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Abstract: This study examines the hydrodynamic performance of 
multiple-row vertical slotted breakwaters. We developed a 
mathematical model based on an eigenfunction expansion method 
and a least squares technique for Stokes second-order waves. The 
numerical results obtained for limiting cases of double-row and 
triple-row walls are in good agreement with results of previous 
studies and experimental results. Comparisons with experimental 
measurements of the reflection, transmission, and dissipation 
coefficients (CR, CT, and CE) for double-row walls show that the 
proposed mathematical model adequately reproduces most of the 
important features. We found that for double-row walls, the CR 

increases with increasing wave number, kd, and with a decreasing 
permeable wall part, dm. The CT follows the opposite trend. The CE 

slowly increases with an increasing kd for lower kd values, reaches 
a maximum, and then decreases again. In addition, an increasing 
porosity of dm would significantly decrease the CR, while 
increasing the CT. At lower values of kd, a decreasing porosity 
increases the CE, but for high values of kd, a decreasing porosity 
reduces the CE. The numerical results indicate that, for triple-row 
walls, the effect of the arrangement of the chamber widths on 
hydrodynamic characteristics is not significant, except when kd<0.5. 
Double-row slotted breakwaters may exhibit a good 
wave-absorbing performance at kd>0.5, where by the horizontal 
wave force may be smaller than that of a single wall. On the other 
hand, the difference between double-row and triple-row vertical 
slotted breakwaters is marginal. 
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1 Introduction1 

The development and use of coastal regions play an 
important role in the national income of many countries 
worldwide. Coastal regions are a source of attraction for 
many human activities. Major concerns associated with 
these regions include the protection of the coastal area, 
harbors, and marinas and the use of methods that have the 
fewest side effects on the adjacent and neighboring shores, 
are most environmentally friendly, and are as inexpensive as 
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possible. 
There are many types of coastal protection structures, 

including artificial beaches, breakwaters, jetties, seawalls, 
artificial headlands, and groins. Breakwaters are commonly 
used along shorelines, channel entrances, beaches, harbors, 
or marinas. The main function of a breakwater is to provide 
shore protection by controlling the wave height and current 
velocity that may be transmitted along the coast and inside 
harbors. Breakwaters are classified according to their degree 
of protection: full and partial protection breakwaters. Full 
protection breakwaters are most commonly used and are 
known as conventional breakwaters, although they have 
inherent drawbacks such as being massive, environmentally 
harmful, causing excessive reflections, and not being 
economical in deeper water. Partial protection, or 
nonconventional, breakwaters have been used more recently 
and have been shown to overcome the limitations of 
conventional breakwaters (Tsinker, 1995).  

There are many types of partial protection breakwaters, 
including pneumatic and hydraulic, submerged, floating, 
flexible floating, detached, perforated, pile, pipe, and slotted 
breakwaters. The flow behavior through slotted breakwaters 
is complicated and requires further study to determine its 
hydrodynamic characteristics and performance efficiency in 
response to waves. When an array of slotted walls with more 
than one row is used, the situation becomes even more 
complicated. The wave interaction with such structures is 
quite complex; therefore, researchers have conducted 
experimental and theoretical investigations for 
understanding flow behavior through a group of slotted 
walls (Gardner and Townend, 1988; Galal, 2002). 

Several studies have proposed configurations of slotted 
breakwaters to improve their performance and to examine 
their hydrodynamic influence in attenuating incident waves. 
In particular, great attention has been given to the 
development of different geometric configurations. Various 
numerical model studies have been conducted to better 
understand the physical behavior of breakwaters. 

Kriebel (1992) theoretically and experimentally studied 
the wave transmission coefficient (CT) and acting wave 
forces (F) for a vertical slotted breakwater. The author 
developed a simple formula for estimating the CT and F that 
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mainly depends on losses from the gap between the slots. 
Isaacson et al. (1998, 1999) presented a numerical 

calculation based on Stokes first-order theory for wave 
interaction and an eigenfunction expansion method for a 
single and paired thin vertical slotted barrier extending from 
the water’s surface to a given distance above the seabed. 
Comparisons between experimental measurements of the 
transmission, reflection, and dissipation coefficients for this 
partially submerged slotted barrier exhibited good 
agreement, indicating that this numerical method adequately 
accounts for the energy dissipated by the barrier.  

Using linear wave theory and eigenfunction expansion, 
Zhu and Chwang (2001) also studied the interaction 
between waves and a slotted breakwater. Their research 
showed that the reflection characteristics of a slotted sea 
wall mainly depend on the porosity “ε”, the primary variable 
defining the structure permeability of the slotted plate, and 
the incident wave height. Analytical models based on 
potential flow for predicting wave reflection from a 
perforated-wall caisson breakwater have been developed by 
Suh et al. (2001), who also conducted laboratory 
experiments for irregular waves with various significant 
wave heights and chamber widths. The authors concluded 
that the reflected wave spectrum exhibits 
frequency-dependent oscillatory behavior, and the present 
study is a modification of their model. 

Balaji and Sundar (2004) studied horizontal slotted wave 
screens with circular intercepting elements and compared 
their experimental results with those of a numerical model 
based on Green’s identity formula with respect to the effects 
of porosity and the shape of the intercepting elements.  

Suh et al. (2006, 2007) described the hydrodynamic 
characteristics of pile-supported vertical wall breakwaters 
with circular and square piles under regular and random 
waves. They used the eigenfunction expansion method for 
their analysis and estimated the reflection, transmission, 
run-up, and wave forces acting on the breakwater. This 
method was further extended to include random waves.  

By extending the study of Suh et al. (2006), Ji and Suh 
(2010) developed a mathematical model that can compute 
various hydrodynamic characteristics of a multiple-row 
curtainwallpile breakwater and conducted laboratory 
experiments for double- and triple-row breakwaters. The 
results indicated that their mathematical model adequately 
reproduced most of the important features of the 
experimental results. 

Koraim (2011) theoretically and experimentally 
investigated one row of a vertical slotted breakwater under 
normal regular waves and developed a simple theoretical 
model based on an eigenfunction. He examined the validity 
of the theoretical model by comparing its results with the 
theoretical and experimental results obtained from other 
studies. He found that the transmission coefficient decreases 
with increasing values of a dimensionless wave number, 
increasing wave steepness, and decreasing breakwater 
porosity. He concluded that his theoretical model can be 

used to predict the performance of slotted breakwaters and 
the hydrodynamic forces exerted on these structures using 
the friction coefficient f =1.5. 

Ahmed et al. (2011) developed a numerical model based 
on an eigenfunction expansion method for regular linear 
wave interactions with a single and double vertical slotted 
wall and nonlinear (Stokes second-order) wave interactions 
with a single vertical slotted wall. They validated the 
numerical model by comparing its results with those of 
previous studies and their own experimental results. The 
authors found that f and the coefficient of porosity ε 
significantly influence the reflection (CR), transmission (CT), 
and wave energy dissipation (CE) coefficients of permeable 
breakwaters, while the influence of the added mass 
coefficient (Cm) is minimal and can be omitted for this 
configuration.  

The objective of the present study was to describe the 
flow behavior and the hydraulic performance of 
multiple-row vertical slotted breakwaters. We developed a 
mathematical model of Stokes second-order waves based on 
an eigenfunction expansion method and a least squares 
technique for wave interaction with multiple-row vertical 
slotted breakwaters. 

2 Theoretical formulation and assumptions 

In this section, we describe the mathematical model 
developed, which is based on an eigenfunction expansion 
method and a least squares technique. Let's consider the 
multi-row irregular vertical slotted breakwaters diagrammed 
in Fig. 1, in which d=constant water depth, duj is the height 
of the jth curtainwall below the still water level, dmj is the 
draft of the permeable intermediate part of the jth wall, and 
bj is the thickness of the jth wall. We defined a Cartesian 
coordinate system (x and z) with the positive x directed from 
left to right from a point on the first wall and the vertical 
coordinate z measured vertically upward from the water line. 
The center of the jth wall is located at x=xj. 

The water wave problem has a free surface boundary that 
moves with the water particle velocity. This velocity is one 
of the unknown variables. Therefore, the position of the free 
surface boundary is also an unknown variable before 
computation. The fluid domain is divided into J+1 regions 
by the J walls. The up-wave and down-wave regions of the 
jth wall are defined as Ωj−1 and Ωj, respectively. Assuming 
incompressible fluid and irrotational flow motion, the 
velocity potential exists, which satisfies the Laplace 
equation. The following boundary value problem is obtained 

for the velocity potential ( ,  ,  )j x z t  in each region: 

2 2

2 2
0j j

x z

   
 
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 for 0,1,2,...,j J       (1) 
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Fig. 1 Definition sketch for a vertical slotted wall breakwater 
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where ω represents the wave angular frequency and g is the 
gravitational acceleration, assuming periodic motion in time 
t. As an example of a nonlinear theory, we discuss Stokes 
second-order theory here; see e.g., Sarpkaya and Isaacson 
(1981). In Stokes higher-order theory, the velocity potential 

j  is written as a perturbation series with the following 

form: 
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in which j  and j represent the first-order and 

second-order velocity potentials, respectively, H is the 
incident wave height, and L is the wavelength. Also, Re{} 

denotes that the real part of the argument, i= 1 , μ and λ 
are the wave numbers. We obtain the reduced velocity 

potentials j  by the eigenfunction expansion method used 

by both Isaacson et al. (1998) and Suh et al. (2006). The 
velocity potentials are expressed in a series with an infinite 
number of solutions. The solutions to Eq. (1) that satisfy the 
boundary conditions, Eqs. (2) and (3), are given as follows: 
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where Ajm and Bjm are the coefficients of the component 
waves propagating forward and backward, respectively. The 
first subscript (j) indicates the row of the wall, while the 
second subscript (m) indicates the wave component. The 
wave numbers m are the solutions to the first-order 

dispersion relation, 2 tan( )    m mg d , (Chakrabarti, 

1987; Sarpkaya and Isaacson, 1981) and the m values are 
the solutions to the second-order dispersion relation, 

2 (2 )(2 ) tan    m mg d . They have an infinite discrete set 

of real roots ±m and ±m (m≥1) for non-propagating 
evanescent waves and a pair of imaginary roots ±i0 and 
±i0, respectively, for propagating waves. We take the 
negative sign so that the propagating waves in Eqs. (5) and 
(7) correspond to the reflected and transmitted waves, 
respectively. We also take the positive roots for m≥1 so that 
the non-propagating waves vanish exponentially with 
distance from the wall. Eqs. (5)(7) satisfy all relevant 
boundaries, and automatically satisfy the requirement that 
the horizontal velocities must be matched at the breakwater. 
Velocity potentials are also required to satisfy the following 
matching conditions: 



Moussa S. Elbisy, et al. Hydrodynamic Performance of Multiple-Row Slotted Breakwaters  126 
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(11) 
The permeable boundary condition along the slotted wall 

can be developed based on the formulation of Sollitt and 
Cross (1972) and adopted by Yu (1995) and Isaacson et al. 
(1998) for a thin vertical barrier:
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Following Yu (1995), Gj is expressed as follows: 
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where ‘Gj’ is a permeability parameter of the jth barrier, 
which is generally complex and  j  is the argument of the 

complex Gj, when jG  equals zero, the perforated wall 

reduces to an impermeable wall, while for jG  tends 

toward infinity, the wall becomes entirely transparent. ‘bj’ is 
the barrier thickness, fj represents the friction coefficient and 
j is the porosity of the perforated part of the jth wall. In the 
original formulation of Sollitt and Cross (1972) fj is 
calculated implicitly using the Lorentz principle of 
equivalent work so that the nonlinear effects of wave 
steepness are retained. In the present study the formulation 
of Yu (1995) is followed such that fj is treated simply as a 
constant which is assumed to be known. sj represents the 
inertia coefficient given as follows: 
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where Cm represents the added mass coefficient, which is 
treated as a constant. For convenience, the variables are 
redefined as follows: 
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and 1  j j jx x x . Substituting Eqs. (5), (6), and (7) into 

the boundary conditions at the breakwater gives the 
resulting Eqs. (10), (11), and (12). These are known as series 
relations, as described by Dalrymple and Martin (1990), and 
are to be solved for the values of the coefficients. Every 
third condition can be combined to make one mixed 
boundary condition that specifies the potential along the 
z-axis, such that P(z) denotes the boundary condition on the 
right side of the wall and Q(z) denotes the boundary 
condition on the left side of the wall as follows: 
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   (30) 

We can use the least squares technique, suggested by 
Dalrymple and Martin (1990), to determine the coefficients 

0mB , which requires the minimum values for the following 

variables: 
0 0

2 2

1 1(z) d (z) d 0
d d

P z Q z
 

            (31) 

Minimizing these integrals with respect to the coefficient 

0mB  leads to the following: 
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where *
1 ( )P z and *

1 ( )Q z  are the complex conjugates of 

1 ( )P z  and 1 ( )Q z , respectively, and 
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Substituting Eqs. (33)(38) into Eq. (32) yields the 
following: 
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(40) 
Once the wave potentials are calculated, various 

engineering wave properties can be obtained. The (real) 
transmission and reflection coefficients, denoted as CT and 
CR, respectively, are defined as the appropriate ratios of the 
wave heights: CT=HT/H and CR=HR/H, where HT and HR are 
the transmitted and reflected wave heights, respectively 

(Isaacson et al., 1999). These are given in terms of 0mB  

and JmB  as follows: 

00RC B                   (41) 

and 



Moussa S. Elbisy, et al. Hydrodynamic Performance of Multiple-Row Slotted Breakwaters  128 

0T JC B                  (42) 

To obtain a simple formula for 00B , we consider only the 

propagating wave mode (n=m=0). By substituting n=m=0 in 

Eq.(39), *
00B , which is the complex conjugate of 00B , can 

be obtained as follows: 
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(43) 

The energy dissipation through the permeable part of the 
wall corresponds to the difference in energy between the 
incident wave and the sum of the energy of the reflected and 
transmitted waves. The wave energy dissipation coefficient 
CE is expressed as follows: 

2 21  E R TC C C               (44) 

The wave force on each wall can be calculated by 

integrating the wave pressure acting on both the up-wave 
and down-wave sides of the wall. The magnitude of the 
horizontal wave force on the unit width of the front wall, Ff, 
is given as follows: 
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(45) 

The magnitude of the horizontal wave force on the unit 
width of the rear wall, Fr, is given as follows: 
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The dimensionless wave forces, CFf  and CFr, on the front 
and rear walls, respectively, are defined as follows: 
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gHd
                (48) 

 

 
Fig. 2 Experimental setup 

 
Table 1 Specifications of sensors 

Sensors type 
Blind 

area/mm 
Working 

range/mm 
Frequency/kHz

Techn. 
Resolution/mm

Reproducibility/% 
Output 

update/Hz 
Analogue 
output/V

USS 635 60 350 400 0.18 ±0.15 75 0–10 

 

3 Experimental investigation 

We conducted a series of experimental tests on physical 
models of a double vertical slotted wall with different 
parameters. The experiments were carried out in the wave 
flume of the hydraulics laboratory of the Department of 

Civil Engineering at Umm Al-Qura University, Saudi Arabia. 
These tests were carried out to measure the wave reflection 
and transmission coefficients (CR and CT) of the proposed 
double vertical slotted wall using different wave and 
structural parameters. In addition, we calculated the 
dissipation coefficients (CE), as shown in Eq. (44). 
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3.1 Model scale 
In hydraulic model tests of sea waves, the viscosity and 

surface tension of water do not typically play a significant 
role in controlling the phenomenon, while inertia and 
gravity forces are considered to be the predominant 
governing forces. Thus, we used Froude’s law when 
simulating the studied phenomenon. We used a geometric 
scale of 1:30 to construct the model of the proposed double 
vertical slotted wall breakwaters. The selection of this ratio 
depended on the dimensions of the flume and the wave 
conditions, i.e., length and height, to be used throughout the 
experiment. 

3.2 Test facility 
The flume in the hydraulics laboratory is 15.0 m long, 

0.30 m wide, and 0.45 m deep. It is equipped with a wave 
generator at one end, which is connected to a computer to 
generate regular waves of different heights and frequencies, 
and a wave-absorbing slope at the downstream end of the 
flume. In addition, we constructed a permeable wave 
absorber to absorb waves generated behind the wave 
generator to prevent its interference with the main front 
wave. The details of the experimental setup are shown in 
Fig. 2. All experiments were conducted at a water depth of 
0.3 m and with generator motions corresponding to regular 
wave trains with different wave periods, ranging from 
T=0.6 to 1.33 s. 

3.3 Model details 
The proposed breakwater models basically consist of 

double vertical slotted walls, which were constructed with 
vertical panels 0.025 m wide and 0.025 m thick. We varied 
the porosity of the slotted walls (ε=0.25, 0.33, 0.50, and 
0.67) in the middle section. The upper and lower parts are 
impermeable at different depths, at a ratio based on the 
water depth. We placed the front vertical barrier to be tested 
at a fixed distance of 7.5 m from the wave generator and the 
rear wall was located at various distances from the front 
wall. 

3.4 Wave height measurements 
We measured the wave heights using a movable 

non-contact ultrasonic distance transmitter. This instrument 
has two main parts: (a) a type USS 635 sensor and (b) an 
Ultralab ULS 80D. We connected the ultrasonic distance 
transmitter unit to a computer system to continuously record 
and store the output data, so that the variation of water 
surface with time could be plotted. The specification of the 
type USS 635 sensors are shown in Table 1. The ULS 80D 
system is equipped with eight fully assembled independent 
channels, with both an analog output (0–10 V) and a digital 
RS232 output.  

We carried out a static calibration of the wave gauges 
daily and at the beginning and end of each set of 
experiments. The calibration constants were found to have a 
standard deviation of less than 1.0%. 

To measure the incident and reflected wave heights at the 
structure, we positioned three wave gauges in front of the 

structure (Fig. 2), and used these three gauges to reduce the 
errors in the amplitudes and phase measurements. Using the 
three-probe method of Mansard and Funke (1980), we 
adjusted the spacing between the first three gauges for each 
of the wave periods to calculate the reflection coefficient. 
The distance between the first two gauges (X12) in the line of 
wave propagation was one-tenth of a wave length 
(X12=L/10)). The distance between the first and third wave 
gauges (X13) in the line of wave propagation should satisfy 
the following conditions: (a)  L/6<X13<L/3, (b) X13≠L/5, and 
(c) X13≠3L/10. Hence, we selected X13 as X13=L/4.  

Another parameter of similar importance is the distance of 
the wave gauges in front of the structure. Goda and Suzuki 
(1976) suggested that gauges be located at least one wave 
length (wave length corresponding to the peak frequency) 
(Lmax=2.0 m) away from the reflective structures. 

To avoid the effect of turbulence caused by 
wave-structure interaction, we measured the wave 
transmission by the wave gauge at the rear side of the model 
at a distance of 2.0 m. 

To estimate the reflection and transmission coefficients 
for each test, we used the wave records obtained from the 
gauges. We estimated the reflection and transmission 
coefficients using a least-squares method applied to 
simultaneous measurements of the water surface 
elevation of the breakwater’s up-wave and down-wave. 
We obtained the incident wave height from measurements 
without the barriers in place. 

4 Validation of proposed mathematical model 

To examine the effectiveness of the proposed model, 
we compared the theoretical predictions of the 
hydrodynamic coefficients (reflection, transmission, and 
dissipation coefficients) with those obtained experimentally 
and numerically by other researches and from the 
experimental results of our study. 

4.1 Comparison of the proposed model with numerical 
and experimental data (Isaacson et al., 1999)  

We validated the proposed mathematical model by 
comparing its results with the theoretical and experimental 
results of Isaacson et al. (1999) with respect to the 
hydrodynamic characteristics of double vertical slotted 
barriers. 

In Isaacson et al.’s tests, permeable wave barriers were 
constructed of vertical panels 2.0 cm wide and 1.3 cm thick. 
The water depth was d=0.45 m, the wave steepness was 
H/L=0.07, and the half immersed barrier (dm=0.50d) had a 
porosity of =5% and spacing of x=2.2d. The friction 
coefficient was f =2 and the mass coefficient was Cm=0. Fig. 
3 shows a plot of the numerical results and test data of 
Isaacson et al. (1999) for the reflection, transmission, and 
dissipation coefficients (CR, CT, and CE, respectively) and 
those of the model proposed in this study. In this figure, the 
CR, CT, and CE are plotted as a function of kdu. As shown in 
Fig. 3, the results obtained by the proposed model agree 
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well with the numerical and experimental results of Isaacson 
et al. (1999). The CR increases with an increasing kdu, as 
shown in Fig. 3(a). The opposite trend can be observed for 
CT in Fig. 3(b). As shown in Fig. 3(c), CE increases with an 
increasing kdu until reaching the peak point, and after that it 
decreases. 

4.2 Comparison of the proposed model with numerical 
and experimental data (Ji and Suh, 2010)  

Next, we validated the proposed mathematical model by 
comparing its results with the theoretical and experimental 
results of Ji and Suh (2010), with respect to the 
hydrodynamic characteristics of a triple-row curtainwall 
pile breakwater. 

 

 
(a) CR 

 

 
(b) CT 

 

 
(c) CE 

Fig. 3 Comparison of proposed model results with the 
theoretical and experimental results of Isaacson et 
al. (1999) for double vertical slotted barriers as a 
function of kdu for =5%, dm=0.5d, x=2.2d, f =2, 
and Cm=0 

 
  The experiments by Ji and Suh (2010) were carried out in 
the wave flume at the Coastal Engineering Laboratory of 
Seoul National University, which is 30 m long, 0.6 m wide, 

and 1 m deep. All experiments were conducted at a water 
depth of 0.5 m, and square piles with side lengths of 3 cm 
were used. The draft of permeable part (dm=0.5d) had a 
porosity of =0.5. The draft of upper curtainwall, du, was 
0.5d. Six different wave periods (T=1.0, 1.2, 1.4, 1.6, 1.8, 
2.0 s) were used with specified wave heights corresponding 
to a constant wave steepness of H/L=0.03. The distance 
between the first and third rows was 2.0d, such that 
x1=x2=1.0d. The friction coefficient was f=2 and the mass 
coefficient was Cm=0. The numerical results and test data of 
Ji and Suh (2010) for CR, and CT and those of the proposed 
model are plotted in Fig.4. As we can see in the figure, the 
results obtained by the mathematical model proposed in this 
study agree well with those of the theoretical and 
experimental results of Ji and Suh (2010). 
 

 
(a) CR 

 
(b) CT 

Fig. 4 Comparison of proposed model results with the 
theoretical and experimental results of Ji and Suh 
(2010) for triple-row curtainwall-pile breakwater as 
a function of kd for =50%, du=0.5d, dm=0.5d, 
x1=x2=1.0d, f =2, and Cm=0 

4.3 Comparisons with experimental data of the present 
study 

The effects of the permeable wall part dm (dm=0.8d, 0.6d, 
0.4d, and 0.2d) on the reflection, transmission, and 
dissipation coefficients (CR, CT, and CE) of identical 
double-row walls are shown in Figs. 5, 6, and 7. In these 
figures, each hydrodynamic parameter is plotted as a 
function of kd. We used three different values for the 
chamber width x=0.5d, 1.0d, and 2.0d in Figs. 5, 6, and 7, 
respectively. The other calculating conditions used in these 
figures area porosity of =0.5, a friction of f =2, and a mass 
coefficient of Cm=0. From Figs. 57, it is evident that the 
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value of the CR increases with an increasing kd at a fixed dm 
and decreases with an increasing dm for a fixed kd. The CT 

follows the opposite trend. The CE increases with an 
increasing kd until reaching a peak point and then sharply 
decreases, except in the case of dm=0.2d and x=2.0d. The 
maximum value of the peak CE increases and moves to the 
right with an increasing kd. Moreover, we can see from Figs. 
5, 6, and 7 that with increasing values of x/d, the CR 

decreases monotonically, but a variation of the CT with an 
increasing value of x/d is not noticeable. The CE and CR 

vary oppositely with respect to x/d.  
 

 
(a) CR 

 
(b) CT 

 
(c) CE 

Fig. 5 Comparison of experimental results with theoretical 
results as a function of kd for four different middle 
permeable parts of double-row walls with =50%, 
x=0.5d, f =2, and Cm=0 

 
In the design of a slotted breakwater, the choice of 

porosity is particularly important. Fig. 8 presents the 
measured and predicted hydrodynamic coefficients and the 
dimensionless wavenumber (kd) for different breakwater 

porosities (ε=0.25, 0.33, 0.50, and 0.67) for f =2, cm=0.00, 
and dm=0.6d for double-row walls. The figure shows that 
the CR increases with an increasing kd and decreases with an 
increasing porosity ε, while the CT follows the opposite 
trend. At lower values of kd, the decreasing porosity 
increases the CE, but for high values of kd the decreasing 
porosity reduces the CE. 

Comparisons of the numerical with the experimental 
hydrodynamic coefficient results show that the proposed 
mathematical model can accurately predict the most 
important features of the experimental results. 

 

 
(a) CR 

 
(b) CT 

 
(c) CE 

Fig. 6 Comparison of experimental results with theoretical 
results as a function of kd for four different middle 
permeable parts of double-row walls with =50%, 
x=1.0d, f =2, and Cm=0 

5 Numerical examples 

Next, we investigated the effect of the permeable wall part 
dm on the hydrodynamic characteristics of the permeable 
barriers; Fig. 9 shows the behavior of the hydrodynamic 
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characteristics for a double-row wall. As shown in the figure, 
the CR, CT, and CE values are computed from the new 
mathematical model as a function of ω2/gd for various lower 
permeable wall parts. The porosity  is 0.5 for the permeable 
wall part, and the lower permeable wall part dm varies from 
0.25d to 0.75d. As such, the draft of the upper impermeable 
wall part varied according to the dm, the friction factor f =2, 
and the added mass coefficient Cm=0.00. In general, the CR 
increases with an increasing ω2/gd at a fixed dm, and 
increases with a decreasing dm for a fixed ω2/gd. The CT 
follows the opposite trend. From Fig. 9(c), we can see that 
the locations of peak points of the CE shift toward a larger 
ω2/gd as dm increases. The CE rapidly increases with an 
increasing ω2/gd until reaching the peak points (0.84, 0.77, 
and 0.81 for dm/d=0.25, 0.5, and 0.75, respectively), and 
after wards sharply decreases. 

 

 
(a) CR 

 
(b) CT 

 
(c) CE 

Fig. 7 Comparison of experimental results with theoretical 
results for a function of kd for four different middle 
permeable parts of double-row walls with =50%, 
x=2.0d, f =2, and Cm=0 

 

Fig. 10 shows the predicted hydrodynamic characteristics 
of the triple-row walls as functions of kd for different 
locations of the permeable wall part dm. The distance 
between the first and third rows was fixed as 2.0d, such that 
x1=x2=1.0d,  =50%, f =2, and Cm=0. Fig. 10(a) shows 
that the CR increases with a decreasing dm at a fixed kd and 
increases with an increasing kd at a fixed dm. Fig. 10(b) 
shows that the CT follows the opposite trend, where by the 
CT increases with an increasing dm at a fixed kd and 
decreases with an increasing kd at a fixed dm. It is obvious 
that the CR approaches one as kd tends to infinity, whereas 
the CT approaches zero as kd tends to infinity. Fig. 10(c) 
shows that the CE slowly increases with an increasing kd for 
the lower kd and reaches its maximum value or peak then 
decreases slowly with an increasing kd. The maximum value 
of the peak increases and moves to the right with an 
increasing dm. 

 

 
(a) CR 

 
(b) CT 

 
(c) CE 

Fig. 8 Comparison of experimental results with theoretical 
results for a function of kd for different breakwater 
porosities of double-row walls with dm=0.6d, f =2, and 
Cm=0 
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(a) CR 

 

 
(b) CT 

 

 
(c) CE 

Fig. 9 Predicted hydrodynamic characteristics computed 
from the new mathematical model as a function of 
2/gd for different middle permeable parts of 
double-row walls with =50%, f =2, and Cm=0 

 
Next, we examined the effect of the arrangement of the 

chamber widths on the CR, CT, and CE values for triple-row 
walls. Fig. 11 shows comparisons between the widths, or the 
distance between the walls, and the predicted hydrodynamic 
characteristics for three different cases of triple-row walls. 
The dimensions of the all rows were the same. The location 
of the second wall changed three times between the first and 
third walls. The first time x1=0.5d, x2=1.5d, the second 
time x1=1.0d, x2=1.0d, and the third time x1=1.5d, 
x2=0.5d. We can see from Fig. 11 that the effect of the 
arrangement of the chamber widths on hydrodynamic 
characteristics is not very noticeable except for kd<0.5, 
where the arrangement of the chamber widths significantly 
affects the hydrodynamic characteristics. In practice, the 
chambers usually have the same width. 

 
(a) CR 

 

 
(b) CT 

 

 
(c) CE 

Fig. 10 Predicted hydrodynamic characteristics computed 
from the new mathematical model as a function of 
kd for different middle permeable parts of 
triple-row walls with x1=x2=1.0d, =50%, f =2, 
and Cm=0 

 
The effects of the number of rows of vertical slotted 

breakwaters on the horizontal wave force on both the front 
(CFf) and rear (CFr) walls as a function of kd is shown in 
Fig.12, for =50%, du=0.5d, f =2, Cm=0, and x=1.0d in 
double- and triple-row walls. We can see from Fig.12 that 
when kd>0.5, adopting a double row instead of a single row 
can significantly reduce the value of CFf. Obviously, a 
smaller horizontal wave force would help to enhance the 
stability of the breakwater. On the other hand, the addition 
of a third row has very little effect on the value of CFf. 
Therefore, triple-row vertical slotted breakwaters would not 
be recommended unless reducing wave transmission is 
extremely important. As expected, the horizontal wave force 
on the rear wall is considerably smaller than on the front 
wall. 
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(a) CR 

 
(b) CT 

 
(c) CE 

Fig. 11 Predicted hydrodynamic characteristics computed 
from the new mathematical model as a function of 
kd for various distances between the rows of 
triple-row walls with middle permeable parts 
dm=0.8d, =50%, f =2, and Cm=0 

 

 
Fig. 12 Comparison between the dimensionless wave force 

on the front and rear walls on single-row, 
double-row and triple-row walls computed from the 
new mathematical model as a function of kd, for 
four different middle permeable parts with =50%, 
du=0.5d, x=1.0d, f =2, and Cm=0 

6 Summary and conclusions 

Using the eigenfunction expansion method and a least 
squares technique, in the present study, we developed a 
mathematical model for Stokes second-order waves to 
assess the hydrodynamic performance of multiple-row 
slotted breakwaters. We validated the newly developed 
solution by comparing its numerical results with respect to 
several limiting cases with previous predictions. We also 
validated the correctness of the proposed method by 
comparing its numerical results with previous experimental 
data and conducted laboratory tests for further assessment. 
Comparisons between the measured and predicted results 
show that the proposed mathematical model agrees well 
with experimental results. We compared our results with 
those of experimental measurements of CR, CT, and CE for a 
partially submerged slotted barrier, and a good agreement 
was obtained. For double-row slotted breakwaters, the CR 

increases with an increasing kd at a fixed dm and increases 
with a decreasing dm at a fixed kd. The CT follows the 
opposite trend. The CE slowly increases with an increasing 
kd for lower kd values, reaches a maximum, and then 
decreases again. On the other hand, the CR decreases with an 
increasing dm/d, while the CT follows the opposite trend. 
The porosity ε of the permeable wall part dm has a 
significant influence on the hydrodynamic coefficients, such 
that increasing ε would remarkably decrease the CR, while 
increasing the CT. At lower wave numbers (kd), decreasing ε 
increases the CE, but for high values of kd, decreasing ε 
reduces the CE. On the other hand, for double vertical slotted 
breakwaters, as the chamber width is relative to increases in 
the water depth x/d, the CR decreases, while a variation of 
the CT with an increasing value of x/d is not noticeable. 

These numerical results indicate that for triple-row slotted 
breakwaters, the effect of the arrangement of chamber 
widths on the hydrodynamic characteristics is not significant, 
except when kd<0.5, whereby the arrangement of chamber 
widths has a significant effect. In practice, the chambers 
usually have the same width. The numerical results also 
indicate that the horizontal wave force on the front wall is 
significantly reduced by double-row slotted breakwaters in 
comparison with single-row slotted breakwaters, for kd>0.5. 
However, the addition of a third row has very little effect on 
the value of CFf. As expected, the horizontal wave force on 
the rear wall is considerably smaller than that on the front 
wall. 
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