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Abstract: This paper presents a design of optimal controllers with 
respect to a meaningful cost function to force an underactuated 
omni-directional intelligent navigator (ODIN) under unknown 
constant environmental loads to track a reference trajectory in 
two-dimensional space. Motivated by the vehicle’s steering 
practice, the yaw angle regarded as a virtual control plus the surge 
thrust force are used to force the position of the vehicle to globally 
track its reference trajectory. The control design is based on several 
recent results developed for inverse optimal control and stability 
analysis of nonlinear systems, a new design of bounded 
disturbance observers, and backstepping and Lyapunov’s direct 
methods. Both state- and output-feedback control designs are 
addressed. Simulations are included to illustrate the effectiveness 
of the proposed results. 
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1 Introduction1 

Control of marine vessels is an active field, see for 
example (Fossen, 1994; 2002; Antonelli, 2006; Do and Pan, 
2009), due to its theoretical challenges and important 
applications in practice. Most marine vessels are 
underactuated meaning that they have more degrees of 
freedom to be controlled than the number of independent 
control inputs. Different approaches to control of 
underactuated marine vessels are reviewed by Muske et al. 
(2010) and Paull et al. (2014). 

The marine vehicle under consideration in this paper, see 
Fig. 1, is an ODIN, which has a spherical shape with only 
two horizontal thrusters (those thrusters marked with the red 
cross signs are not in use) along the surge direction while 
there are three degrees of freedom to be controlled. When 
an ODIN has all thrusters in use, various control algorithms 
were available (Fossen, 2002; Antonelli, 2006; Antonelli et 
al., 2001). Several control schemes based on nontrivial 
coordinate transformations were available by Do et al. 
(2004a) for controlling an underactuated ODIN in 
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two-dimensional space and in three-dimensional space (Do, 
2013). 

 
Fig. 1 Motion variables of an ODIN 

A continuous time-invariant controller was developed by 
Godhavn et al. (1998) to achieve global exponential 
position tracking for underactuated ships. However, the ship 
orientation was not controlled. Output redefinition, 
input-output linearization and sliding mode techniques were 
used by Zhang et al. (2000) to obtain a local asymptotic 
result on path tracking for underactuated ships. The path 
following errors were first described in the Serret-Frenet 
frame, then a local path following controller was designed 
under constant ocean current disturbances (Encarnacao et 
al., 2000). An application of the recursive technique for 
standard chain form systems (Jiang and Nijmeijer, 1999) 
was used by Pettersen and Nijmeijer (2001) to provide a 
high-gain, local exponential tracking result. By applying a 
cascade approach, a global tracking result was obtained 
(Lefeber et al., 2003). Based on Lyapunov’s direct method 
and the passivity approach, two tracking solutions were 
proposed by Jiang (2002). In these works (Jiang, 2002; 
Lefeber et al., 2003; Pettersen and Nijmeijer, 2001), 
tracking a straight-line is excluded. The first controller was 
proposed by Pettersen and Lefeber (2001) to force an 
underactuated ship to track a straight-line. A solution was 
proposed to solve the trajectory tracking problem including 
a straight-line (Do et al., 2002a). And a single controller 
was proposed by Do et al. (2002b) to solve both 
stabilization and tracking simultaneously, see also (Do and 
Pan, 2005) for how to deal with non-zero off-diagonal terms 
in the above articles. A nontrivial coordinate transformation 
was used by Behal et al. (2002) to transform the 
underactuated ship dynamics to a convenient form. In 
addition, Leonard (1995a; 1995b), Pettersen (1996), 
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Silvestre et al. (2002) and Do et al. (2004b) have studied the 
problem of controlling underactuated underwater vehicles. 

The controllers designed in all of the above works and 
others on control of marine vessels not listed here are not 
optimal in the sense that no meaningful cost function is 
resulted from their control designs. On the other hand, a 
direct optimal control design for a nonlinear system faces a 
formidable task of solving a Hamilton-Jacobi equation 
(Sepulchre et al., 1997). Thus, this paper proposes a design 
of inverse optimal controllers that force the position and 
orientation of an ODIN under unknown constant 
environmental loads to track a reference trajectory. The 
proposed control design minimizes some meaningful cost 
function. To overcome difficulties caused by the 
underactuation, the yaw angle regarded as a virtual control 
plus the surge thrust force are used to control the position of 
the vehicle, bounded disturbance and state observers are 
developed to guarantee asymptotic estimate of the 
disturbances and states of the ODIN dynamics. To ensure 
that a meaningful cost function is minimized, the controls 
are designed in such a way that they do not cancel state 
(error) dynamics but dominate them instead. 

2 Problem statement 

2.1 ODIN dynamics 
In hydrodynamics, it is common to assume a linear 

superposition so that wind and waves can be treated as 
generalized forces that can be directly added to nonlinear 
equations of motion but the generalized forces induced by 
ocean currents do not obey the linear superposition law 
(Fossen, 2011). Although ODIN is an underwater vehicle, 
we also consider wave and wind disturbances because they 
appear when the vehicle surfaces. Thus, equations of motion 
of an ODIN moving in a horizontal plane (heave, pitch and 
roll modes are neglected, so the gravitational and buoyancy 
terms do not appear in the equations of motion) need to be 
described by Fossen (2012):  

 1

wind wave

= ( )

= [ ( ) ( )

]

RB RB A r A r r

r

ψ

τ τ τ

− − − − −
+ + +

η J v
v M C v v M v C v v
Dv


   (1) 

where = col( , , )x y ψη  with ( , )x y  denoting the (surge, 

sway) displacements of the center of mass, and ψ  

denoting the yaw angle of the vehicle coordinated in the 

earth-fixed frame E E E EO X Y Z , see Fig. 1. The vector 
= col( , , )u v rv  denotes the (surge, sway, yaw) velocities of 

the vehicle coordinated in the body-fixed frame b b b bO X Y Z . 

The relative velocity vector rv  is defined by =r c−v v v  

with = col( , ,0)c c cu vv  being the ocean current velocity 

vector. The rotational matrix ( )ψJ , the vehicle and added 

mass inertia matrices RBM  and AM , the coriolis and 

centripetal matrices due to the vehicle inertia ( )RBC v  and 

added mass ( )A rC v , the damping matrix D  are given by 
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where mRB and mA are the mass and added mass, JRB and JA 

are the inertia and added mass inertia, ld  and rd  are the 

damping coefficients in the surge and sway, and yaw 

directions, and =r cu u u−  and =r cv v v− . The control 

input vector is = col( ,0, )u rτ ττ . The force and moment 

vector := ( )r A r A r r rτ − − −M v C v v Dv  is the load due to the 

ocean current velocity cv . The wind force and moment 

vector is windτ  and the wave-induced force and moment 

vector is waveτ . In this paper, we make the following 

assumptions: 

Assumption 2.1  The ocean currents are irrotational and 
but bounded in the earth-fixed coordinate. The wave and 

wind torque and moment vectors windτ  and waveτ  are also 

constant and bounded in the earth-fixed coordinate. In 
particular, we have 

1 1 1
wave wave wind wind= ( ) , = ( ) , = ( )c Ec E Eψ τ ψ τ τ ψ τ− − −v J v J J  (3) 

where ,Ecv  wave ,Eτ  and windEτ  are constant in the 

earth-fixed coordinate.  

Differentiating both sides of the first equation of (3) gives 
1( ) ( ) = 0c cψ ψ−+v J J v . It is also verified that 

1 1( ( ) ( ) ) = ( ) ( )c A A c A c c cψ ψ− −+ + +v M C v v C v v v J J v   

Thus,  

 ( ( ) ( ) ) = 0A c A c A c+ +M v C v v C v v  (4) 

Let us define 

 1 1
current( ) = ( )c Eψ ψ τ− −−DJ v J  (5) 

where currentEτ  is referred to as the current induced forces 

and moments that are constant in the earth-fixed coordinate. 

Substituting =r c−v v v  into ( )A r rC v v  give  
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 ( ) = ( ) ( ) ( )A r r A A c A c− −C v v C v v C v v C v v  (6) 

where we have used ( ) = 0.A c cC v v  Now substituting 

=r c−v v v , Eqs. (4) and (6) into the second equation of (1), 

and using the last two equations of (3) and (5) together with 
the first equation of (1) result in 

 1 1

= ( )

= [ ( ) ( ) ]E

ψ
τ ψ τ− −− − + +

η J v
v M C v v Dv J



 (7) 

where, = ,RB A+M M M  ( ) = ( ) ( ),RB A+C v C v C v  and 

current wind wave=E E E Eτ τ τ τ+ + . 

2.2 Control objective 
In this paper, we consider the following control objective:  

Control Objective 2.1 
Suppose that = col( , , )E Eu Ev Erτ τ ττ  is bounded in the 

sense that 

min max min max min max( , ), ( , ), ( , )Eu Eu Eu Ev Ev Ev Er Er Erτ τ τ τ τ τ τ τ τ∈ ∈ ∈  (8) 

where the constants min  and max  denote the maximum 
and minimum values of  , respectively. Moreover, suppose 

that the reference position and yaw angle vector ( )d tη  is 

generated by the reference model  

 1

= ( )

= [ ( ) ]

d d d

d d d d d

ψ
τ− − − +

η J v
v M C v v Dv



 (9) 

where all the symbols = col( , , ),d d d dx y ψη  =dv
col( , , )d d du v r , and = col( ,0, )d ud rdτ ττ  have the same 

meaning as those defined in Eq. (7). The reference surge 

force udτ  is supposed to satisfy the following condition  

 max
0| |ud Elτ τ ϖ≥ +   (10) 

where max min max min max= col(max(| |,| |),max(| |,| |))El Eu Eu Ev Evτ τ τ τ τ , 

and 0ϖ  is a strictly positive constant. In addition, dτ  is 

bounded and udτ  is twice differentiable, i.e., there exist 
max ,udτ  max ,udτ  max ,udτ  and max

rdτ  such that max| ( ) | ,ud udtτ τ≤  
max| ( ) | ,ud udtτ τ≤   max| ( ) |ud udtτ τ≤   and max| ( ) |rd rdtτ τ≤  for all 

0 0t t≥ ≥ . For later use, we find the upper-bound of | ( ) |dr t . 

As such, from the last equation of (9), we have =dr

r d rdd r τ− + . We now consider the function 21
=

2
rd dV r , 

whose derivative satisfies 

2 2 2 max 21 1
= ( )

2 2 2
r

rd r d d rd d rd r rd rd
r r

d
V d r r r d V

d d
τ τ τ− + ≤ − + ≤ − +  

Solving the above inequality gives 

( )max 2 max 20
0 2 2

max 2
0 2

1 1
( ) ( ( ) ( ) )e ( )

2 2
1

( ) ( )
2

d t tr
rd rd rd rd

r r

rd rd
r

V t V t
d d

V t
d

τ τ

τ

− −≤ − + ≤

+
 

which implies that max 2 2 2 max
0| ( ) | ( ) / ( ) :=d rd r d dr t d r t rτ≤ +  

for all 0 0t t≥ ≥ . 

Design τ  and estimate laws for Eτ  to force the 
position and yaw angle vector η  of the vehicle whose 

dynamics are given by Eq. (7) to globally asymptotically 

track its reference trajectory vector dη  generated by Eq. (9) 

and to minimize a meaningful cost function of tracking 

errors and control inputs uτ  and rτ .  

3 Preliminaries 

This section presents preliminary results on smooth 
saturation function, disturbance observer, disturbance-state 
observer, and inverse optimal stabilizer that will be used in 
the control design in the next section. 

3.1 Smooth saturation function 

Definition 3.1  The function ( )xσ  is said to be a 

smooth saturation function if it is smooth and satisfies:  

 

1) ( ) = 0 if = 0, ( ) > 0 if 0

2) ( ) = ( ), ( )[ ( ) ( )] 0

3) ( ) = 1, | ( ) | 1, ( ) > 0lim
x

x x x x x

x x x y x y

x x x

σ σ
σ σ σ σ

σ σ σ
→±∞

≠
− − − − ≥

′± ≤
 (11) 

for all 2( , )x y ∈ , where ( ) = d ( ) / dx x xσ σ′  and 0ε  is a 

positive constant. For the vector 1 2= col( ,. , , )nx x xx  , the 

notation 1 2( ) = col( ( ), ( ),..., ( ))nx x xσ σ σσ x  denotes the 

smooth saturation function vector of the vector x .  

3.2 Disturbance observers 

Lemma 3.1  Consider the following second-order 
nonlinear system  

 
1 2

2 1 2

=

= ( , , )

x x

x f x x u θ+



 (12) 

where x1 and x2 are states, u is the control input, the 
unknown constant parameter θ  is bounded, i.e., there 

exist constants minθ  and maxθ  such that min max( , )θ θ θ∈ . 

Suppose that x1 and x2 and the function 1 2( , , )f x x u  are 

available and that the system (12) is well defined for all 
2

1 0 2 0( ( ), ( ))x t x t ∈ , where 0 0t ≥  is the initial time. The 

following disturbance observer  
max min max min

2

max min max min

2 1 2

ˆ = ( )
2 2

= ( ) ( , , )
2 2

kx

k kx kf x x u

θ θ θ θθ σ ξ

θ θ θ θξ σ ξ

− ++ +

− + − + + −  


(13) 



Khac Duc Do. Global Inverse Optimal Tracking Control of Underactuated Omni-directional Intelligent Navigators (ODINs) 

 

4 

where k  is a positive constant, guarantees that 
min maxˆ [ , ]θ θ θ∈ , ˆ( ) = ( )t tθ θ θ−  globally asymptotically 

and locally exponentially converges to zero, and that 

2| ( ) ( ) |t kx tξ +  is bounded for all 0t t≥  and for each 

initial condition 0( )tξ ∈ .  

Proof. See Appendix A. 

Lemma 3.2  Consider the following second-order 
nonlinear system 

 
1 2

2 2 1

=

= ( , )

x x

x ax f x u θ− + +



 (14) 

where a is a positive constant, x1 and x2 are states, u is the 
control input, the unknown constant parameter θ  is 

bounded, i.e., there exist constants minθ  and maxθ  such 

that min max( , )θ θ θ∈ . Suppose that x1 and the function 

1( , )f x u  are available and that the system (14) is well 

defined for all 2
1 0 2 0( ( ), ( ))x t x t ∈ , 0 0t ≥ . The following 

disturbance observer  

max min max min

1 1 2 2

2 2 1

max min max min

2 1 1 2 2

2 2 1 1 2

ˆ ˆ= ( )
2 2

ˆˆ ˆ= ( , )

ˆ= ( )
2 2

ˆ ˆ( ( , ))

k x k x

x ax f x u

k k x k x

k ax f x u k x

θ θ θ θθ σ ξ

θ
θ θ θ θξ σ ξ

− ++ + +

− + +
− + − + + + − 

 
− + −





(15) 

where 1k  and 2k  are positive constants, guarantees that 
min maxˆ [ , ]θ θ θ∈ , ˆ( ) = ( )t tθ θ θ−  and 2 2 2ˆ( ) = ( ) ( )x t x t x t−  

globally asymptotically and locally exponentially converge 

to zero, and that 1 1 2 2ˆ| ( ) ( ) ( ) |t k x t k x tξ + +  is bounded for all 
2

0 2 0ˆ( ( ), ( ))t x tξ ∈  and 0t ≥ .  

Proof. See Appendix B 

Remark 3.1  The main desired property of the 
disturbance observers proposed in Lemmas 3.1 and 3.2 in 
comparison with existing disturbance observers (e.g., Chen 
et al., 2000; Do and Pan, 2008; Mohammadi et al., 2013) is 
that the disturbance observers (13) and (15) guarantee 

pre-specified boundedness of θ̂ , i.e., min maxˆ [ , ]θ θ θ∈ . This 

property is essential for the success of the control design, 
see the paragraph just below (46) in Section 4.  

3.3 Inverse optimal stabilizer 
Consider the following nonlinear system: 

 = ( ) ( )+x f x G x u  (16) 

where n∈x   and m∈u   denote the state and control 

vectors, respectively. Moreover, : n n→f    and 

: n n m×→G    are smooth, vector- and matrix-valued 

functions, respectively, with (0) = 0f . 

Lemma 3.3  Moylan and Anderson (1973), Krstic and 
Tsiotras (1999) Suppose that the feedback control law 

 1 T( ) = ( )( ( ))
V− ∂−

∂
u x R x G x

x
 (17) 

where : n n n×→R    is a positive definite matrix-valued 
function, stabilizes the system in (16) with respect to a 
positive definite radially unbounded Lyapunov function 

( )V x . Then the control law 

 1 T( ) = ( )( ( )) , 2
Vβ β∗ − ∂− ≥

∂
u x R x G x

x
 (18) 

is optimal with respect to the cost 

 T

0
= ( ( ) ( ) )d

t
t

∞
+ x u R x u  (19) 

where  

 
1 T

( ) = 2 ( ( ) ( ) ( ))

( 2) ( ) ( )( ( ))

V

V V

β

β β −

∂− + +
∂

∂ ∂−
∂ ∂

x f x G x u x
x

G x R x G x
x x


 (20) 

4 Control design 

Let us define 

 
2 2 2 2

1 2

1 2

cos( ) sin( )
( ) =

sin( ) cos( )

= ( ) , =

= col( ,0), = col( , )

= col( , ), = ( )

= col( , ), = ( )

l

l RB A l l

l u El Eu Ev

l l

d d d d l d dl

m m d

x y

x y

ψ ψ
ψ

ψ ψ

τ τ τ τ τ
ψ

ψ

× ×

− 
  
+







J

M I D I

X X J v
X X J v

 (21) 

where 2 2×I  is a 2 2×  identity matrix. With the above 
definitions, we can write the vehicle dynamics (7) as the 
position subsystem P) and the heading subsystem H) in a 
cascade structure:  

 
( )

( )

1 2

1
2 2

=
P)

= ( )

=
H) 1

=

l l El l l

r Er r

r

r d r
J

τ ψ τ
ψ

τ τ

−


 − + +

 − + +

X X
X M D X J








 (22) 

where = RB AJ J J+ . Similarly, the reference model (9) is 
rewritten as the position subsystem Pd) and the heading 
subsystem Hd) in a cascade structure:  

 

( )

1 2

1
2 2

=
Pd)

= [ ( ) ]

=
Hd) 1

=

d d

d l l d l d dl

d d

d r d rd

r

r d r
J

ψ τ
ψ

τ

−




− +

 − +

X X
X M D X J








 (23) 

A close look at Eqs. (22) and (23) suggests the design of 

the control input vector τ , i.e., lτ  and rτ , in two stages. 
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In the first stage, the control lτ  and ψ , which is viewed 

as a virtual control, are designed to forces 1X  to track 

1dX . In the second stage, the control rτ  is designed to 

force the virtual control of ψ  to track its actual value. 

4.1 Disturbance observers 
We now design observers to estimate the disturbances 

Elτ  and Erτ . As such, applying Lemma 3.1 to Eq. (22) 

yields the following disturbance observers  

 [ ]

2

2

2

ˆ = ( )

= ( ( ) )

( )

ˆ = ( )

= ( ( ) ) ( )

El El El El l El

El El El El El l El

El l l l

r Er r Er Er

r Er Er r Er Er Er r r

D

D

k Jr

k k Jr k d r

τ σ ξ δ
ξ σ ξ δ

ψ τ
τ Δ σ ξ δ
ξ Δ σ ξ δ τ

+ +
 − + + −
 − +

+ +
 − + + − − +

K M X
K K M X
K D X J





 (24) 

where, 

max min max min

= diag( , )
2 2

Eu Eu Ev Ev
ElD

τ τ τ τ− −
, 

max min

=
2

Er Er
Er

τ τΔ −

max min max min

= col( , )
2 2

Eu Eu Ev Ev
El

τ τ τ τδ + +
,  

max min

=
2

Er Er
Er

τ τδ +
 

ElK  is a diagonal positive definite matrix, and Erk  is a 

positive constant. Let ˆ=El El Elτ τ τ−  and ˆ=Er Er Erτ τ τ− . It 

is obvious that  

 
2= ( )

= ( )

El El El El El l El

Er Er Er r Er Er

D

k k Jr

τ σ ξ τ
τ Δ σ ξ τ

′− +
′− +

K K M X 
 

 (25) 

4.2 Stage I 

4.2.1 Step 1 
Define the following tracking errors  

 
1 1 1

2 2 1

=

=

=

e d

e

e ψ

α
ψ ψ α

−
−

−

X X X
X X  (26) 

where 1α  and ψα  are referred to as the virtual controls 

of 2X  and ψ , respectively. To design 1α  to stabilize 

the tracking error 1eX  at the origin, we consider the 

following Lyapunov function candidate  

 2
1 1

1
=

2
eV X   (27) 

whose derivative the solutions of the first equation of (22) 
and the first equation of (23) with the use of Eq. (26) results 
in 

 T
1 1 1 2 1= ( )e e dV α + −X X X   (28) 

which suggests that we choose  

 1 1 1 1= e dα − +K X X  (29) 

where 1K  is a diagonal positive definite matrix to be 
determined later. Substituting Eq. (29) into Eq. (28) yields  

 T T
1 1 1 1 1 2= e e e eV − +X K X X X  (30) 

Substituting (29) into the first equation of (22) with the use 
of the first equation of (23) yields  

 1 1 1 2=e e e− +X K X X  (31) 

4.2.2 Step 2 

Differentiating 2eX  along the solutions of the second 

equations of (22), (23), and (29) yields  

 
1

2 2 1 1 2

1 1 1 2 2

ˆ= [ ( )

( ) ] ( )

e l l e e d El

El l l e e d

τ
τ ψ τ

− − − + + +
+ + − + −

X M D X K X X
J K K X X X




 (32) 

To design uτ  and ψα  that stabilize 2eX  at the origin, 

we consider the following Lyapunov function candidate  

 2
2 1 1 2=

2
e

m
V Vρ + X   (33) 

where 1ρ  is a positive constant and = .RB Am m m+  

Differentiating both sides of Eq. (33) along the solutions of 
Eqs. (32) and (30) gives  

 
T

2 1 1 1 1 1

T
2

=

ˆ[ ( ) ( ) ]

e e

e l d dl El l l

V Eρ
ψ τ τ ψ τ
− + +

− + +
X K X

X J J


 (34) 

where 

 
T T

1 1 1 2 2 1 2

2 T
1 1 1 2

= [ ( )

( ) ]

e e e l l e

l l e e El

E ρ
τ

+ − − +
− +

X X X D M K X
D K M K X X 

 (35) 

and we have used 2 2 = ( )l d l d l d dlψ τ+D X M X J . Based on 

Lemma 3.3, the stabilizing control lτ  is chosen such that  

2 2 1 2
ˆ( ) = ( ) ( ) := col( , )l l e El l d dlψ τ σ τ ψ τ Ω Ω− − +J K X J  (36) 

where 2 21 22= diag( , )k kK  with 21k  and 22k  being 

positive constants to be specified later. Since = col( ,0)l uτ τ  

and = col( ,0)dl udτ τ , solving Eq. (36) for uτ  obtains  

1 2 1 2

1 21 21 22 22

2

= cos( ) sin( ) :=

= ( )cos( ) ( )sin( )

ˆ ˆ= ( cos( ) )cos( ) ( sin( ) )sin( )

u u u

u e e

u Eu d ud Ev d ud

k X k X

τ Ω ψ Ω ψ τ τ
τ σ ψ σ ψ
τ τ ψ τ ψ τ ψ τ ψ

+ +
− −
− + + − +

(37) 

where X21e and X22e are the first and second elements of X2e, 

i.e., 2 21 22= col( , )e e eX XX . 

Remark 4.1  The stabilizing control uτ  given in Eq. 

(37) consists of two parts. The part 1uτ  is designed based 

on Lemma 3.3 while the part 2uτ  is to handle ˆElτ , the 

estimate of disturbances, and the reference signal 
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( )l d dlψ τJ . In a normal application of the backstepping 

method, one would substitute the last equation of (26), i.e., 

= e ψψ ψ α+ , into Eq. (34) to obtain  

[ ]T T
1 1 1 1 1 2

T
2

ˆ( ) ( )

(cos( ) 1)cos( ) sin( )sin( ) 0

sin( )cos( ) (cos( ) 1)sin( ) 0

e e e l d dl El l l

e e
e l

e e

V E ψ

ψ ψ

ψ ψ

ρ ψ τ τ α τ
ψ α ψ α

τ
ψ α ψ α

= − + + − + + +
− − 

 + − 

X K X X J J

X



(38) 

Then the control lτ  would be chosen such that all the 

term in the square bracket in Eq. (38) are canceled, i.e., 

2 2
ˆ( ) = ( ) ( )l l e El l d dlψα τ σ τ ψ τ− − +J K X J  instead of Eq. (36). 

The above choice will result in the same virtual control ψα  

as in Eq. (46) but the actual control 1= cos( )u ψτ Ω α +  

2 sin( )ψΩ α  with 1Ω  and 2Ω  defined in Eq. (39), which 

is different from the inverse optimal one as in Eq. (40). This 

choice of lτ  (note that = col( ,0))l uτ τ  will not be 

amendable to obtain an (inverse) optimal control. This is 

because according to Lemma 3.3, the control lτ  should be 

chosen in the form of (17). Indeed, the choice of lτ  as in 

Eq. (36) is in the form of Eq. (17).  

An inverse optimal control * *= col( ,0)l uτ τ  is obtained 

from the stabilizing control = col( ,0)l uτ τ  given in Eq. (37) 

as follows  

*
2 2 1 2

ˆ( ) = ( ) ( ) := col( , )l l e El l d dlψ τ σ τ ψ τ Ω Ω− − +J K X J  (39) 

where 2 1 2 1= , 2u uβ β ≥K K . Solving Eq. (39) results in 

* *
1 2 1 2

*
1 21 21 22 22

2

= cos( ) sin( ) :=

= ( )cos( ) ( )sin( )

ˆ ˆ= ( cos( ) )cos( ) ( sin( ) )sin( )

u u u

u e e

u Eu d ud Ev d ud

k X k X

τ Ω ψ Ω ψ τ τ
τ σ ψ σ ψ
τ τ ψ τ ψ τ ψ τ ψ

+ +
− −
− + + − +

(40) 

It is easy to verify that 

 
* min max

21 22

min max max *max

| | max(| |,| |)

max(| |,| |) 2 :=

u Eu Eu

Ev Ev ud u

k kτ τ τ
τ τ τ τ

≤ + + +

+
 (41) 

Substituting Eq. (40) into Eq. (34) results in  

 

{

{

T T
2 1 1 1 1 1 2

2
1 2

2
1 2

T T
1 1 1 1 1 2

2
1 1 2

2
2 1 2

ˆ( )

( ) sin( )cos( )cos
}

sin( )cos( ) ( )sin

ˆ( )

( ( ) 1) sin( )cos( )cos
sin( )cos( ) ( ( ) 1)sin

e e e l d dl El

e e e l d dl El

V E

E

ρ ψ τ τ
Ω ψ Ω ψ ψ
Ω ψ ψ Ω ψ
ρ ψ τ τ
Ω Ω ψ Ω ψ ψ
Ω Ω ψ ψ Ω ψ

= − + + − + +
+  = + 

− + + − + +
− + +  + − 

X K X X J

X K X X J



T T
1 1 1 1 2 2 2 1

2
1 2T

2 2
1 2

}

( )

( ( ) 1) sin( )cos( )cos
sin( )cos( ) ( ( ) 1)sin

e e e e

e

Eρ σ
Ω ψ Ω ψ ψ
Ω ψ ψ Ω ψ

 = 
 

− − + +
− + 

 + − 

X K X X K X

X

 (42) 

We now detail the last term in the right-hand side of Eq. 
(42). As such, substituting the last equation of Eq. (26) into 
the last term in the right-hand side of Eq. (42) with a note 

that *
1 2= cos( ) sin( )uτ Ω ψ Ω ψ+ , see Eq. (40), gives  

 

*2
1 2 1T T

2 2 *2
1 2 2

* *
1T

2 *
2

( ( ) 1) sin( )cos( ) cos( )cos
=

sin( )cos( ) ( ( ) 1) sin( )sin

cos( ) ((cos( ) 1)cos( ) sin( )sin( ))

sin( ) ((cos( ) 1)sin( ) sin(

u
e e

u

u e e u
e

u e

ψ ψ ψ

ψ ψ

Ω ψ Ω ψ ψ Ω ψ τ
Ω ψ ψ Ω ψ Ω ψ τ

Ω α τ ψ α ψ α τ
Ω α τ ψ α

− + − +   =  + − − +   
− + + − −
− + + − +

X X

X
*

1 1 2T T
2 2

2 1 2

)cos( ))

sin( )( sin( ) cos( ) )

cos( )(sin( ) cos( ) )

e u

e e

A

A

ψ

ψ ψ ψ

ψ ψ ψ

ψ α τ
α α Ω α Ω
α α Ω α Ω

  = 
 

− +   +   −   
X X

 (43) 

 

where  

 

*
1 1

*
2 2

= ( cos( ))

[(cos( ) 1)cos( ) sin( )sin( )]

= ( sin( ))

[(cos( ) 1)sin( ) sin( )cos( )]

u

e e

u

e e

A

A

ψ

ψ ψ

ψ

ψ ψ

τ Ω α
ψ α ψ α

τ Ω α
ψ α ψ α

+ ⋅
− −

+ ⋅
− +

 (44) 

and we have used 

*
1 2

1 2 1 1

2 2 1 2

= cos( ) sin( )=

cos( ) sin( ) ( sin( ) +

cos( ) ) (sin( ) cos( ) )

u

ψ ψ ψ

ψ ψ ψ

τ Ω ψ Ω ψ
Ω α Ω α Ω α Ω

α Ω Ω α Ω α Ω

+
+ + −

+ −
  

Substituting Eq. (43) into Eq. (42) yields 

 

T T
2 1 1 1 1 2 2 2 1

1 1 2T T
2 2

2 1 2

= ( )

sin( )( sin( ) cos( ) )

cos( )(sin( ) cos( ) )

e e e e

e e

V E

A

A

ψ ψ ψ

ψ ψ ψ

ρ σ
α α Ω α Ω
α α Ω α Ω

− − + +
− +   +   −   

X K X X K X

X X



(45) 

We now choose ψα  such that the last term in Eq. (45) is 

equal to zero, i.e.,  

 
1 2

1 2

1 2

sin( ) cos( ) = 0

sin( ) cos( )
= arctan

cos( ) sin( )
d d

d
d d

ψ ψ

ψ

α Ω α Ω
Ω ψ Ω ψα ψ

Ω ψ Ω ψ

− + 

− + +  + 

 (46) 

From (39), we have 

1 2

21 21 22 22

cos( ) sin( ) =

ˆ ˆ( ( ) )cos( ) ( ( ) )sin( )

d d ud

e Eu d e Ev dk X k X

Ω ψ Ω ψ τ
σ τ ψ σ τ ψ

+ +
− + −

 

Thus, the condition for 1 2 0| cos( ) sin( ) |>d dΩ ψ Ω ψ ε +  

with 0ε   being a positive constant, i.e., for ψα  to be a 

smooth function, is  

21 21 22 22ˆ ˆ( ( ) ),( ( ) ) <| |e Eu e Ev udk X k Xσ τ σ τ τ− −   

which can be written as  
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max min max min
21 22

0

max(| |,| |), max(| |,| |) <Eu Eu Ev Ev

ud

k kτ τ τ τ
τ ϖ 

+ +
−

 
 (47) 

where 0ϖ   is a positive constant and we have used the 

facts that | ( ) | 1σ ≤  for all ∈   and min maxˆ [ , ]Eu Eu Euτ τ τ∈  

and min maxˆ [ , ]Ev Ev Evτ τ τ∈ , which are guaranteed by the 

disturbance observers (24). Since udτ  is assumed to satisfy 

the condition (10), there always exist positive constants 21k  

and 22k  such that the condition (47) holds. The condition 

(47) also implies that there exists a positive constant 0ε  

such that  

 2 2 2
1 2 0Ω Ω ε+ ≥  (48) 

Substituting Eq. (46) into Eq. (42) results in  

 T T
2 1 1 1 1 2 2 2 2= ( )e e e eV Eρ σ− − +X K X X K X  (49) 

where 

 T *
2 1 2 1 2 1 2= col( , ) :=eE E A A E E+ +X  (50) 

Substituting Eqs. (40) and (46) into Eq. (32) gives  

 
1

2 2 2 2 1 1

1 2 1 1 1 2 2

[ ( ) ( )

col( , )] ( ) :=

e l e l e e

El e eA A

σ
τ

−= − − − +
+ + − +

X M K X D X K X
K K X X f




 (51) 

4.3 Stage 2 

4.3.1 Step 1 
Define  

 =e rr r α−  (52) 

where rα  is a virtual control of r . With a note that ψα  

is a smooth function of ,dψ  ,udτ  ˆ ,Elτ  and 2 ,eX  

differentiating both sides of the third equation of (26) along 
the solutions of the third equations of (22) and (23), (51), 
and (52) results in 

2
2

ˆ
ˆ

e r e d ud El
d ud El e

r rψ ψ ψ ψα α α αψ α τ τ
ψ τ τ

∂ ∂ ∂ ∂= + − − − −
∂ ∂ ∂ ∂

f
X

   (53) 

where 2f  is defined in Eq. (51). To design ,rα  we 

consider the following Lyapunov function candidate 

 2 2
3 2=

2
eV V

ρ ψ+  (54) 

whose derivative along the solutions of (49) and (53) is  

 

T T
3 1 1 1 1 2 2 2

2 3

( )

( )

e e e e

e r d ud
d ud

V

r Eψ ψ

ρ σ
α αρ ψ α τ
ψ τ

= − − +
∂ ∂− − +
∂ ∂

X K X X K X


 (55) 

where 

 *
3 2 2 2 2 3

2

ˆ= ( ) :=
ˆ

e e El
El e

E E r E Eψ ψα αρ ψ τ
τ

∂ ∂+ − − +
∂ ∂

f
X

  (56) 

The Eq. (55) suggests that we choose the virtual control 

rα  as follows  

 3=r e d ud
d ud

k rψ ψα αα ψ τ
ψ τ

∂ ∂− + +
∂ ∂

  (57) 

where 3k  is a positive constant. Substituting Eq. (57) into 

Eq. (55) gives 

 T T 2
3 1 1 1 1 2 2 2 2 3 3( )e e e e eV k Eρ σ ρ ψ= − − − +X K X X K X  (58) 

Substituting Eq. (57) into Eq. (53) results in 

 3 2 3
2

ˆ= :=
ˆ

e e e El
El e

k r fψ ψα αψ ψ τ
τ

∂ ∂− + − −
∂ ∂

f
X

  (59) 

4.3.2 Step 2 

With a note that rα  is a smooth function of dψ , dr , 

udτ , udτ , ˆElτ , 2eX , and eψ , differentiating both sides of 

(52) along the solutions of the last equations of (22) and 
(23), (51), and (59) results in  

2 3
2

1 1
= ( ) ( )

ˆ
ˆ

r r
e r Er r d r d rd

d d

r r r r r
ud ud El

ud ud El e e

r d r r d r
J r J

f

α ατ τ τ
ψ

α α α α ατ τ τ
τ τ τ ψ

∂ ∂− + + − − − + −
∂ ∂

∂ ∂ ∂ ∂ ∂− − − −
∂ ∂ ∂ ∂ ∂

f
X



 


(60) 

To design the actual control ,rτ  we consider the 

following Lyapunov function candidate 

 3 2
4 3=

2
eV V Jr

ρ+  (61) 

where 3ρ  is a positive constant. Differentiating both sides 

of (61) along the solutions of (58) and (60) results in 
T T 2

4 1 1 1 1 2 2 2 2 3

3

4

= ( )

ˆ[ ( )

( ) ]

e e e e e

r
e r d ud Er r d

d ud d

r r r
r d rd ud ud

d ud ud

V k

r d r J r

d r J J E
r

ψ ψ

ρ σ ρ ψ
α α αρ τ τ τ
ψ τ ψ

α α ατ τ τ
τ τ

− − − +
∂ ∂ ∂− + + + − −
∂ ∂ ∂

∂ ∂ ∂− + − − +
∂ ∂ ∂

X K X X K X



 


 (62) 

where， 

 
4 3 3 3

*
2 3 3 4

2

1
= [ ( ( ) )

ˆ ] :=
ˆ

e r e e Er

r r r
El

El e e

E E Jr d r k
J

f E E

ρ ψ τ

α α ατ
τ ψ

+ − − + −

∂ ∂ ∂− − +
∂ ∂ ∂

f
X




 (63) 

From Eq. (62), we choose the stabilizing control rτ  as 
follows: 

 

1 2

1 4

2

=

=

ˆ= ( )

( )

r r r

r e

r
r r d ud Er d

d ud d

r r r
r d rd ud ud

d ud ud

k r

d r J r

d r J J
r

ψ ψ

τ τ τ
τ

α α ατ τ τ
ψ τ ψ

α α ατ τ τ
τ τ

+
−

∂ ∂ ∂+ − + +
∂ ∂ ∂

∂ ∂ ∂− + + +
∂ ∂ ∂



 


 (64) 

where 4k  is a positive constant. The control stabilizing rτ  

given in Eq. (64) consists of two parts. The part 1rτ  is 
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designed based on Lemma 3.3 while the part 2rτ  is to 

handle ˆErτ , the estimate of disturbance, and the reference 

signals. An inverse optimal control *
rτ  is obtained from the 

stabilizing rτ  as follows:  

 
* *

1 2

*
1 1 1 1

=

= , 2

r r r

r r r r

τ τ τ
τ β τ β

+
≥

 (65) 

where 1rτ  and 2rτ  are defined in Eq. (64). Substituting 
Eq. (64) into Eq. (62) yields  

 
T T

4 1 1 1 1 2 2 2

2 2
2 3 3 4 4

( )e e e e

e e

V

k k r E

ρ σ
ρ ψ ρ

= − − −
− +

X K X X K X
 (66) 

Substituting Eq. (64) into Eq. (60) results in 

 
4 3

2 3
2

1
[ ( ) ]

ˆ
ˆ

e e r e e Er

r r r
El

El e e

r k r d r k
J

f

ψ τ

α α ατ
τ ψ

= − − − + −

∂ ∂ ∂− −
∂ ∂ ∂

f
X

 


 (67) 

The control design has been completed. We present the 
main results in the following theorem. 

Theorem 4.1  Under the assumptions listed in Control 

Objective 2.1, the controls *
uτ  and *

rτ  given in Eqs. (40) 

and (65), and update laws for ˆElτ  and ˆErτ  given in Eq. 

(24) solve Control Objective 2.1 as long as the control gains 
are chosen such that the condition (47) holds, and 

*
1 1 1 1= ( ) ,mk cρ λ −K  *

2 2= ,k c−  *
3 2 3 3= ,k k cρ −  and 

*
4 3 4 4=k k cρ −  are positive constants with ,ic  =1,2,...,5i  

defined below: 

 

2 max max max
1 1 1 2 21 22 3 21 22 3 3 21 22

1 34 47 472 2
11 0 0 0

2 21 222
2 1 1 1 1 11 12 21 33

0

max max
3 21 22

( ) ( ) 3 ( )( ) ( )
=

4
( )

= [ ( ) ( ) ]

3 ( )(

M l l ud d ud

m l l M l l

ud d

k k J k k r Jk k k
c

m m m
k k

c
m

J k k r

λ ρ ρ ρ τ τ ρε ε ε
ε ε ε ε

ρλ λ ρ ε ε ε ε
ε

ρ τ

+ + + + + ++ + +

+− − − + + − + + +

+ +

D K M K I

D M K D K M K I



max
3 3 21 22

46 462 2
0 0

*max 2 2 2
2 21 22 2 1 1 1*max

3 2 31 32
21 0 33 34

max max max
3 21 22 3 3 21 22

3 3 41 44 442 2
0 0

4

) ( )

( ) ( ) ( ) ( )
= 2 2

2 4 4

3 ( )( ) ( )

=

ud

u M l M l
u

ud d ud
r

Jk k k

m m

k k m m
c

m

J k k r Jk k k
d k

m m

c

τ ρε ε
ε ε

τ ρ λ λρ ε τ ε
ε ε ε ε

ρ τ τ ρρ ε ε ε
ε ε

ρ

++

+ + + ++ + + + + +

+ + ++ +

K D K D K K



max max max max max
2 3 3 3 21 22

3 3 42 3 432 2
31 41 0 0

*max 2 2 2 2
2 1 1 1 3

45 3 3 49
44 46 47 48

3 3 21 22

2
0

6( ) 3 ( )( )
( )

4 4

( ) ( )
[ ] [ (1 )]

4 4 4

( )

r d ud ud d ud
r M El El

u M l M l

d k r J k k r
d J D J

m

m m k
Jk

Jk k k

m

ρ τ ρ τ τρ ρ ε λ ρ ε
ε ε ε ε

τ λ λε ρ ε
ε ε ε ε

ρ
ε

+ + +− + + + × + ×

+ + ++ + + + + + +

+

K

K D K D K K

 

*max 2 2 2
2 1 1 1

46 45
44 46 47

( ) ( )
[ ]

4 4
u M l M lm mτ λ λε ε
ε ε ε

+ + ++ + + +K D K D K K

 (68) 

 

where ( )mλ   and ( )Mλ   denote the minimum and 

maximum eigenvalues of  , respectively, and ijε  with 

= 1,2,...,4i  and =1,2,...,9j  are positive constants. The 

conditions (47) hold, and *
1 1 1 1= ( )mk cρ λ −K , *

2 2=k c− , 
*
3 2 3 3=k k cρ − , and *

4 3 4 4=k k cρ −  are made to be positive 

constants by choosing sufficiently small 1K  and 2K , and 

sufficiently large 3k  and 4k . Particularly, the below 

results hold: 
1) The closed loop system consisting of (25), (31), (51), 

(59) and (67) is forward complete. 
2) All the parameter estimates are within their limits, i.e., 

min maxˆ ( ) [ , ],Eu Eu Eutτ τ τ∈  min maxˆ ( ) [ , ],Ev Ev Evtτ τ τ∈  and ˆ ( )Er tτ ∈  
min max[ , ]Er Erτ τ  for all 0.t t≥  

3) All the tracking errors 1 ( )e tX , 2 ( )e tX , ( )e tψ , ( )er t , 

and the estimate errors ( )El tτ  and ( )Er tτ  globally 

asymptotically and locally exponentially converge to zero.  

4) The controls *
uτ  and *

rτ  are optimal in the sense that 

a meaningful cost function, see Appendix C.3, penalizing on 
the tracking errors and the controls is minimized.  

Proof. See Appendix C. 

5 Extension to output-feedback control design 

In Section 4, all the states of the ODIN were assumed to 
be available for the control design. In this section, we 
assume that only position and yaw angle vector η  is 

available for feedback. As such, we apply Lemma 3.2 to 

design observers to estimate the states v  (via 2X  and 

r ), and the disturbances Elτ  and Erτ  as follows  

1 1 2 2

2 1 1 2 2

2 2 1 2

1
2 2

ˆˆ = ( )

ˆ= [ ( ) ]

ˆ ˆ[ ( ) ]

ˆ ˆ ˆ= [ ( ) ]

El El El El El l El

El El El El El El l El

El l l l El

l l El l l

D

D

τ σ ξ δ
ξ σ ξ δ

ψ τ

τ ψ τ−

 + + +

 − + + + −


− + −


− + +

K X K M X

K K X K M X

K D X J K X

X M D X J





(69a) 
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1 2

2 1 2

2 1

ˆ ˆ= ( )

ˆ= [ ( ) ]

ˆ ˆ( )

1
ˆ ˆ ˆ= ( )

r Er r Er Er Er

r Er Er r Er Er Er

Er r r Er

r Er r

k k Jr

k k k Jr

k d r k r

r d r
J

τ Δ σ ξ ψ δ
ξ Δ σ ξ ψ δ

τ

τ τ

+ + +
 − + + + −
 − + −

 − − + +





 (69b) 

where ElD  and Elδ  are defined just below Eq. (24), 1ElK  

and 2ElK  are diagonal positive definite matrices, and 1Erk  

and 2Erk  are positive constants. Let ˆ= ,El El Elτ τ τ−  

2 2 2
ˆ= −X X X , ˆ=Er Er Erτ τ τ− , and ˆ=r r r− . It is obvious 

that 

 

2 1 1 2 2 2

1
2 2

2 1 2

ˆ= ( )

= ( ),

ˆ= ( )

1
= ( )

El El El El El El l

l l El

Er Er Er r Er Er

r Er

D

k k k Jr r

r d r
J

τ σ ξ

τ
τ Δ σ ξ ψ

τ

−

′− + +

− − +
′− + +

− − +

K K X K M X X

X M D X

 
  
 

  

 (70) 

Lemma 3.2 shows that the estimate errors ( )El tτ , 2 ( )tX , 

( ),Er tτ  and ( )r t  globally asymptotically and locally 

exponentially converge to zero. Therefore with an 
observation that all the virtual and actual controls designed 
in Section 4 are either bounded or linearly dominated, the 
state-feedback control design in Section 4 is directly applied 
to the output-feedback case with the ODIN’s equations of 
motion (22) are replaced by  

 

( )

1 2 2

1
2 2

ˆ=
P)

ˆ ˆ ˆ= [ ( ) ]

ˆ=
H) 1

ˆ ˆ ˆ=

l l El l l

r Er r

r r

r d r
J

τ ψ τ
ψ

τ τ

−

 +


− + +
+

 − + +

X X X

X M D X J

 


 



 (71) 

6 Simulations 

In this section, we present some simulation results to 
illustrate the effectiveness of the output-feedback control 
design outlined in the previous section. The ODIN’s 
parameters are taken as mRB=125 kg, mA=62.5 kg, JRB=8 
kg/m2, JA=4 kg/m2, dl =468 m/s2, and dr =30 kg/(s·m2). The 

reference trajectory dη  is generated by Eq. (9) with the 

initial values (0) = col(0,0,0)dη  and (0) = col(0,0,0)dv . 

The reference force udτ  is chosen as = 10( )ud RB Am mτ +  

and rdτ  is chosen such that = 0rdτ  for t ≤ 12 s and 

= 1.33( )rd RB AJ Jτ +  for t >12 s. This means that the 

reference trajectory is a straight-line for t ≤ 12 s and is a 

circle for >12t s. The initial values of the ODIN are 

(0) = col( 5,5,0.5)−η  and = col(0,0,0).v  The waves, 

wind and ocean currents are assumed such that 

min max min max min max1 1 1
= ( ), = ( ), = ( )

3 3 3
Eu Eu Eu Ev Ev Ev Er Er Erτ τ τ τ τ τ τ τ τ+ + +

with 

min = 0.5( )Eu RB Am mτ + , max = 1.5( )Eu RB Am mτ +  
min = 0.2( )Ev RB Am mτ + , max = 0.8( )Ev RB Am mτ +  
min = 0.5( )Er RB AJ Jτ + ,  max = 1.5( )Er RB AJ Jτ +  

The control and update gains are chosen as 1 = 2,uβ  

1 = 2,rβ  1 2 2= 0.5 ,×K I  2 2 2= ,×K I  3 = 4,k  4 = 8,k  

1 2 2 2= = 5 ,El El ×K K I  and 1 2= = 5.Er Erk k  The saturation 

function ( )σ   is chosen as tanh( ) . It is checked that the 

condition (47) holds, the constants defined in Eq. (68) are 
positive. Simulation results are plotted in Fig. 2. It is seen 
from Figs. 2(a)–2(h) that all the tracking and observer errors 
converge to zero and that all the parameter estimates are 
within their pre-specified ranges thanks to the state and 
disturbance observer (69). Fig. 2(i) plots the cost function W, 
which is minimized by the proposed control design, given 
by 

 
1 T T

= 2 [ ( ) ( ) ( )] ( 2)

( ) ( )[ ( )] ( ) ( ) ( )

V V
W

V

β β β

−

∂ ∂− + + − ×
∂ ∂

∂ +
∂

f x G x u x
x x

G x R x G x u x R x u x
x

 (72) 

i.e., the function inside the integral (19), where 

1 1= = ,u rβ β β  and ( , ( ), ( ), ( ))x f x G x u x  are defined in 

Eqs. (90) and (93), see Appendix C.3. It is seen from Fig. 
2(i) that the cost function W converges to a non-zero value, 

which represents the value due to the controls 2uτ  and 2rτ , 

see Eqs. (40) and (64). As mentioned in Remark 4.1 and the 

paragraph just below Eq. (64) in Section 4, the controls 2uτ  

and 2rτ  are to handle the disturbance estimates and 
reference signals. 

 
Fig. 2 Simulation results under the proposed output- 

feedback control design 
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7 Conclusions 

This paper has designed both state- and output-feedback 
inverse optimal trajectory tracking controllers for an 
underactuated ODIN under unknown constant 
environmental loads. The keys are to the success of the 
proposed control designs include 1) bounded disturbance 
and state observers, 2) the use of the yaw angle regarded as 
a virtual control, and 3) the design of non-canceling virtual 
and actual controls. The results of this paper motivate 
redesign of existing controllers in these studies (Fossen, 
2002; Antonelli, 2006; Antonelli et al., 2001; Do et al., 
2002b; 2004a; Do, 2013; Zhang et al., 2000; Jiang, 2002; 
Lefeber et al., 2003; Pettersen and Nijmeijer, 2001), for 
(underactuated) ocean vehicles so that optimality can be 
achieved. 
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Appendix A: Proof of Lemma 3.1 

We first show that 2| ( ) ( ) |t kx tξ +  is bounded for all 

0 0t t≥ ≥ . As such, let 2=X kxξ +  whose derivative along 

the solutions of (12) and (13) satisfies 

 
max min max min

( ) ( )
2 2

X k X k
θ θ θ θσ θ− += − + −  (A1) 

Since min max( , ),θ θ θ∈  we have 
max min

| |<
2

θ θθ +−

max min

2

θ θ−
. Using this inequality plus the fact that ( )Xσ  

is a smooth saturation function as defined in Definition 3.1, 
it is seen from Eq. (A1) that | ( ) |X t  is bounded for all 

0 0t t≥ ≥  and that | ( ) |X t  converges to a constant less 

that 1. Now, differentiating ( )tθ  along the solutions of (12) 

and (13) gives  
max min max min

2 2

max min

1 2 1 2

max min

2

= ( ){ [ ( )
2 2

] ( , , ) ( ( , , ) )}
2

( )
2

kx k kx

kf x x u k f x x u

k kx

θ θ θ θθ σ ξ σ ξ

θ θ θ

θ θ σ ξ θ

− −′ + − + +

+ − + + =

− ′− +





(A2) 

Since 2| ( ) ( ) |t kx tξ +  is bounded for all 0 0t t≥ ≥ , we 

have 2( ) < 0kxσ ξ′ +  for all 0 0.t t≥ ≥  Thus, the last 

equation of (A2) yields global asymptotic convergence of 

( )tθ  to zero. Local exponential convergence of ( )tθ  to 

zero follows by using the fact that there exists a constant 

> 0δ  such that 2( ) <kxσ ξ δ′ +  for t T≥ , where T  is 

a constant larger or equal to 0t  since we have already 

proved that | ( ) |X t  is bounded for all 0 0t t≥ ≥  and that 

| ( ) |X t  converges to a constant less that 1. Finally, since 

2| ( ( ) ( )) | 1t kx tσ ξ + ≤ , the first equation of (13) ensures that 

min maxˆ [ , ]θ θ θ∈ .   

Appendix B: Proof of Lemma 3.2 

The first equation of (15) ensures that min maxˆ [ , ]θ θ θ∈ . 

Let 1 1 2 2ˆ=X k x k xξ + + . Differentiating θ , 2x  and X  

along the solutions of (14) and (15) yields  

max min

1 1 1 2 2 2

2 2

max min max min

2 2 2 1 2

ˆ= ( )
2

=

ˆ= ( )
2 2

k k x k x x

x ax

X k X k k k x

θ θθ σ ξ

θ
θ θ θ θσ θ

− ′− + +

− +
− +− − + +

 

 

 

 (B1) 

The following change of variables  

 

max min
1

max min

max min
1

max min

2
= ( )

2

2 ˆˆ = ( )
2

θ θϕ σ θ
θ θ

θ θϕ σ θ
θ θ

−

−

+ − − 
+ − − 

 (B2) 

where 1( )σ −   denotes the inverse function of ( ),σ   

transforms Eq. (B1) to 

[ ]

1 2

max min

2 2

max min max min

2 2 2 1 2

=

ˆ= ( ) ( )
2

ˆ= ( )
2 2

k x

x ax

X k X k k k x

ϕ
θ θ σ ϕ σ ϕ

θ θ θ θσ θ

−

−− + −

− +− − + +

 

 

 

(B3) 

where ˆ= ,ϕ ϕ ϕ−  
1

1

d ( ) 1
=

d ( ( ))

σ
σ σ

−

−′

 

 and the first 

equation of (15) have been used. Consider the following 
Lyapunov function candidate 

 
max min

2 2
1 2

0
1

ˆ( ) ( ) 1 1
= d

ˆ2 2 2
V x X

k

ϕθ θ σ ϕ σ ϕ χ χ
ϕ ϕ

− − + +
−


  (B4) 

whose derivative along the solutions of (B3) satisfies  
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max min
2

1 2 2

max min

2 2 1 2

max min max min

2 2 1 2

2 2 2 2 max min 2
1 2 2 1 1 2

( )
2

ˆ( )
2

| | | | | || |
2 2

1
( )

2

V ax k X X

X k k k x X

k X k X k x X

X k x k V

θ θ σ

θ θ θ

θ θ θ θ

θ θ ε ε

−= − − +

+− + + ≤

− −+ + ≤

+ + − ≤ +

 







(B5) 

where 2
1 1= max(2 ,1),kε  2 max min 2

2 2= ( ) ,kε θ θ−  and we 

have used 
max min max min

ˆ| |
2 2

θ θ θ θθ + −− ≤ . Due to Eqs. (B4) 

and (B5), the system (B3) is well defined. Now, consider the 
Lyapunov function candidate  

 
max min

2
2 2

0
1

ˆ( ) ( ) 1
= d

ˆ2 2
V x

k

ϕθ θ σ ϕ σ ϕ χ χ
ϕ ϕ

− − +
−


  (B6) 

whose derivative along the solutions of the first two 

equations of (B3) is 2
2 2=V ax−  . Global asymptotic and 

local exponential convergence of ( )tϕ  and 2 ( )x t  to zero 

follows from the expression of 2V , 2
2 2=V ax−  , Barbalat’s 

lemma, and linearization of the first two equations of (B3) 
around the origin. This in turn implies global asymptotic 

and local convergence of ( )tθ  to zero from Eq. (B2) and 

the fact that the smooth saturation function ( ) = 0σ   if 

only = 0 . Since we have already proved that 2 ( )x t  and 

( )tθ  globally asymptotically and locally exponentially 

converge to zero, the proof of boundedness of 

1 1 2 2ˆ| ( ) ( ) ( ) |t k x t k x tξ + +  follows the same lines as in that of 

Lemma 3.1 using the last equation of (B3).   

Appendix C: Proof of Theorem 4.1 

To prove Theorem 4.1, we need to calculate the upper 

bound of 4E  defined in Eq. (63). To do so, we calculate 
the following partial derivatives:  

 

1 2
2 1

2 2
1 2

=

= ( ) ( )r
d ud

d ud

r

ψ

ψ ψ

Ω ΩΩ Ωα
Ω Ω

α α α τ
ψ τ

∂ ∂− +∂ ∂ ∂
∂ +

∂ ∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂

 




 (C1) 

where   stands for ˆ ,Elτ  2 ,eX  ,dψ  and ,udτ  and   

stands for 2eX  and ˆ .Elτ  Using Eq. (C1) and completion 

of squares, a tedious but simple calculation results in 

upper-bounds of 1E , and *
iE , = 2,...,4i  as follows:  

2
1 1 12 2 2 2

1 1 1 1 1 11 12 2 1
11 42

*max 2
* 2 2
2 21 2
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e e
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≤ +
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D K M K ID M K D K M K I X X

X

K
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By definition, 
4 *

4 1 =2
= ii

E E E+ . Thus, we have from Eq. 

(C2) that 

 

2 2 2
4 1 1 2 2 3

2 2
4 5 6

e e e

e El Er
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ψ
τ τ

≤ + + +

+ +

X X
 

   

 
 (C3) 

where ic  with = 1,2,...,4i  are given in (68), and 

2 2 21 22
5 2

42 0 31 0 32
max max

3 3 21 22
32 2

0 43 0 45
max max max 2

3 21 22
3 32 2

0 45 0 49
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Substituting Eq. (C3) into Eq. (66): 

 
* 2 T * 2

4 1 1 2 2 2 2 2

* 2 * 2 2 2
3 4 5 6

( )e e e e

e e El Er

V k k

k k r c c

σ
ψ τ τ

≤ − − − −

− + +

X X K X X

 
   

 
 (C5) 

C.1 Forward completeness of the closed loop system and 
boundedness of parameter estimates 

We consider the following Lyapunov function candidate  

 2 2
4

1 1
=

2 2
El ErV VΣ τ τ+ +    (C6) 

whose derivative along the solutions of (C5) and (25) 
satisfies 

* 2 T * 2 * 2
1 1 2 2 2 2 2 3

* 2 2 2 T
4 5 6

2
2

2 2
5 6

( )

'(

) ( )

e e e e e

e El Er El El El El

El l El Er Er r Er Er
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V k k k
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c c V
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Σ
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τ τ τ σ ξ
τ Δ σ ξ τ

τ τ α
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+ + − +
′− + ≤

+ ≤

X X K X X
K

K M X



  
 

 

   

 

 

(C7) 

where 5 6= 2max( , ),c cα  and we have used Property 3) of 

the saturation function, see (11), i.e., 2( )El El lσ ξ′ + K M X  

is nonnegative positive definite and ( ) > 0.r Erk Jrσ ξ′ +  

Thus, the closed loop system consisting of (25), (31), (51), 
(59) and (67) is forward complete. Since all the parameter 
estimates are designed as in Eq. (24), Lemma 3.1 ensures 

that they are within their limits, i.e., min maxˆ ( ) [ , ]Eu Eu Eutτ τ τ∈ , 
min maxˆ ( ) [ , ]Ev Ev Evtτ τ τ∈  and min maxˆ ( ) [ , ]Er Er Ertτ τ τ∈  for all 0.t t≥  

C.2 Convergence of tracking and estimate errors 
Since we have already proved that the closed loop system 

consisting of (25), (31), (51), (59) and (67) is forward 
complete, we can now consider the tracking error system 
consisting of (31), (51), (59) and (67), and the estimate error 
system (25) separately. Proof of Lemma 3.2 shows that the 

estimate errors ( )El tτ  and ( )Er tτ  globally asymptotically 

and locally exponentially converge to zero. Thus, there exist 

class   functions 0( ( ) )El El tγ τ   and 0(| ( ) |)Er Er tγ τ  

such that  

 
( )0

0

( )0
0

( ) ( ( ) )e

| ( ) | (| ( ) |)e

t tEl
El El El

t tEr
Er Er Er

t t

t t

δ

δ

τ γ τ
τ γ τ

− −

− −

≤

≤

 
 
   

 (C8) 

where Elδ  and Erδ  are positive constants depending on 

the initial values 0( )El tτ  and 0( )Er tτ . Substituting Eq. 

(C8) into Eq. (C5) results in  

* 2 T * 2 * 2 * 2
4 1 1 2 2 2 2 2 3 4

( ) ( )2 20 0
5 0 6 0

( )

( ( ( ) )e ) ( (| ( ) |)e )

e e e e e e

t t t tEl Er
El El Er Er

V k k k k r
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σ ψ
γ τ γ τ− − − −

≤ − − − − − +

+

X X K X X

 
   

 
(C9) 

which readily shows that the tracking errors 1 ( ),e tX  

2 ( ),e tX  ( ),e tψ  and ( )er t  globally asymptotically and 

locally exponentially converge to zero. 

C.3 Optimality 
Let us define  

1 2
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1 1 2

1
2 1 1 1 2
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0 0
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(C10) 

We rewrite the closed loop system consisting of (25), (31), 
(51), (59) and (67) as follows  

 = ( ) ( )+x f x G x u  (C11) 

where we haven’t substituted 1uτ  and 1rτ  given in Eqs. 

(37) and (64) into Eq. (C11). It is seen from the second 

equations of (40) and (64) that the controls 1uτ  and 1rτ  

are of the form Eq. (18), i.e.,  

 

1
1 1 21 22

21 221
1 2

21 22

1 1
1 1 1 4 3

= col( cos( ), sin( ))

( ) ( )
= diag( , )

= , = /

u u e e

e e
u

e e

r r e r

X X

X X

X X

R r R k

τ ψ ψ
σ σ

τ ρ

−

−

− −

−

−

R

R K  (C12) 

Since 1 2= ,uβK K  the control gains chosen such that 
*,ik  = 1,2,...,4i  are positive will also cover the case when 

1uτ  given in Eq. (37). Thus, by Lemma 3.3 the controls *
uτ  

and *
rτ  given in Eqs. (40) and (65) are optimal in the sense 

that the cost function defined in Eqs. (19) and (20) with 
( )f x , ( )G x , ( )κ x  are defined in Eq. (C10), 

 1 1( ) = diag( ,0, , ,0, )u rRR x R0 0  (C13) 

with 1uR  and 1rR  are defined in Eq. (C12), and =V VΣ . 



 


