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Abstract: The speed of a ship sailing in waves always slows down 
due to the decrease in efficiency of the propeller. So it is necessary 
and essential to analyze the unsteady hydrodynamic performance of 
propeller in waves. This paper is based on the numerical simulation 
and experimental research of hydrodynamics performance when the 
propeller is under wave conditions. Open-water propeller 
performance in calm water is calculated by commercial codes and 
the results are compared to experimental values to evaluate the 
accuracy of the numerical simulation method. The first-order 
Volume of Fluid (VOF) wave method in STAR CCM+ is utilized to 
simulate the three-dimensional numerical wave. According to the 
above prerequisite, the numerical calculation of hydrodynamic 
performance of the propeller under wave conditions is conducted, 
and the results reveal that both thrust and torque of the propeller 
under wave conditions reveal intense unsteady behavior. With the 
periodic variation of waves, ventilation, and even an effluent 
phenomenon appears on the propeller. Calculation results indicate, 
when ventilation or effluent appears, the numerical calculation 
model can capture the dynamic characteristics of the propeller 
accurately, thus providing a significant theory foundation for 
further studying the hydrodynamic performance of a propeller in 
waves. 
Keywords: propulsive performance, ventilation phenomenon, open 
water test, wave condition, unsteady characteristics 
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1 Introduction1 

Generally, the propeller works aft in waves. The 
traditional ship self-propulsion test–ship power prediction 
method does not consider the hydrodynamic performance of 
the propeller under wave conditions unless coefficient 
correction is performed later. ITTC summarized four 
methods to calculate the increase of ship power in waves: 
direct powering method, torque rotational speed method, 
thrust rotational speed method, and resistance equal to thrust 
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method (Arribas, 2007). However, all four methods have 
some assumptions, such as the increasing rate of ship power 
is constant, the thrust and torque of the propeller are 
proportional to the wave height quadratic, etc. These 
assumptions cannot reflect the actual condition of the ship in 
the waves; hence, none of the above methods can provide an 
accurate calculation of the ship’s resistance increase in 
ballast condition. Therefore, it is necessary to investigate the 
hydrodynamic performance of the propeller under wave 
conditions (Ding, et al. 1998; Bu, et al. 2005; Kuang, et al. 
2006; Liang, et al. 2006; Cheng, et al. 2007). 

In the theoretical research, Natio and Nakamura (1979) 
assumed that the inflow velocity, thrust, and torque 
fluctuated sinusoidally. Then, they calculated the fluctuation 
thrust of the propeller under wave conditions with 
open-water characteristics curves. Fallinsen et al. (1981) 
considered the influence of the free surface on propeller 
hydrodynamics. They supposed the frequency of the 
propeller heave in waves is much smaller than the frequency 
of rotation. So, each time step of propeller heave motion can 
be considered as a steady problem. Then, the thrust 
coefficients were calculated at each time step of a propeller 
cycle, and their average value was considered as the mean 
thrust coefficient of the propeller under wave conditions. Tao 
et al. (1984, 1991) calculated the open-water propeller 
hydrodynamic performance in-regular waves by using 3D 
Green function method in which the propeller was replaced 
by sink disk. The calculation result were in accordance with 
tests. In addition, the effects of the immersion of propeller 
axis on the propeller performance are also calculated. Cao et 
al. (1988), attempted to get the open-water propeller 
characteristics, which are necessary for analyzing 
self-propulsion in wave, they performed the open-water tests 
with varying depth of propeller shaft. Then a simple 
quasi-steady calculation method is applied to predict the 
open-water characteristics of propeller in waves. The 
calculated values show good agreement with the results of 
model tests. Wang et al. (1989) proposed a quasi-steady 
lifting surface method for the prediction of characteristics of 
a propeller immersed near the water surface without air 
ventilation. The vortex lattice method was applied. The 
propeller loading and blade thickness were denoted 
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respectively by discrete line vortex and source elements 
which were placed on the camber surface. The unknown 
strengths of vortex elements were determined by satisfying 
the no-penetration condition on the camber surface, the 
linearized free surface condition and the Kutta condition at 
trailing edges. Tao et al. (1999) used the Green function in 
potential flow theory to calculate the thrust decrease. They 
simplified the rotating propeller as a propeller with 
countless blades, and the velocity potential consists of the 
steady and unsteady components, with the unsteady 
components being the variable parameter in the waves. The 
source-sink distribution method was used to calculate the 
changing thrust. Yu (2008) analysed the hydrodynamic 
performance of propeller in wave. He divided the program 
into heaving due to the wave interspersed with diffraction of 
the waves. The heaving process was simulated by 
combining the technique of dynamic mesh and sliding mesh. 
Lee et al. (2010) used an overset grid approach to simulate 
the propeller performance under wave conditions. Califano 
and Steen et al. (2011) numerically simulated the 
phenomenon of ventilation on a fully submerged propeller, 
and found that the tip vortex plays an important role in 
ventilation of the conventional propellers, which is the object 
of the present study. Yari and Ghassemi (2016) used the 
boundary element method to numerically simulate the 
surface-piercing propeller in unsteady open-water conditions, 
and predicted the propeller’s performance, unsteady 
ventilation pattern, and cross-flow effect on partially 
submerged propellers. 

From an experimental research aspect, Lee, et al. (1983) 
researched the depth change and open-water characteristics 
relationship of propeller. They also studied the performance 
of a propeller under racing conditions. The propeller load 
fluctuations in waves are discussed together with blade 
stress and hull pressure fluctuations in waves. Jia, et al. 
(1990) continued the open-water tests with different 
conditions. They investigated the scaling problem of the 
ventilated propellers immersed near the free surface and 
studied the scaling theory, proposed the methods of judging 
the state of partial ventilation or super ventilation. And also 
developed the approximate formulate for predicting the 
performance of ventilated propeller. Paik, et al. (2005) 
performed the experiments in a circulating water channel to 
investigate the effects of a free surface on the wake behind a 
rotating propeller by using the particle image velocimetry 
technique. They found the free surface affect the axial 
velocity component and vortex structure behind the 
propeller. Guo, et al. (2012) conducted the experiment of a 
certain propeller under the same regular waves and different 
depths of propeller shaft. They studied the influence of 
depths of propeller shaft on thrust coefficient, torque 
coefficient and efficiency in calm water. The ventilation, 
runaway phenomenon of the propeller and the unsteady 
performance of the propeller in waves were also analyzed.  

This paper performed a preliminary study and analysis on 
the influence of waves on the hydrodynamic performance of 

the propeller by experimental and numerical simulation 
methods. 

2 Geometry and numerical methods 

The experiment is performed in the Ship Model Towing 
Tank Lab in Harbin Engineering University, China. 

The propeller section is investigated separately in this 
experiment. The main geometrical parameters of the 
propeller are shown in Table 1. The propeller rotational 
speed, n is 1 200 r/min. The propeller advance coefficient is 
controlled between J = 0.1-0.7 by changing the inflow 
velocity. Table 2 shows the location parameters of the 
open-water tank in this experiment, and the definitions of 
these parameters are shown in Fig. 1. Table 3 shows the 
regular wave parameters used in this experiment 
(two-parameter ITTC spectrum), where wA is the amplitude. 

WH is the wave height.   is the wave length. And T is the 

wave period. The wave direction is opposite to the driving 
direction of the towing carriage.  

2.1 Governing equations 
It is difficult to perform a direct simulation of the 

turbulence around complex engineering structures. Instead, 
time averaged methods (e.g. Reynolds averaging technique) 
are usually applied to simplify the instantaneous 
Navier-Stokes equations. The numerical simulations 
performed in the present work are based on the 
Reynolds-Averaged Navier-Stokes equations (Chakraborty 
and Cant, 2015). 
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where iu and ju (i, j=1, 2, 3) are the time averaged velocity 

components; ix and jx (i, j=1, 2, 3) are the coordinates in 

longitudinal, transverse, and vertical directions respectively; 
 is the fluid density; p is the time averaged pressure,  is 

the water kinetic viscosity, and ' '
i ju u is the Reynolds stress 

term. 
 

Table 1  Main geometrical parameters of propeller 

Principal dimension Parameter 
Number of blades 4 

Diameter/m 0.179 25 
AE/A0 0.45 
dh/D 0.15 

(P/D)1.0R 0.608 
(P/D)0.7R 0.637 

Skew angle/(º) 35 
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