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Abstract: This paper presents a constructive design of new 
controllers that force underactuated ships under constant or slow 
time-varying sea loads to asymptotically track a parameterized 
reference path, that guarantees the distance from the ship to the 
reference path always be within a specified value. The control 
design is based on a global exponential disturbance observer, a 
transformation of the ship dynamics to an almost spherical form, an 
interpretation of the tracking errors in an earth-fixed frame, an 
introduction of dynamic variables to compensate for relaxation of 
the reference path generation, p-times differentiable step functions, 
and backstepping and Lyapunov’s direct methods. The effectiveness 
of the proposed results is illustrated through simulations. 
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1 Introduction1 

The main difficulty with controlling an underactuated 
ship is that only the yaw and surge axes are directly actuated 
while the sway axis is not. An application of Brockett’s 
theorem (Brockett, 1983) shows nonexistence of pure-state 
feedbacks that are able to asymptotically stabilize an 
underactuated ship at a fixed point. Thus, the stabilization 
problem is often solved by either discontinuous or 
time-varying feedback (e.g., (Reyhanoglu, 1997; Pettersen 
and Egeland, 1996; Aguiar and Pascoal, 2001; Mazenc et al., 
2002; Do et al., 2002b)). 

A global exponential position tracking system without 
controlling the ship’s yaw angle was proposed in (Godhavn 
et al., 1998). In (Pettersen and Nijmeijer, 2001), a high-gain, 
local exponential tracking result was obtained based on the 
work in (Jiang and Nijmeijer, 1999). Based on cascade and 
passivity approaches, several global tracking results were 
obtained in (Lefeber et al., 2003; Jiang, 2002). Note that in 
(Jiang, 2002; Lefeber et al., 2003; Pettersen and Nijmeijer, 
2001), the yaw velocity was required to be nonzero, i.e., a 
straight-line cannot be tracked. This restrictive assumption 
was removed in (Do et al., 2002a; 2002b; Lee and Jiang, 
2004), where various relaxations on the reference trajectory 
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and ship dynamics were made, see also (Chwa, 2011) for a 
solution to the tracking problem with input constraints. An 
assumption of low speed (nonlinear damping terms are 
ignored) is usually made in the above works due to the 
complex generation of the reference trajectories, and 
difficulties in stability analysis (especially stability analysis 
of the sway dynamics). 

There are three main approaches to path-following control 
of ships. In the first approach, the Serret-Frenet frame is 
used to define the path-following (cross-track and yaw angle) 
errors, then the yaw moment control input is designed to 
stabilize these errors at the origin (e.g., (Skjetne and Fossen, 
2001; Encarnação et al., 2000; Do and Pan, 2004; Li et al., 
2009) for nonlinear (curved) paths, (Pettersen and Lefeber, 
2001; Fredriksen and Pettersen, 2006; Moreira et al., 2007) 
for linear (straight) paths). This approach results in local 
results (except for the linear path) due to singularity in the 
cross-track error dynamics. The second approach defines the 
path-following objective as one of controlling the vessel so 
that it is in the tube of nonzero diameter centered on the path, 
and moves along the path with a desired speed (e.g., 
(Aicardi et al., 2001; Do et al., 2004; Li et al., 2008)). The 
control design aims to force the vessel to follow a virtual 
point moving along the path. This approach requires the 
vessel not be too close to the path. The third approach 
(referred to as path-tracking) is based on a combination of 
trajectory-tracking and path-following in the first approach. 
In the sense that the lateral path-following error is not 
always set to zero (to avoid singularity) and that the path 
parameter is used as an additional control to stabilize the 
lateral path-following error. Thus, global control results are 
often obtained (e.g., (Lapierre and Jouvencel, 2008; Do and 
Pan, 2006; Ghommam et al., 2008)). 

In all of the above works on trajectory-tracking and 
path-following control of underactuated ships, a hard 
constraint on the tracking/following errors has never been 
addressed. This problem is important since in practice it is 
desired to steer the ship to be within a certain distance from 
the reference path, especially in narrow waterways. 
Moreover, various conditions on the control gains and 
reference paths/trajectories were imposed in the existing 
mentioned works to ensure boundedness of the sway 
velocity instead of being directly controlled in the previous 
control designs. The above issues motivate contributions in 
this paper on new controllers for asymptotic path-tracking of 
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underactuated ships under constant or slow time-varying sea 
loads, and a hard constraint on position tracking errors. The 
method does not require the reference path be generated by 
a virtual ship. The sway velocity is directly controlled 
during the control design. First, a disturbance observer is 
proposed to globally exponentially estimate the sea loads. 
Second, a primary control surge force is designed to 
transform the ship dynamics to those of an almost spherical 
ship. Third, the trajectory tracking errors are represented in 
the earth-fixed frame and are stabilized at the origin by a 
design of controllers based on backstepping and Lyapunov’s 
direct methods. A dynamical variable is introduced to the 
reference yaw angle during the control design to compensate 
relaxation of the reference path generation. 

2 Problem statement 

2.1 Equations of motion 
Assume that the ship has an xz-plane of symmetry; heave, 

pitch and roll modes are neglected; the body-fixed frame 
coordinate origin is set in the center-line of the ship. Then, 
the mathematical model of an underactuated ship moving in 
a horizontal plane can be described as (Fossen, 2011):  
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= ( ) ( )
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where = col( , , )x y   with ( , )x y  being the (surge, sway) 

displacements of the center of mass, and   being the yaw 

angle of the ship coordinated in the earth-fixed frame 

E E EO X Y , see Fig. 1; = col( , , )u v rv  denotes the surge, 

sway, and yaw velocities of the ship coordinated in the 

body-fixed frame b b bO X Y ; 1 2 3= col( , , )     denotes the 

sea loads on the ship along the surge, sway, and yaw axes 

coordinated in the earth-fixed frame; = col( ,0, )u r    

denotes the control inputs: the surge force u  and yaw 

moment r ; and 

11

22

33

T

22 11 11 22
1 2 3

11 22 33

cos( ) sin( ) 0 0 0

( ) = sin( ) cos( ) 0 , = 0 0

0 0 1 0 0

( ) = ( ), ( ), ( )

m

m

m

m m m m
vr f u ur f v uv f r

m m m

 
  

   
   
   
      

 
    

 

J M

f v

(2) 
In (2), 11 22( , )m m  denote the masses including added 

masses in the surge and sway axes; 33m  is the inertia 

including added inertia in the yaw axis; the damping 

functions 1( )f u , 2 ( )f v  and 3( )f r  are  
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where n  is an integer larger than 1, uid , vid  and rid  

with = 1,2,...i  denote the damping coefficients in the surge, 

sway, and yaw axes, we use 0tanh( / )   with 0  being a 

small positive constant to smoothly approximate | | . 

 
Fig. 1 Definition of coordinate systems and motion variables 

Remark 2.1  The mathematical model (1) holds for 
underactuated ships equipped with two main aft propellers 

or water jets because the control moment r  does not 

directly enter the sway dynamics. For ships equipped with a 

rudder, the control force r  does directly enter the sway 

dynamics. Moreover, the off-diagonal terms in the matrix 

M  and the coupling terms in the damping functions 1( )f u , 

2 ( )f v , and 3( )f r  are neglected because these terms are 

relatively small in comparison with 11(m , 22m , 33)m , and 

those terms already included in 1( ( )f u , 2 ( )f v , 3( ))f r , 

respectively. In the case of ships equipped with a rudder and 
off-diagonal terms not negligible, the coordinate 
transformations proposed in (Do and Pan, 2005) and (Do, 
2010b) obtain a mathematical model similar to (1). Basically, 
these coordinate transformations ensure that displacements 
of a point referred to as the ship’s center of oscillation 
(similar to the case treated in control of aircraft in (Martin et 
al., 1996) and (Do et al., 2003)) are controlled instead of 
displacements of the center of mass of the ship. 

2.2 Control objective 
In this paper, we study a path-tracking control objective 

under the following assumptions.  

Assumption 2.1 

1) The reference path ( ) = col( ( ), ( ))d ds x s y sG  with s  

being the path parameter is four-times differentiable with 
respect to s  and satisfies  

 2 2( ) ( ) > 0,   d dx s y s s     (5) 
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where ( ) = d
d

x
x s

s





 and ( ) = d
d

y
y s

s





. 

2) The loads 1 , 2  and 3  are constant or slow 

time-varying in the sense that their derivatives with respect 

to time are negligible and are bounded, i.e., there exist min
i  

and max
i  with = 1,2,3i  such that min max[ , ]i i i   . 

3) At the initial time 0 0t  , the position tracking errors 

0 0 0 0 0( ) = col( ( ) ( ( )), ( ) ( ( )))e d dt x t x s t y t y s t q  satisfy the 

following condition  

 2
0( ) <e t Nq   (6) 

where 0( )e t Nq   denotes the N  weighted norm of 

0( )e tq , i.e., 2
0 0 0( ) = ( ) ( )T

e e et t tNq q Nq   with N  being a 

diagonal nonnegative definite matrix, and   is a positive 
constant. 

Remark 2.2 
1) Item 1) of Assumption 2.1 implies that the reference 

path is sufficiently regular. If the reference path contains 
several singular points, then we can split it into several 
nonsingular reference paths and consider each of them 
separately. 

2) Item 2) is reasonable in practice because the actuation 
systems should not react to high frequency disturbances so 
as to avoid becoming extensively worn. and we can take 

sufficiently small bounds min
i  and sufficiently large 

bounds max
i , = 1,2,3i . 

3) Item 3) means that the position of the ship is within the 
constrained distance from the reference path at the initial 

time 0t . Indeed, if the control problem of forcing the ship to 

asymptotically track the reference path without a distance 
constraint from the reference trajectory is of interest, one 
can set N  equal to zero. Moreover, if we are only 

interested in tracking constraint either along the E EO X -axis 

or E EO Y -axis, the matrix N  can be set equal to 

1diag( ,0)N  or 2diag(0, )N  with 1N  and 2N  being 

positive constants. 

Control Objective 2.1  Design the control inputs u  

and r , and estimate laws for the loads 1 , 2  and 3  

so that the following objectives are achieved: 
1) The position tracking errors 

( ) = col( ( ) ( ( )), ( ) ( ( )))e d dt x t x s t y t y s t q  are always within 

the constrained distance from the reference path, i.e.,  

 2( ) <e t Nq   (7) 

2) The ship asymptotically tracks the reference path 
( )sG  in the sense that the ship is on the path, and moves 

forward along the path tangentially with a desired total 

linear velocity ( )d t  coordinated in the earth-fixed frame. 

The velocity ( )d t  is supposed to be sufficiently regular 

and sufficiently large to handle sea loads 1  and 2 . 

3 Preliminaries 

3.1 Smooth saturation function 
Definition 3.1  The function ( )x  is said to be a 

smooth saturation function if it is smooth and possesses the 
properties:  

1) ( ) = 0x , if = 0x , ( ) > 0x x  if 0x  . 

2) ( ) = ( )x x    and ( )[ ( ) ( )] 0x y x y    . 

3) | ( ) | 1x  , 
( )

| | 1
x

x


 , and 

d ( )
0 < < 1

d

x

x


, for all 

2( , )x y  . 

For the vector 1= col( ,..., )nx xx , the notation 

1( ) = col( ( ),..., ( ))nx x  x  is used to denote the smooth 

saturation function vector of the vector x .  

3.2 p -times differentiable step function 

Definition 3.2  A scalar function ( , , )h x a b  is said to be 

a p -times differentiable step function if it enjoys the 

following properties: 1) ( , , ) = 0 ( , ]h x a b x a   , 2) 

( , , ) = 1 [ , )h x a b x b   , 3) 0 < ( , , ) < 1 ( , )h x a b x a b  , 4) 

( , , )h x a b  is p -times differentiable with respect to x , and 

5) ( , , ) > 0 ( , )h x a b x a b   , where p  is a positive integer, 

x , a  and b  are constants such that < 0 <a b , 

( , , )
( , , ) =

h x a b
h x a b

x




. Moreover, if the function ( , , )h x a b  

is infinite times differentiable with respect to x , then it is 
said to be a smooth step function.  

The following lemma gives a method to construct a 
p-times differentiable step function. 

Lemma 3.1  Let the scalar function ( , , )h x a b  be 

defined as 
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 (8) 

with a  and b  being constants such that < 0 <a b , and 
the function ( )f y  being defined as follows: 

 ( ) = 0  if 0,    ( ) = ( ) if  > 0f y y f y g y y  (9) 

where ( )g y  is a single-valued function that enjoys the 

properties: a) ( ) ( ) > 0 ( , )g a g b a b      , and b) 

( )g y  is p  times differentiable with respect to y  and 

0
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k p

y

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 with p  being a 

positive integer. 
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Then the function ( , , )h x a b  is a p -times differentiable 

step function. Moreover, if ( )g y  in (9) is replaced by 
1/( ) = e yg y   then property 4) is replaced by 4’), i.e., 

( , , )h x a b  is a smooth step function. 

Proof.  See (Do, 2010a). 

4 Exponential disturbance observer 

For use in the next section, we here present an observer that 

globally exponentially estimates the loads 1 , 2 , and 3 . 

Lemma 4.1  Let  1 2 3col , , ,ˆ ˆ ˆ ˆ     be an estimate of 

  given by  
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where 0 01 02 03= diag( , , )k k kK  with 0ik , = 1,2,3i  being 

positive constants, and 0 0t   is the initial time. Then 

ˆ( )t  possesses the following properties  

       0 0 min max1 e ,  ,ik t t
i i i i i

ˆ ˆt t           (11) 

Proof.  Let us define ˆ=   , whose derivative along 
the solutions of (10) and (1) satisfies 

 0 0= =i i ik     K      (12) 

for = 1,2,3,i  because 0 01 02 03= diag( , , ).k k kK  Thus, 
0 0( )

0( ) = ( )e ik t t
i it t     . This in turn yields (11) since 

0
ˆ ( ) = 0i t  by the last equation of (10) and min max[ , ]i i i   . 

5 Transformation of ship dynamics to an 
almost spherical form 

As discussed in Section 1, we transform the ship 
dynamics (1) to an almost spherical form by applying the 
following primary surge force feedback 
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where u
  is the new control force to be designed. 

Substituting (13) into (1) results in  
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where 
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It is noted that < 1  because the added mass in the 
sway axis is always larger than that in the surge axis for 
surface ships. 

6 Control design 

A close look at the system (14) shows that it consists of 
two subsystems: the linear motion subsystem ( , )q p  and 

the rotational motion subsystem ( , )r . These two 

subsystems are connected via the terms (( 1) )l r C p  and 

( )col( ,0)l u  J . The term (( 1) )l r C p  causes a problem 

in applying the backstepping method in Krstić et al. (1995) 
because = r . Thus, care needs to be taken to resolve this 

problem, see 6.1. The control design consists of three steps. 

In the first step, u
  and   will be considered as controls 

to force the position vector q  to track its reference 

trajectory = col( , )d d dx yq , and to guarantee the tracking 

errors are within the constraint. In the second step, the yaw 
velocity r  will be treated as a virtual control to stabilize 
the error between the yaw angle and its virtual value at the 

origin. The control r  will be designed in the last step to 

stabilize the error between the yaw velocity r  and its 
virtual value at the origin. 

6.1 Step 1 
Let us define 
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It now can be seen that the reference path dq  is 

generated by the following dynamical system 
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We define the tracking errors  
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Differentiating both sides of (18) along the solutions of (17) 
and the first two equations of (14) gives 

1 2

1 1 1 1

22 22

1 2

=

= (( 1) ) ( ( )) (( 1) )

ˆ1
( ) ( ) ( )

ˆ0

cos( )
( ( ))

sin( )

e e

e l e v e l d

u
l l l l

d d
v d d d

d d

r d f v r

m

y
d f v

x

 

 
  




 



 


 

 

     

    
      

     
   

     
   

q p
p C p p C p

J J M J

p







 


(19) 

We define 

 =e     (20) 

where   is a virtual control of  , and consider the 

following Lyapunov function candidate 

 1 =V    (21) 

The function   is designed such that it penalizes  the 

position tracking errors between the reference and actual 
trajectories of the ship. This function is chosen as follows:  
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e    
q

K p   (22) 

where ( )   is the smooth saturation function vector of the 

vector   defined in Subsection 3.1, 1 11 12= diag( , )k kK  

with 11k  and 12k  being positive constants. The function 

  needs to be nonnegative definite when the ship is within 

the constrained distance from the reference path, be equal to 
zero when the position tracking errors are equal to zero, and 
be equal to infinity when the ship reaches the constrained 
distance from the reference path. We propose the function 
  as follows  

 
T T

T T 2

( , , )
=

[ ( , , ) ]
e e e e

e e e e

h a b

h a b


 
q Nq q Nq
q Nq q Nq

 (23) 

where T( , , )e eh a bq Nq  is the at least p -times differentiable 

step function defined in 3.2 with 3p  . The constants a  

and b  are chosen such that  
 0 < <a b   (24) 

Remark 6.1  The function 1V  is a class   function 

of eq   and ep  , and tends to infinity when T
e eq Nq  

tends to  . Moreover, the use of T( , , )e eh a bq Nq  is to 

ensure that 1V  takes care of the constraints on eq  only 

when T
e eq Nq  is sufficiently close to its constraint  . This 

also means that when T
e eq Nq  is sufficiently less than their 

constraints, 1V  does not put a weight on these errors to 

reduce the control effort.  

Differentiating both sides of (21) along the solutions of 
(20) and (19) gives  

1

T
1 1 2

1
1 2

22 2

T 1 1
12

{ ( ) 2 ( ( )) (( 1) )

ˆ cos( )cos( ) 1
( ( ))

ˆ sin( )sin( )

} ( ( ) ( ) )

e e e v e l d

du
v d d

du

d
d e u l l l

d

V

d f v r

d f v
m

y

x

  

 


  

    

 


 



  



     

    
        

      
 

  
 

p K q Nq p C p

p

p J M J



 


F

(25) 

where 
T

=
( )e e

 
 q Nq

, we have used T (( 1) ) = 0e l er p C p , 

and 

 
1 2 12 1 2

1

2

= col( , ), = col( , )

= (cos( ) 1)cos( ) sin( )sin( )

= sin( )cos( ) (cos( ) 1)sin( )
e e

e e

 

 

  
    
    

 
 

 

  F
 (26) 

We cannot use the controls   and u
  to cancel the 

term (( 1) )l dr C p  because canceling this term will result 

in a “pre-mature" control problem in the next step. To 

resolve this problem, we choose the controls   and u
  

as follows  

1
1

22 2

1 2

ˆcos( ) 1
= ( ) 2

ˆsin( )

cos( )
(( 1) ) ( ( ))

sin( )

du
e e d

du

d
l d d v d d

d

y

xm

d f v





 
  

  


  







 

    
        

        
 

     
 

K q Nq

C p p







 

(27) 

where we have introduced a variable d  determined later 

to overcome the pre-mature control problem as mentioned 

above. We now solve (27) for   and u
 . Multiplying 

both sides of the first and second equations of (27) by 

cos( )d  and sin( )d , respectively, then adding them 

together, and multiplying both sides of the first and second 

equations of (27) by sin( )d  and cos( )d , respectively, 

then subtracting them from each other result in 

1 2 1
22

2 11 12

1 2
22

11 12

1 ˆcos( ) = ( ( )) ( cos( )

ˆ sin( )) ( cos( ) ( ) sin( ) ( ))

( cos( ) sin( )) :=

1 ˆ ˆsin( ) = ( sin( ) cos( ))

( sin( ) ( ) cos( )

d u d v d d

d d e d e

xe d ye d

d u d d d d

d e d

d f v
m

k x k y

B

m

k x k





      

     
   

        

   

  



    

  


    

 





( ))

( sin( ) cos( )) (1 ) :=
e

xe d ye d d d

y

A      


   

 

(28) 
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where xe  and ye  are the first and second elements of 

2 eNq , respectively, i.e., 2 = col( , )e xe ye  Nq . To 

ensure smooth controls   and u
  can be obtained by 

solving (28), we choose 

 
2 2

1 2 0

0 0

= ( ( )) ( )

( ) =
d v d d

d d

d f v L t

t

   
 

     
 (29) 

where 0  is an arbitrarily small positive constant, 0d  is a 

positive constant, L  is given by 

 = ( cos( ) sin( ))xe d ye dL       (30) 

and ( )d t  is a bounded, positive and twice differentiable 

function of time t  and satisfies the following condition: 

 
min max

11 12 1 1
22

min max min
2 2

1
( ) (max(| |,| |)

max(| |,| |))

d

d

t k k
m

  

  

   


 (31) 

where min
d  is a strictly positive constant. It is noted that 

with the help of the controller proposed in sequel the sway 
velocity v  will converge to some desired sway velocity 

dv , and   will converge to zero, the function ( )d t  

plays the role of specifying the desired velocity d  at the 

steady state. The update law for the path parameter s  is 

found by using 2 2=d d dx y s    , see (16), once d  is 

available from (29). Since d  is chosen such that (29) 

holds, we have  

 min
dB   (32) 

because the disturbance observer (10) guarantees that 
min maxˆ ( ) [ , ],  =1,2,3i i it i   , see (11). Thus, smooth controls 

  and u
  can be obtained by solving (28) as follows  

 
= arctan( / )

= sin( ) cos( )

d

u d d

A B

A B



 

 

    



  
 (33) 

The variable d  will be determined in the next step. 

Substituting (33) or (27) into (25) yields  

 
T T

1 1 2

T 1 1
12

( ( )) ( (( 1) )

(( 1) )) ( ( ) ( ) )

e v e e l

l d d e u l l l

V d f v r

     

 

  

     

  

p p p C

C p p J M J


F

 (34) 

On the other hand, substituting (27) into (19) gives 

 1 2

1

1 1
12

=

= (( 1) ) ( ( ))

(( 1) ) (( 1) ) ( )

2 ( ) ( )

e e

e l e v e

l d l d d e

e u l l l

r d f v

r


   
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 

  

   
    

  

q p
p C p p
C p C p K q
Nq J M J




F

 (35) 

 

6.2 Step 2 
Define 

 =e rr r   (36) 

where r  is a virtual control of r . Due to (29), we have 

the fact that   and u
  are smooth functions of 

1 2
ˆ ˆ( , , , , , , )d d e d d     q . Thus, differentiating both sides of 

(20) along the solutions of (36), the first equation of (35), 
and the third equation of (14) results in 

 
01 1

1

02 2

2

=
ˆ

ˆ

e e r d d
d d

e d d
e d d

r k

k

  

   

  
    

  
   

  


  
    

  
   

  
  

p
q

  


  
 (37) 

where we have used the fact that 0
ˆ = =i i i ik     , see (12). 

To design r , we consider the Lyapunov function 

candidate:  

 2
2 1

1
=

2 eV V   (38) 

whose derivative along the solutions of (37) and (34) is 

T T
2 1 2

T 1 1
12

01 1

1
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2

( ( )) ( (( 1) )

(( 1) )) ( ) ( )

ˆ

ˆ

e v e e l
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V d f v r
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k

  

   


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  
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 

 
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  

   
        
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p p p C

C p p J M J

p
q




 


  

F   (39) 

where = / eF F , which is well-defined because 

(cos( ) 1) /e e   and sin( ) /e e   are smooth functions 

of e , see (26) for the expression of F . From (39), we 

choose r  as follows: 

 
2r e u d d

d d

e d d
e d d

k  

  

 
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 
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 

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p
q

 

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F
 (40) 

where 2k  is a positive constant. Substituting (40) and (36) 

into (39) results in 

T 2 T
1 1 2 2

T

T 1 1
12 01 1 02 2

1 2

= ( ( )) ( ( 1) )

( (( 1) ) (( 1) ))

( ) ( ) ( )
ˆ ˆ
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 
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p p p C p
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p J M J


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(41) 

We now determine a dynamical system that generates d  
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to make the term T ( (( 1) ) (( 1) ))e l r l d d     p C C p  in 

(41) equal to zero. Since T ( (( 1) )e l r  p C

(( 1) )) = 0l d d C p  if =r d  . Using r  given in (40), 

the equation =r d   is equivalent to  
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d
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q
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



F

 (42) 

We will prove in Appendix 9 that ( )d t  is bounded. 

Substituting (42) into (41) yields 

T 2 T
2 1 2 2

T 1 1
12 01 1 02 2

1 2

= ( ( )) ( (( 1)) )

( ) ( ) ( )
ˆ ˆ

e v e e e l d e e

e l l l e

V d f v k r

k k 

  
 

     
 

 

 

      
 

 
 

p p p C p

p J M J



  

(43) 

Moreover, substituting (27) and (42) into (19), and (40) and 
(42) into (37) gives 
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(44) 

6.3 Step 3 

Since r  is a smooth function of ( , ,d d d    , 1 2
ˆ ˆ,  ,

,e eq p , ,d d  , , )d d  , differentiating both sides of (36) 

along the solutions of (44), and the last equation of (14) 
results in 
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(45) 
To design the control r , we consider the following 

Lyapunov function candidate 

 2
3 2

1
=

2 eV V r  (46) 

whose derivative along the solutions of (43) and (45) is  
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(47) 
From (47), we choose the control r  as follows 
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  
 




2 2

1 2

1 2

1 1 2
3

( ) ( )
ˆ ˆ

( ) ( ) ]

r r r r
d d d e e

d d

r
l l l e

e

r r
       
   

   

   
    
   




J M J
p

  


 

 

(48) 
where 3k , 1 , 2 , and 3  are positive constants. The 

last three terms in the right-hand side of (48) are nonlinear 

damping to handle the terms 1

1̂

r
er
 





 , 2

2̂

r
er
 




 , and 

1 1
12( ) ( )r

e l l l
e

r
    


J M J
p

  in the right-hand side of (47). 

Substituting (48) into (47) gives  

T 2 21
3 1 2 2 3 3

33

T 1 1
12 01 1 02 2

1 2

1 13
01 1 02 2 12

33 1 2

2 2
1 2

1

= ( ( )) ( ( ))

( ) ( ) ( )
ˆ ˆ

( ) ( )
ˆ ˆ

( ) (
ˆ

r
e v e e e

e l l l e

r r r
e l l l

e

r r
e

d
V d f v k k f r r

m

k k

r k k
m

r

 



 
     

 

       
 

  


  

 

 

      

 
  

 

   
      

 




p p

p J M J

J M J
p



  

   

2 2 1 1 2 2
3

2

) ( ) ( )
ˆ

r
e l l l e

e

r r
  


 




J M J
p

 

(49) 

Moreover, substituting (48) into (45) yields  
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1 3
3 3 01 1 02 2

33 33 1 2

1 1 2 2
12 1 2

1 2

1 1 2
3

= ( ( ))
ˆ ˆ

( ) ( ) ( ) ( )
ˆ ˆ

( ) ( )

r r r
e e

r r r
l l l e e

e

r
l l l e

e

d
r k f r r k k

m m

r r

r

   
 

      
 

  



 

 

 
     

 
  

  
  




J M J
p

J M J
p

  



 

 

(50) 
The control design has been completed. We present the 

main results in Theorem 6.1.  

Theorem 6.1  Under Assumption 2.1, the control inputs 

u  given by (13) with u
  designed as in (33) and r  

given in (48), and the disturbance observer given in (10) 
solve the control objective 2.1. In particular, the following 
results hold: 

1) The closed-loop system consists of (10), (29), (42), 
(44), and (50) is forward complete. 

2) The ship is always within the constrained distance from 
the reference trajectory, i.e., the inequality (7) holds for all 

0 0t t  . This does not depend on the convergence of the 

disturbance observer as the stability analysis is carried out 
for all signals of the closed-loop system. 

3) The tracking errors ( ( ), ( ), ( ), ( ))e e e et t t r tq p  

asymptotically converge to zero. Convergence of ( )e t  to 

zero implies from (20) and (33) that of ( )t  to 

=0arctan( / ) |d e
A B  q . The angle =0, =0arctan( / ) |

e e
A B q p , 

which is bounded, is for compensation of relaxation of the 
reference path generation and the sea load. 

4) The function ( )d t  generated by (42) is bounded for 

all 0 0t t  . 

5) The desired total linear velocity coordinated in the 
earth-fixed frame is obtained by specifying the function 

( )d t  in (29). 

Proof.  See Appendix A. 

7 Simulations 

This section illustrates the effectiveness of the control 
design proposed in the previous section by simulating it on a 

monohull ship with the length of 32 m, mass of 3118 10 kg. 
Other parameters are calculated by using MARINTEK Ship 
Motion program version 3.18, a program for calculating the 
added mass and damping matrices of the ship as: 

3 3 5 2
11 22 33=120 10 kg, =177.9 10 kg, = 636 10 kg mm m m   

2 1 2 1
1 2= 215 10 kg s ,   = 43 10 kg mu ud d      

2 2 3 1
3 1= 21.5 10 kg s m ,  =117 10 kg su vd d     

3 1
2 = 23.4 10 kg mvd   , 3 2

3 =11.7 10 kg s mvd     
4 2 1

1 = 802 10 kg m srd    , 4 2
2 =160.4 10 kg mrd    

4 2
3 = 80.2 10 kg m srd    , = 0uid , = 0vid , = 0rid  

for all > 3i . In the simulations, we assume that the sea 

loads are such that: 1 11= m , 2 22= m , 3 33= 0.5m . The 

control gains are chosen as follows: min = 0i  and 

max =1.2i i  , = 1,2,3i , 0 = 0.01 , 0 2= 2K I  with 2I  

being the 2 2  identity matrix, 1 2=K I , 2 = 2k , and 

3 = 5k . The reference path is chosen to be a sinusoidal curve: 

( ) = col( , sin( ))s s R asG  with = 15R  and = 0.02a . The 

initial values (0)s  and 0d , and function d  are chosen 

as (0) = 0s , 0 = 4 m/sd  and = 4 m/sd . The initial 

conditions are (0) = 15 m,x   (0) = 15 m,y  

(0) = 0.5 rad,  (0) = 5 m/s,u  (0) = 5 m/s,v  and 

(0) = 2 rad/s.r  The high initial velocities are chosen to 

illustrate the tracking error constraint. The constrained 

constants are chosen as 2=N I , = 470 , = / 2b  , and 

= / 2.a b  Note that 2> (0) = 450.e q   Excellent 

path-tracking results are plotted in Fig. 2.  
It is particularly noted in Figs. 2(c) and 2(d) that the 

tracking error norm =e ed q   is always less than 

= 21.7  and that | ( ) |d t  is bounded for all 0t  . In 

order to illustrate the effectiveness of the proposed 
controller, we also provide simulation results without the 
constraint, i.e., the matrix N  is set to zero. Simulation 
results in this case are plotted in Fig. 3. Although excellent 
tracking results are obtained, the transient tracking error 
norm is much larger than in the case with the constraint 

( 0 ( ) 29sup et d t  ). It is noted that the path-tracking 

controllers proposed in (Lapierre and Jouvencel, 2008; Do 
and Pan, 2006; Ghommam et al., 2008) will give similar 
results because no hard-constraints on the tracking errors 
were addressed in these papers.  

To demonstrate the performance improvement of the 
proposed path-tracking controller in this paper over the 
existing results, we perform a simulation on the 
trajectory-tracking controller proposed in (Do et al., 2002a). 
We do not provide a simulation on the path-following 
controllers proposed in (Skjetne and Fossen, 2001; 
Encarnação et al., 2000; Do and Pan, 2004; Li et al., 2009), 
for example, because these controllers are local as 
mentioned in Section 1. The framework of the 
trajectory-tracking control design for an underactuated ship 
is described in Fig. 4, where the control objective is to 

design the controls u  and r  to force the real ship to 

track the virtual ship. In Fig. 4, ( , , )d d dx y   represent 

position and orientation of the virtual ship with respect to 

the Earth-fixed frame E E EO X Y , ( , , )d d du v r  are velocities 

of the virtual ship with respect to the virtual ship body-fixed 

frame d d dO X Y . The virtual ship “dynamics" are given by  

 1= ( ) ,    = ( )d d d d d d d  J v v f v M   (51) 
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where  

= col( , , ),   = col( , , )d d d d d d d dx y u v r  v  

=( ) = ( ) |d d  J J  

22 11 11 22

11 22 33

( ) = col( , , )d d d d d d d d

m m m m
v r u r u v

m m m


f v

 
= col( ,0, )d ud rd    

 

Fig. 2 Simulation results with tracking error constraint 

 

Fig. 3 Simulation results without tracking error constraint 

 

Fig. 4 Trajectory-tracking control design framework 

 
Fig. 5 Trajectory-tracking control design results 

To generate ( , , )d d dx y  , we specify = 4 m/sdu  and 

the profile of ( , )d dx y  in the Earth-fixed frame, i.e., the 

sinusoidal form of the aforementioned reference path. From 

these specifications, the reference inputs ud  and rd . 

These in turn determine the reference trajectory 

( , , )d d dx y  . The errors in position and orientation between 

the real and virtual ships projected to the body-fixed frame 

b b bO X Y  are denoted by ( , , )e e ex y  . Thus, the 

trajectory-tracking control objective becomes the one of 

stabilizing the errors ( , , )e e ex y   at the origin, see (Do et 

al., 2002a) or (Lefeber et al., 2003; Do et al., 2002b; Lee 
and Jiang, 2004; Chwa, 2011) for details of 
trajectory-tracking control designs. The control gains are 
tuned so that the transient response time is almost the same 
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with the one simulated using the controller proposed in this 
paper for a fair comparison. The simulation results are 
plotted in Fig. 5, where the position and orientation tracking 
errors are plotted in Figs. 5(b) and 5(c); the norm of position 
tracking error is plotted in Fig. 5(d); the velocity tracking 
errors are plotted in Figs. 5(e) and 5(f); and the control 
inputs are plotted in Figs. 5(g) and 5(h). It is seen that the 
trajectory-tracking controller in (Do et al., 2002a) results in 
fairly large (steady state) tracking errors and more 
importantly the transient tracking error norm is much larger 

than the one proposed in this paper ( 0 ( ) 32.3sup et d t   vs 

0 ( ) 20.6sup et d t  ), see Fig. 5(d) vs Fig. 2(d). The large 

tracking errors are due to the fact that the controller in (Do 
et al., 2002a) was designed for the case without disturbance 
and nonlinear damping terms, with no hard constraint on 
tracking errors. It is noted that the trajectory-tracking 
controllers proposed in (Lefeber et al., 2003; Do et al., 
2002b; Lee and Jiang, 2004; Chwa, 2011), for example, will 
give a similar transient response. 

8 Conclusions 

A constructive design of new controllers has been 
developed for path-tracking control of underactuated ships 
under sea loads and tracking error constraints. The keys to 
the successful control design include 1) a global exponential 
disturbance observer, 2) transformation of the ship dynamics 
to those of an almost spherical ship to almost decouple 
linear and angular motions of the ship, 3) the use of 
backstepping and Lyapunov’s direct methods to stabilize the 
tracking errors expressed in the earth-fixed frame, and the 
introduction of an auxiliary function for compensation of 
relaxing the reference path generation. Future work will 
design an inverse optimal path-tracking controller for 
underactuated ships and path-tracking controllers for 
underwater vehicles based on the method proposed in this 
paper and the one in (Do, 2015). 
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Appendix A: Proof of Theorem 6.1 

A.1 Forward completeness of the closed-loop system 
To prove forward completeness of the closed loop system, 

we consider the Lyapunov function candidate 

2 2 2
3

1 1 1
=

2 2 2d dV V        , whose derivative along the 

solutions of (12), (42), (29), and (49) satisfies 1 2V cV c   , 

where 1c  and 2c  are some positive constant. The above 

inequality together with the expression of V  ensures that 

the closed-loop is forward complete. This proves Item 1) of 
Theorem 6.1. 

A.2 Ship within the constrained distance 
Since we have already proved that the closed-loop system 

is forward complete, we now can consider the closed-loop 
subsystem consisting of (12), (44) and (50) separately from 
the rest of the closed-loop system. As such, we consider the 
following Lyapunov function candidate 

 2
3 3= 0.5W V c     (A1) 

where 3c  is a positive constant to be picked. On the other 

hand, from (33) with A  and B  defined in (28) we have 

min
221

2
ˆ

dm








  , and 
min

222

2
ˆ

dm








  . Applying these 

bounds and the Young inequality to the derivative of W  
along the solutions of (12) and (49) results in 

 
2 2

1 1 2 2

2 2
3 1 33 3 3

( ) ( 2 )

      ( / )

v e e

r e

W d k

k d m r c

  

 





     

  

p


 

 
 (A2) 

where 1 , 2 , and 3  are positive constants to be picked, 

and 

 

2 2
01 02

3 3 min 0 min 2
1 11 2 22

2 2
01 022

3 33 1 2 3

1 ( )
= ( )

4 ( )

1 1 1 1
( )

4 4 4 4

d

k k
c c

m m

k k
m


  

   

 
  

  

K
 (A3) 

with ( )min   is the minimum eigenvalue of  . We pick 

sufficiently small 1 , 2 , 3 , and sufficiently large 3c  

such that 1 1( )vd   , 2 2( 2 )k  , 1
3 3

33

( )rd
k

m
  , and 3c  

are strictly positive. Then, we can write (A2) as 0W  . 

Integrating 0W   from 0t  to t  gives 0( ) ( )W t W t . 

Substituting the detailed expression of W  into 

0( ) ( )W t W t  results in 

 

2 2 23

2 2 23
0 0 0 0

1 1
( ) ( ) ( ) ( ) ( )

2 2 2
1 1

( ) ( ) ( ) ( ) ( )
2 2 2

e e

e e

c
t t t r t t

c
t t t r t t

   

   

    

   





 

 
 (A4) 

where 

 

( ) T 2
10

T T

T T 2

1
( ) = ( ) ( )

2

( ( ) ( ), , ) ( ) ( )
( ) =

( ( ( ) ( ), , ) ( ) ( ))

te
e

e e e e

e e e e

t d t

h t t a b t t
t

h t t a b t t

  









q

σ K p

q Nq q Nq
q Nq q Nq

 
 (A5) 

Under the condition (6), the right-hand side of (A4) is 
bounded. Boundedness of the right-hand side of (A4) 

implies that the left-hand side of (A4) for all 0 0t t  . 

Boundedness of the left-hand side of (A4) means that 

( ( ),  ( ),  ( ),  ( ))e e e et t t r tq p are bounded and that 

T T( ( ) ( ), , ) ( ) ( )e e e eh t t a b t t  q Nq q Nq  is larger than zero for 
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all 0 0t t  . This proves Item 2) of Theorem 6.1 since a  

and b  are chosen as in (24). 

A.3 Asymptotic convergence of tracking errors to zero 

Since we have already proved that ( ( ),  ( ),  ( ),  ( ))e e e et t t r tq p  

are bounded, T T( ( ) ( ), , ) ( ) ( )e e e eh t t a b t t  q Nq q Nq  is larger 

than zero for all 0 0t t  , and T( ( ) ( ), , )e eh t t a bq Nq  is the 

p-times differentiable function of eq , a calculation from (29) 

that ( )d t , ( )d t , and ( )d t  are bounded for all 

0 0t t  . Therefore, applying Theorem 4.4 in (Khalil, 2002) 

to (A2) yields 
2 2

1 1 2 2

2 21
3 3 3

33

(( ) ( ) ( 2 ) ( )lim

( ) ( ) ( ) ) = 0

t v e e

r
e

d t k t

d
k r t c t

m

  

 






   

  

p



 

 
 

which implies that ( ( ), ( ), ( ), ( )) = 0.limt e e et t r t t  p   

Moreover, applying the invariance principle (Theorem 4.4 in 
(Khalil, 2002)) to (44) yields  

 

1 2

1

1 1
12

( (( 1) ( )) ( ) ( ( ( ))) ( )lim

(( 1) ( )) ( ) ( ( )) 2 ( ) ( )

( ) ( ( )) ( ( )) ( )) = 0

l e v e
t

l e d e e

u l l l

r t t d f v t t

r t t t t t

t t t t



  
   

 



  

   

   


C p p

C p K q Nq
J M J F

 (A6) 

where we have abused the notation ( ).tF  Since 

( ( ), ( ), ( ), ( )) = 0limt e e et t r t t  p   (as proved above), 

( ) = 0limt tF , see (26) for the expression of F . This 

together with 1 1col( , ) = ( ) = ( )( ),l l e du v    J p J p p  

ensures that the limit (A6) implies 

1( ( ( )) 2 ( ( )) ( )) = 0limt e e et t t  K q q Nq , which readily 

shows that ( ) = 0limt e tq  because ( ( )) > 0e t q  for all 

0 0t t  . 

A.4 Boundedness of ( )dδ t  

We first show that ( )d t  is larger than a positive 

constant for all 0 0t t .   Since 1col( , ) = ( ) =lu v J p
1( )( )l e d J p p  and we have already proved that ( )e tp  

and ( )d t  are bounded for all 0 0t t  , the differential 

equation (29) ensures that ( )d t  is larger than a strictly 

positive constant. To show boundedness of ( )d t  from 

(42), we first calculate the following partial derivatives:  

2 2

2 2 2 2

2 2 2 2

(1 )
=

= 1 ,  =

= ,  =

d

d

d d d d

d d

e e d d

e d

A B

A B A B
B A B A

A B A B

A B A B
B A B A

A B A B



 

 

  


    
 

   


  
 

   
 

    


   
   

 
    
   

q q
q

 


 (A7) 

From A  and B  defined in (28) and the fact that we 

have proved that ( ( ),  ( ),  ( ),  ( ))e e e et t t r tq p , ( )d t  ( )d t , 

( )d t  are bounded, T T( ( ) ( ), , ) ( ) ( )e e e eh t t a b t t  q Nq q Nq  is 

larger than zero for all 0 0t t  , and ( )d t  is larger than 

a strictly positive constant, using (A7) it can be readily 

shown from (42) that ( )d t  is bounded from all 0 0t t   

since < 1 . 

A.5 Specification of desired total linear velocity 

By definition (16), we have =dp

col( cos( ), sin( ))d d d d    . This means that the desired 

total linear velocity coordinated in the earth-fixed frame can 

be specified by specifying d . Since d  is generated by 

(29), a proper choice of the function ( )d t  will result in a 

desired d . Moreover, we have already proved that 

( ) = 0limt e tp  and recall that =e dp p p . Thus, at the 

steady state, the ship will move along the trajectory at the 

desired total linear velocity dp . Since ( ) = 0limt e t  as 

proved earlier, the ship’s yaw angle converges to 

=0arctan( ) | .d e

A

B
  q  The angle =0arctan( ) |

e

A

B q  is to 

compensate the loads 1  and 2 , and the fact that the 

reference path ( )sG  is not generated by a virtual ship. 

Finally, it is noted that since > 0B  for all 0 0t t  , the 

ship will not turn around. 
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