced results 
of the reflection coefficients (Cr) of the structure. As 
shown in Fig. 4, the agreement among the results of the 
three methods is fairly high.  

 

 
Fig. 4  Comparison of Cr values obtained from different 

methods for double impermeable barriers (α = 0°, 
WH/d = 0.2, B/d = 0.6, and |G1| = |G2| = 0) 

 
The second case examined is a structure of fully 

immersed double slotted barriers (WH/d = 1.0, d = 0.5 m, 
relative water depth kd = 1.5, and P1 = P2 = 15%); this case 
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is identical to that studied by Hagiwara (1984) and Isaacson 
et al. (1999), who provided results of Cr and Ct. Fig. 5 
shows variations in Cr and Ct versus the relative chamber 
width (0.5B/d). The results of the three methods are 
generally in close agreement. Note that for the BEM 
predictions, the values used for the linearized friction and 
added mass coefficients (f = 0.5 and Cm = 0.18) are identical 
to those reported by Isaacson et al. (1999) in their analytical 
investigation.  

 

 
(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 5  Variations in Cr and Ct as determined from 
different methods for double porous slotted 
barriers (α = 0°, WH/d = 1.0 with d = 0.5 m, kd = 
1.5, P1 = P2 = 15%, f = 0.5, and Cm = 0.18) 

 
In the third example, the BEM predictions of the present 

method are compared with the experimental results of 
Huang (2007), who carried out tests on double slotted thin 
walls constructed of closely spaced rectangular cylinders of 
heights equal to a water depth d = 0.3 m (WH/d = 1) with 
wave period T = 1.1 s, and P1 = P2 = 21%. Huang (2007) 
also provided analytical expressions of the coefficients Cr 
and Ct, which were derived from linear wave theory. 
Variations in Cr and Ct versus the relative chamber width 
(B/Li) are shown in Fig. 6. The agreement among the BEM 
results, the experiments, and the analytical expressions is 
satisfactory. Note that in the BEM predictions, the estimated 
value of the linearized friction coefficient was f = 2.5 and 
the added mass coefficient was set to zero (Cm = 0).  

The results of Cr from the current numerical method are 
shown in Fig. 7 and compared with those of Das et al. (1997) 
and Liu and Li (2010) for a structure of double impermeable 
walls (|G1| = |G2| = 0) in oblique waves (α = 30°) with WH/d = 

0.6 and B/d = 2. The results of the three methods are in 
close agreement, and the small differences generated in the 
BEM solutions could be attributed to the use of constant 
boundary elements. 

 
Fig. 6  Variations in Cr and Ct as determined from 

different methods for double porous slotted 
barriers (α = 0°, WH/d = 1 with d = 0.3 m, T = 1.1 s, 
P1 = P2 = 21%, f = 2.5, and Cm = 0) 

 

 
Fig. 7  Variations in Cr for double impermeable walls (α = 

30°, WH/d = 0.6, B/d = 2, and |G1| = |G2| = 0) 

4 Results and discussion 

Due to the large number of parameters on hand, a very 
large number of cross-correlations must be investigated. The 
parameters of interest are P1 and P2 (or |G1| and |G2|, 
respectively), WH/d, kd, B/Li, and α. All of these parameters 
must be cross-correlated with care to reveal meaningful 
conclusions. In this work, only a subset of the data gathered 
from this study is shown.  

In Fig. 8, the values of Cr and Ct are shown versus WH/d for 
different values of kd; in this case, a breakwater with P1 = 
40% and an impermeable back wall (P2 = 0%), α = 40°, and 
B/Li = 0.3 is analyzed. When the conditions approach those of 
shallow water (kd < 1), the walls must be fully extended to 
reflect more and transmit fewer waves. On the other hand, 
when the conditions approach those of deep water (kd > 2), 
extending the barriers beyond a certain limit results in no 
change to Cr but decreases Ct at a slower rate. When WH/d = 1, 
no wave transmission occurs (Ct = 0) since the back wall is 
impermeable. By contrast, wave reflection is full (Cr = 1) for 
smaller values of kd but decreases as kd is increased. 
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(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 8  Variations in Cr and Ct versus WH/d for different 
values of kd 

 

 
(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 9  Variations in Cr and Ct versus WH/d for different 
values of P1 

In Fig. 9, variations in Cr and Ct are shown versus WH/d 
for different values of P1, an impermeable back wall (P2 = 
0%), α = 40°, B/Li = 0.3, and kd = 2. In this case, when the 
conditions approach those of deep water, both Cr and Ct 
decrease as P1 increases regardless of the water depth. The 
wave chamber apparently tends to dissipate more wave 
energy, leading to less reflection and wave transmission. 
When WH/d = 1, no waves are transmitted but the Cr values 
are clearly below 1, as demonstrated in Fig. 8. Regardless of 
the value of P1, transmission decreases but reflection does not 
show much variation for WH/d ≥ 0.5.  

Fig. 10 illustrates variations in Cr and Ct versus kd for 
different values of WH/d, α = 40°, B/Li = 0.3, P1 = 40%, and 
P2 = 0%. The results show some interesting features. For fully 
extended walls (WH/d = 1), no transmitted waves are 
permitted since the back wall is impermeable. Full reflection 
occurs when kd tends to approach zero and decreases with 
increasing values of kd. For partially submerged surface 
piercing walls (WH/d < 1), all waves are transmitted and no 
reflection occurs when kd approaches zero. As kd increases, 
wave transmission decreases but reflection increases and then 
follows the curve observed for WH/d = 1.  

 

 
(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 10  Variations in Cr and Ct versus kd for different 
values of WH/d 

 
Variations in Cr versus kd for different P1 are shown in Fig. 

11 for the previous case where the walls are fully extended to 
the seabed (WH/d= 1). Regardless of kd, Cr increases with 
increasing P1. However, regardless of P1, reflection tends to 
approach 1 in the limit kd = 0 and decreases for increasing 
values of kd. An exception occurs when P1 = 10%. In this case, 
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Cr first decreases to a minimum at around kd = 2.4 and then 
increases once more. Thus, for an impermeable back wall, a 
front wall with 10% porosity leads to minimal reflection, 
especially for intermediate waters (1.5 < kd < 3.0).  

 
Fig. 11  Variations in Cr versus kd for different values of P1 

 

 
(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 12  Variations in Cr and Ct versus P1 for different 
values of P2 

 
In Fig. 12, variations in Cr and Ct versus P1 for different 

values of P2 are illustrated for a breakwater extending to the 
seabed (WH/d = 1), α = 0°, kd = 2, and B/Li = 0.3. Whereas the 
Cr values decrease with increasing P2, the Ct values show the 
opposite trend. The best efficiency (minimum values of Cr and 
Ct) is achieved when the back wall is impermeable and P1 = 
10%. Thus, to achieve the best dissipative system, the 
porosities of the walls ought to be kept below 40% with P1 
about 10% higher than P2. Similar conclusions can be made 
from Fig. 13, which shows variations in Cr and Ct versus P2 for 
different values of P1. 

In the following computations, the correlations are varied 
against different α for a breakwater system with B/Li = 0.3. 

 

 
(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 13  Variations in Cr and Ct versus P2 for different 
values of P1 

 

 
(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 14  Variations in Cr and Ct versus incident wave angles 
for different values of WH/d 

Fig. 14 illustrates the variations in Cr and Ct for different 
values of WH/d when P1 = 30%, P2 = 0%, and kd = 2. Cr 
clearly remains practically constant up to α = 40° and then 
increases or decreases depending on the value of WH/d. At α = 
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90°, Cr increases to 1 when WH/d = 1 and decreases to zero 
for other values of WH/d. Regardless of the value of α, Cr 
increases with increasing value of WH/d, especially when α > 
40°. When α = 90°, Ct tends to approach 1 for all values of 
WH/d and then decreases sharply to zero at WH/d = 1. 

In Fig. 15, when WH/d = 1, Cr varies minimally and appears 
nearly constant for different values of kd at α up to 40°. All 
values of Cr converge to 1 at α = 90°, and no waves are 
transmitted since the back wall is impermeable. Regardless of 
the value of α, the Cr values decrease with increasing kd. 

 

 
Fig. 15  Variations in Cr versus incident wave angles for 

different values of kd 
 
Fig. 16 shows the variations in Cr for different P1; here, P2 = 

0, kd = 2.5, and all other conditions are identical to those in the 
previous case (WH/d = 1). For values of P1 ≤ 10%, Cr decreases 
and then increases. For values of P1 > 10%, all of the Cr 
coefficients behave similarly, remaining practically constant for 
α up to 40° and then increasing to reach 1 for α = 90°. The 
figure further demonstrates that the minimum values of Cr are 
achieved at P1 = 10%. 

 

 
Fig. 16  Variations in Cr versus incident wave angles for 

different values of P1 
 
When the back wall of the previous example is given 

some permeability (P2=5%), the results are somehow 
altered to allow for the wave to transmit. Fig. 17 shows 
that Cr values are further decreased from their 
counterparts in Fig. 16, but the Ct values indicate some 
wave transmission. At the limit α = 90°, the values of Cr 
tend to approach zero and Ct = 1. The minimum values of Cr 
correspond to P1 = 20%. When the front wall porosity is 
above 10%, both reflection and transmission coefficients are 

below 0.3 for a wide range of incident wave angles. 
Fig. 18 demonstrates the effects of varying B/Li on Cr for 

different α and kd = 1 in a breakwater system extending to the 
seabed (WH/d = 1) with P1 = 10% and an impermeable back 
wall (P2 = 0%). To take into account the obliquity of the 
waves, the x coordinate is taken as Bcos(α)/Li (Huang, 2011).  

 

 
(a) Reflection coefficient Cr 

 
(b) Transmission coefficient Ct 

Fig. 17  Variations in Cr and Ct versus incident wave angles 
for different values of P1 

 

 
Fig. 18  Variations in Cr versus the relative chamber width 

Bcos(α)/Li for different incident wave angles 
 
For any α, Cr clearly oscillates between the minima 

occurring at Bcos(α)/Li = 0.25 + 0.5n (n = 0, 1, 2, …) and the 
maxima (Cr = 1) at Bcos(α)/Li = 0.5 + 0.5n. This is true when 
inertial effects associated with the porous wall are ignored. 
For practical applications, only the first mode, that is, for n = 
0, is of interest. For any particular value of Bcos(α)/Li, the 
reflection increases with increasing α. Similar conclusions 
were made by Huang (2011) for a similar type of breakwater. 
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5 Conclusions 

In the present work, an MDBEM approach was developed 
to analyze the reflection and transmission of waves from 
single-chamber (double-porous walls) breakwater systems. 
The method was first validated against previous analytical 
and experimental data available in the literature. The present 
computations showed that Cr and Ct depend on a large 
number of parameters, including α, kd, WH/d, P, and B/Li. To 
improve the performance of the breakwater, P1 ought to be 
10% larger than P2. Increasing P1 increases wave dissipation 
and, hence, decreases reflection. Incident wave angles exert 
effects on transmission and reflection only at α larger than 
40°. At α ≤ 40°, Cr and Ct do not vary significantly and can be 
treated with certainty as constant. To eliminate wave 
transmission altogether, using a breakwater with an 
impermeable back wall is recommended. P1 could be 
optimized to deliver a minimum reflection; specifically, a 
front porous wall with 10% porosity was shown to deliver 
optimum reflections for a wide range of α. 
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