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Abstract: In this paper, Neural Networks (NNs) are used in the 
modeling of ship maneuvering motion. A nonlinear response model 
and a linear hydrodynamic model of ship maneuvering motion are 
also investigated. The maneuverability indices and linear 
non-dimensional hydrodynamic derivatives in the models are 
identified by using two-layer feed forward NNs. The stability of 
parametric estimation is confirmed. Then, the ship maneuvering 
motion is predicted based on the obtained models. A comparison 
between the predicted results and the model test results 
demonstrates the validity of the proposed modeling method. 
Keywords: ship maneuvering, response models, mathematical 
modeling group model, system identification, neural networks 
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1 Introduction1 
Ship maneuverability is one of the most important 

indicators of the hydrodynamic performance of a ship. In 
fact, the prediction of ship maneuverability at the ship 
design stage is explicitly required by current Standards for 
Ship Maneuverability (IMO, 2002). Computer simulation 
based on a mathematical model of ship maneuvering motion 
provides an effective way to predict ship maneuverability. 
However, using this method requires the determination of 
the model parameters. The accuracy of prediction depends 
on the accuracy of the model parameters, which usually 
refer to the hydrodynamic coefficients. In the past, several 
approaches have been proposed to determine the 
hydrodynamic coefficients, including the database- 
dependent method, empirical formulas, captive model test, 
theoretical or numerical calculation (Computational Fluid 
Dynamics, CFD), and System Identification (SI) combined 
with free-running model tests. Of these, the SI-based 
approach has been proven as an effective and practical 
method (Sutulo and Guedes Soares, 2014). 

During the last decades, many authors have proposed 
different approaches to identify the hydrodynamic 
coefficients in the mathematical model of ship maneuvering. 
For example, Holzhüter (1989) proposed a robust 
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identification based on Least Squares (LS) in autopilot 
design. Yoon and Rhee (2003) applied the ridge regression 
method that features Estimation-Before-Modeling to identify 
hydrodynamic derivatives. Van Amerongen (1984) addressed 
the application of Model Reference Method (MRM) to ship 
steering. Abkowitz (1980) applied the Extended Kalman 
Filter (EKF) to identify ship maneuvering motion. Källström 
and Åström (1981) presented the application of Maximum 
Likelihood (ML) to ship steering. Zhou and Blanke (1989) 
used the Recursive Prediction Error (RPE) to identify a class 
of nonlinear ship maneuvering models. Bhattacharyya and 
Haddara (2006) proposed Fourier Transformation (FT) to 
identify ship maneuvering models, whereas Chen et al. 
(2010) presented the use of Particle Swarm Optimization 
(PSO) to the parametric identification of ship maneuvering. 
Herrero and Gonzalez (2012) applied the unscented Kalman 
filter to the identification of nonlinear manoeuvring models. 
Luo et al. (2014) proposed an approach based on Support 
Vector Machines (SVM) to the identification of ship 
maneuvering motion. 

Generally, those identification methods mentioned above 
can be categorized as “iteration-based identification” (e.g., 
LS, MRM, EKF, ML, RPE, PSO) and “iteration-free 
identification” (e.g., FT, SVM) methods. More often, the 
iteration-based identification is preferable in studying ship 
maneuvering. The most commonly used method in the 
identification of model parameters in a ship maneuvering 
model is the LS method, which adopts iterative processes. 
For the iteration-based identification, the initial estimation 
of hydrodynamic coefficients is typically required, because 
such estimation exerts an important influence on the 
identification results. However, it is difficult to theoretically 
select the appropriate initial coefficients. In many cases, the 
initial values of coefficients are determined by trials. 

Haddara and Wang (1999) proposed the Back Propagation 
Neural Network (BPNN) in identifying the parameters of a 
hydrodynamic model of ship maneuvering motion. However, 
NN was actually only used to approximate the nonlinear 
hydrodynamic forces and moment. Afterwards, LS-based 
regression was applied to obtain the hydrodynamic 
coefficients contained in the models of nonlinear 
hydrodynamic forces and moment. Ebada and 
Abdel-Maksoud (2005) also utilized the black-box modeling 
ability of NN (rather than the parametric identification 
approach proposed in this paper), and proposed the BPNN 
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to predict the limits of ship turning circle maneuvers. 
Moreira and Guedes Soares (2003a; 2003b) applied the 
recursive NNs to ship maneuverability prediction and 
maneuvering motion simulation. Hess et al. (2006) studied 
the online prediction of ship maneuvering by using 
dynamical recursive NNs. Rajesh and Bhattacharyya (2008) 
addressed the blind prediction of ship maneuvering by using 
multilayer feed forward NNs. 

In this paper, the use of Neural Networks (NNs) is 
proposed to achieve the parametric identification of ship 
maneuvering models. An online two-layer feed forward NN 
is adopted, and a nonlinear response model is investigated 
along with a linear hydrodynamic model of ship 
maneuvering motion. The maneuverability indices and 
linear non-dimensional hydrodynamic derivatives in the 
models are approximated by the weights in the NN. Unlike 
the conventional iteration-based algorithms, no initial 
estimation of the model parameters is required in the 
proposed model. The initial values of the parameters can 
also be set freely, e.g., zeros. 

2 Mathematical model of ship maneuvering 
motion 
To predict the ship maneuvering motion, two kinds of 

maneuvering models can be used. One is the hydrodynamic 
model, including the Abkowitz model and the Mathematical 
Modeling Group (MMG) model, and the other is the 
response model. The hydrodynamic model typically features 
many hydrodynamic derivatives, and some of them are 
difficult to determine accurately, especially for nonlinear 
derivatives. Comparatively, the response model, or the 
so-called Nomoto model, is preferred in practical 
applications owing to its simple structure, which reflects a 
ship’s responses (e.g., velocities, angular velocity) to given 
controls (e.g., rudder angle). Moreover, this kind of model is 
commonly used in the ship autopilot design. 

Usually, the motion of a ship can be described in a 
six-degree-of-freedom frame, including surge, sway, yaw, 
heave, pitch, and roll. From the point of view of 
maneuvering prediction, attention is often paid to the ship’s 
motion in the horizontal plane instead of the vertical plane. 
In other words, only surge, sway, and yaw are often 
considered. Fig. 1 depicts the ship maneuvering motion for a 
surface ship. The inertial coordinate system is denoted by 

0 0 0x o y , xoy  is the attached coordinate system, G the 

center of gravity, u the surge speed, v the sway speed, r the 
yaw rate, U the total velocity,  the rudder angle,  the 
heading angle, and  the drift angle. 

The linearized equations of ship maneuvering motion can 
be expressed as 
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where m denotes the mass of the ship; Iz is the inertia moment 
with respect to the z-axis (in the attached coordinate system, 

pointing to the center of the Earth); ,  ,  ,  ,  ,  ,u u v v rX X Y Y Y Y 

,  ,  ,  r v rN N N N  are the hydrodynamic derivatives; and u  

is the perturbation of surge speed. 
Suppose the perturbation of the surge speed is small, i.e.,

0u  , the first equation in (1) can be removed. Therefore, 
it follows that 
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It should be noted that only sway and yaw motions are 
considered in Eq. (2) Compared with Eq. (1). Such a 
simplification is reasonable, because (i) the equation of 
surge motion is decoupled from the equations of sway and 
yaw motions; and (ii) from the point of view of ship 
maneuverability, greater attention is given to the sway and 
yaw motions than the surge motion, because the rudder at 
the stern exerts an influence on the former, but only little 
influence on the latter, as shown in Eq. (1). 

By applying Laplace transformation to the above 
equations, the transfer functions from the rudder angle (δ) to 
the yaw rate (r) and sway speed (v) can be respectively 
obtained as 

( ) ( ) / ( )H s r s s                (3) 

( ) ( ) / ( )G s v s s                (4) 

From the point of view of practical helm, greater attention 
is usually given by researchers to the yaw than the sway 
motion. Moreover, measuring the heading angle or yaw rate 
(r) is much easier than measuring sway velocity. Therefore, 
the response model of yaw motion is commonly used, both 
in studies on prediction of ship maneuvering and autopilot 
design. 

Ship motion is usually characterized by large inertia and 
low frequency. Consequently, the transfer function from the 
rudder angle to the yaw rate can be described as 

( ) ( ) / ( ) / ( 1)H s r s s K Ts            (5) 

By using inverse Laplace transformation, the first-order 
linear response model with respect to the yaw motion in the 
time domain can be described as 

Tr r K                   (6) 

where T and K are the maneuverability indices, which can 
be expressed by the hydrodynamic derivatives respectively 
given by 

( ) /v vK N Y N Y C    

 ( ) ( ) / ( ) / ( )v r z r v v v vT m Y N I N Y C m Y N N Y N Y           

 
 v r v rC Y N N Y   

In consideration of the variation of the surge speed and 
the nonlinear characteristic of the surrounding flow, the 
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dynamics of ship motion is essentially nonlinear. Based on 
the linear response model (6), if nonlinear dynamics is taken 
into account, the following first-order nonlinear response 
model can be obtained 

3Tr r r K                  (7) 

where α is the coefficient of the nonlinear term (Nomoto et 
al., 1957). 
 

 
Fig. 1 Coordinate system of ship maneuvering motion 

3 Parametric identification by NNs 
The current paper studies the identification of the linear 

hydrodynamic model described by Eq. (2) and the nonlinear 
response model shown in Eq. (7). Taking the identification 
of response model as an example, rewriting Eq. (7) yields 

3( ) ( ) ( ) / ( ) / ( ) /f t r t r t T r t T K t T     
     

(8)
 

Denote 1 1 11 / , / , /T T K T      , thus, it follows 

that 

3
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(9) 

3.1 Approximation by NN 
A two-layer feed forward NN is used to approximate the 

above nonlinear system, with the form expressed as 

T( ) ( ) ( ) ( )f t r t t t    W Φ           (10)
 

where W is the weight vector, Φ is the activation function 
vector, and ε is the approximation error (Lewis et al., 1995). 
If the error is small enough, W can be called “ideal” weight 

and satisfies W MFW
 

( MW is a positive constant). Here, 

F


 
represents the Frobenius norm (F-norm). Fig. 2 depicts 

a structure of three-layer feedforward NN. When the 
weights between the input and hidden layers are set to 
constants, such a network can be defined as the so-called 
two-layer feed forward NN. During the last two decades, 
this kind of NN has found wide applications in many areas, 
especially in cybernetics. In this paper, this kind of NN is 
introduced to the parametric identification of a nonlinear 
dynamic system, i.e., the ship maneuvering motion. 

 
Fig. 2 Feed forward neural network 

Based on the two-layer feed forward NN, an estimation of 

the “ideal” weight leads to the estimation of ( )r t  

Tˆ( ) ( ) ( )er t t t W Φ               (11) 

where We is the estimate of W.  
By reference to Eq. (8), We and Φ can be defined 

respectively as 
T

1 1 1
ˆˆ ˆ
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where 
1 1 1

ˆˆ ˆ, ,   are the estimates of 
1 1 1, ,   . 

Define  

 Tˆˆ, ,e r r e r r e e         

the online algorithm of We can be designed as 

1 2 3e ek e k e k      W Φ Φ W          (12) 

where k1, 2, 3 > 0,   represents the Euclidian norm. 

3.2 Convergence of estimation 
Let a candidate Lyapunov function 
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where the weight error e W W W , tr{·} denotes the 

trace of a matrix. The derivative of Eq. (13) is given by 
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Let  1 2 3min (1 ) / , (1 )a k k a k     , then one has  
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Through the appropriate selection of NN parameters, i.e., 
k1, 2, 3, it holds that 

 2 2
2 1 2 1 3 1/ 2 / / / 4 ( 0)     Mk k e k k k W ak (17) 

Then one has 

2V V   
              

(18) 

We can prove that the error system ( , )e W is Uniformly 

Ultimately Bounded (UUB) stable (Qu and Dawson, 1995). 

Furthermore, a small W indicates that the estimates of 

1 1 1,  ,      approximate their true values well. 

4 Prediction of ship maneuvering 
In order to create a response model, the sample is taken 

from the 20°/20° zigzag maneuver tests of a model ship. The 
tests were conducted in the seakeeping basin of the State 
Key Laboratory of Ocean Engineering in Shanghai Jiao 
Tong University. The principal particulars of the ship model 
are as follows: length of the model is L=3.16 m, draft is 
d=0.159 m, the block coefficient Cb is 0.85, the service 
speed is v=1.2 m/s, and the model scale is 1:50. 

In order to remove the noisy data from the sample, a 
zero-phase digital filter is employed in preprocessing the 
sample. The transfer function is designed as 

1 2

1 2

0.06745 0.1349 0.06745
( )

1 1.143 0.4128
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 


 
z z

H z
z z       

(19) 

with the complex poles (0.5715, 0.2936 )i . 

The filtered results are shown in Fig. 3. As can be seen, 
few noises can be found in the sample. The filtered sample 
is then used in the identification of maneuverability indices. 

 

 
(a) Yaw rate 

 
 

 
(b) Rudder angle 

Fig. 3 Filtering of test data 

The parameters in NN are selected as follows: k1= k2=15, 
k3=0.5. The initial values of weight are set to zeros. Fig. 4 
presents the approximation results, which indicate that the 
estimates agree well with the test results. Fig. 5 presents the 
histories of three parameters, i.e., 

1 1 1,  ,     . As can be seen, 

the UUB stability is guaranteed. After calculating the 
expectations of 

1 1 1,  ,     , the parameters in Eq. (7) can be 

determined as 

2
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
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Based on Eq. (7), 20°/20° and 10°/10° zigzag maneuvers 
are predicted and compared with the model test results 
shown in Fig. 6 and Fig. 7 respectively, in which the 
heading angle is calculated by 

  r                  (20) 

Checking the validity of the obtained maneuvering model 
based on NN identification is conducted not only by using 
the same data used for training (i.e., 20°/20° zigzag 
maneuver), but also by testing against another maneuver 
(10°/10° zigzag maneuver). As can been seen from the 
comparison, the predicted results agree well with the test 
results, especially for the prediction of the first and second 
overshoot angles. These findings thus demonstrate the 
validity of the proposed NN-based modeling method. 

Further verification is performed with respect to the linear 
hydrodynamic model given by Eq. (2); its non-dimensional 
form is given by 
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(21) 

 

 

 
(a) Derivative of yaw rate 

 
 

 
(b) Yaw rate  

Fig. 4 Approximation results by NN 
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(a) α1-coefficient 

 

 
(b) β1-coefficient 

 

 
(c) γ1-coefficient 

Fig. 5 Parametric histories 

 
(a) Heading Ψ and rudder angle δ 

 

 
(b) Yaw rate 

Fig. 6 Prediction results of 20º/20º zigzag maneuver 

 
(a) Heading Ψ and rudder angle δ 

 

 
(b) Yaw rate 

Fig. 7 Prediction results of 10º/10º zigzag maneuver  

Data samples are taken from the 25º/5º zigzag maneuver 
test of the KVLCC2 ship model. The sampling was carried 
out at the Hamburg Ship Model Basin (HSVA). Details 
about the ship model and the experiment conditions can be 
found in (Luo et al., 2016). By applying NN to identify the 
non-dimensional hydrodynamic derivatives in (21), the 
parameters in the algorithm (12) are set as follows: k1= 
3×10−3, k2 =3×10−2, k3 =4×10−4. Assuming that the initial 
values of the hydrodynamic derivatives are zeros, then the 
identification results are 

5 5 5

5 5 5

350 10   2450 10   210 10

59 10    58 10    83 10

v r

v r

Y Y Y

N N N


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        

          
 

The added masses and added inertia of moment in (21) 
are not identified because of the parameter identifiability 
(Abkowitz, 1980). Slender body theory provides simple 
formulae to estimate these parameters (Newman, 1977). 
Numerical simulation is performed by using the obtained 
hydrodynamic derivatives. Results are shown in Fig. 8. 
Meanwhile, in Figs. 9–14, the histories of the identified 
hydrodynamic derivatives are also presented. The embedded 
small plots in the Figs. 9–14 reflect the variations of the 
parameters at the initial stages. 

 
(a) Heading Ψ and rudder angle δ 

 

 
(b) Sway velocity 

 

 
(c) Yaw rate 

Fig. 8 Prediction of 25º/5º zigzag maneuver of KVLCC2 

 
Fig. 9 Histories of the parameters vY  
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Fig. 10 Histories of the parameters rY  

 
Fig. 11 Histories of the parameters Y  

 
Fig. 12 Histories of the parameters vN  

 
Fig. 13 Histories of the parameters rN  

 
Fig. 14 Histories of the parameters N  

As shown by the simulation results, the prediction results 
agree well with the experimental results. Moreover, the 
stability of hydrodynamic derivatives is achieved. 

5 Conclusions 
NNs are proposed in the parametric identification of the 

mathematical models of ship maneuvering motion. The 
maneuvering indices and the linear hydrodynamic derivatives 
in the models can be estimated by the weights in the NNs. 
Using this method, no initial estimates of model parameters 
are required. The stability of estimation is also confirmed.  

In the next work, more efforts will be devoted to improve 
the accuracy of parametric identification and propose a more 
sophisticated maneuvering model, such as an Abkowitz 
model or a nonlinear MMG model. 
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