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Abstract: Oblique ocean wave damping by a vertical porous 
structure placed on a multi-step bottom topography is studied with 
the help of linear water wave theory. Some portion of the oblique 
wave, incident on the porous structure, gets reflected by the 
multi-step bottom and the porous structure, and the rest propagates 
into the water medium following the porous structure. Two cases 
are considered: first a solid vertical wall placed at a finite distance 
from the porous structure in the water medium following the 
porous structure and then a special case of an unbounded water 
medium following the porous structure. In both cases, boundary 
value problems are set up in three different media, the first 
medium being water, the second medium being the porous 
structure consisting of p vertical regions-one above each step and 
the third medium being water again. By using the matching 
conditions along the virtualvertical boundaries, a system of linear 
equations is deduced. The behavior of the reflection coefficient 
and the dimensionless amplitude of the transmitted progressive 
wave due to different relevant parameters are studied. Energy loss 
due to the propagation of oblique water wave through the porous 
structure is also carried out. The effects of various parameters, 
such as number of evanescent modes, porosity, friction factor, 
structure width, number of steps and angle of incidence, on the 
reflection coefficient and the dimensionless amplitude of the 
transmitted wave are studied graphically for both cases. Number 
of evanescent modes merely affects the scattering phenomenon. 
But higher values of porosity show relatively lower reflection than 
that for lower porosity. Oscillation in the reflection coefficient is 
observed for lower values of friction factor but it disappears with 
an increase in the value of friction factor. Amplitude of the 
transmitted progressive wave is independent of the porosity of the 
structure. But lower value of friction factor causes higher 
transmission. The investigation is then carried out for the second 
case, i.e., when the wall is absent. The significant difference 
between the two cases considered here is that the reflection due to 
a thin porous structure is very high when the solid wall exists as 
compared to the case when no wall is present. Energy loss due to 
different porosity, friction factor, structure width and angle of 
incidence is also examined. Validity of our model is ascertained by 
matching it with an available one. 
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1 Introduction 
The concept of porous media is used in many areas of 

applied science and engineering: filtration, mechanics 
(acoustics, geomechanics, soil mechanics, rock mechanics 
(Xi et al., 2011)), engineering (petroleum engineering, 
bioremediation (Anglin et al., 2008), construction 
engineering), geosciences (hydrogeology, petroleum 
geology (Blunt, 1998), geophysics), biology, biophysics 
(Clement et al., 1996), material science, etc. These works 
amply justify that fluid flow through porous media is a 
subject of immense common interest and has, hence, 
emerged as a separate field of study. In coastal areas, porous 
structures are widely used as breakwaters to protect harbors, 
inlets and beaches from wave action, and as dissipating 
sea-walls to attenuate the wave energy in harbors. Because 
of this immense significance of porous structures interacting 
with ocean waves, we are motivated to investigate some 
specific cases of reflection by a porous structure. 

Many aspects of interaction between waves and porous 
media have been studied extensively. Theoretical solutions 
for reflection and transmission coefficients for certain type 
of porous structures have been analyzed previously by a 
number of researchers. The most widely used model of 
wave-induced flow in porous medium is the one developed 
by Sollitt and Cross (1972). According to this approach, 
dissipation of wave energy inside a porous medium is taken 
into account through a linearized friction term f which is 
evaluated by an iterative procedure. Madsen (1974) derived 
a simple solution for reflection and transmission from a 
rectangular porous structure under normal incidence of long 
waves based on the linearized form of the governing 
equations and also that of the flow resistance formula. 
Madsen (1983) obtained a theoretical solution for the 
reflection of linear shallow-water waves from a vertical 
porous wave absorber placed on a horizontal bottom. The 
friction term describing the energy loss inside the absorber 
was linearized and thereafter, by using Lorentz principle of 
equivalent work, the reflection coefficient was determined 
as a function of parameters describing the incoming waves 
and the absorber characteristics. Kirby and Dalrymple (1983) 
investigated the diffraction of obliquely incident surface 
waves by an asymmetric trench in which they developed a 
numerical solution by matching the particular solution for 
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each sub region of constant depth along the vertical 
boundaries. An approximate solution based on plane-wave 
modes was derived and compared with the numerical 
solution. Sulisz (1985) formulated a theory to predict wave 
reflection and transmission at an infinite rubble-mound 
breakwater under normal wave incidence. Dalrymple et al. 
(1991) adopted the approach of Sollitt and Cross (1972) to 
analyze the reflection and transmission of oblique incident 
waves from infinitely long porous structures. Losada et al. 
(1993) extended this study to the case of an infinitely long, 
homogeneous, vertical structure capped with an impervious 
element under oblique incident wave. Mallayachari and 
Sundar (1994) took into account the effects of an uneven 
sea-bed. The variation of the reflection coefficient with the 
porosity of the wall, its friction factor and the relative wall 
width was studied. Zhu (2001) used wave induced 
refraction-diffraction equations for surface waves in the 
region occupied by a porous structure. He used the 
orthogonality of the depth-dependent functions. Zhu and 
Chwang (2001) also extended theearlier study of Zhu (2001) 
by considering a water chamber behind the porous structure 
and they concluded that with a proper choice of the 
geometry and the hydraulic characteristics of the composite 
wave absorber with a water chamber, reflection can be 
reduced considerably. Liu et al. (2008) examined the 
hydrodynamic performance of a modified two-layer 
horizontal-plate breakwater consisting of an upper 
submerged horizontal porous plate and a lower submerged 
horizontal solid plate. Liu and Li (2011) extended this work 
by considering a double curtain-wall breakwater whose 
seaward wall was perforated and shoreward wall 
impermeable. Cho et al. (2013) further extended the idea of 
Liu et al. (2008) by considering the lower submerged 
horizontal plate as a porous one instead of an impermeable 
one. Das and Bora (2014a) investigated wave reflection by a 
rectangular porous structure placed on an elevated bottom 
and supported by a vertical wall. The variation of reflection 
with respect to the number of modes, porosity, structure 
width etc., was studied. Das and Bora (2014b) also studied 
wave damping by a vertical rectangular porous structure 
placed near and away from a rigid vertical wall. They 
computed the reflection coefficients for various depths, 
structure width and porosity. An extension of this work was 
carried out by Das and Bora (2014c) by placing the porous 
structure on a multi-step horizontal bottom. A special case 
by removing the rigid wall was also investigated. 

The objective of this work is to solve water wave 
scattering problems due to the presence of a porous structure 
placed on a p-step horizontal bottom followed by a water 
region bounded by a rigid vertical wall placed at a distance 
from the porous structure and study the reflection coefficient 
and the dimensionless amplitude of the transmitted 
progressive wave. The effects of various parameters, such as 
number of evanescent modes, depth, porosity, friction factor, 
structure width and angle of incidence on the reflection 
coefficient and the dimensionless amplitude of the 

transmitted progressive wave are studied and the results are 
presented graphically. To the best of the authors’ knowledge, 
no one has solved oblique ocean wave damping through a 
porous structure which is placed on a multi-step horizontal 
bottom. A special case of an unbounded water region 
following the porous structure placed on the p-step 
horizontal bottom is considered and the reflection 
coefficient and the dimensionless amplitude of the 
transmitted progressive wave for the various set of 
parameters, as mentioned earlier, are studied as was done for 
the former case. 

2 Mathematical formulation 
Though the present problem is a specific one involving a 

vertical porous structure, it is fairly important to discuss 
some general features and equations which usually arise in 
wave propagation in porous medium. Therefore, in the 
following subsections a brief description on the specific 
porous structure under consideration is presented along with 
these equations ahead of the formulation of the present 
problem. 

2.1 Porosity and porous structure 
A porous medium mostly consists of pores through which 

fluid (be it gas or liquid such as water) can pass. The 
skeleton part of the medium is mainly solid (but foam is 
considered to be porous though). A porous medium may be 
an aggregate of alarge number of particles like sand, gravels 
or a solid containing many capillaries such as porous rock. 
Many natural substances like sponge, soil, biological 
materials (bone, lungs etc.) are some examples of porous 
material.  

 

 
Fig. 1 Front view of the structural model 

 
There are many man-made porous materials such as 

cement, ceramics etc. Depending upon the pore size, porous 
structures can be categorized into three types, namely, 
microporous (smaller than 2 nanometers), mesoporous 
(between 2 and 50 nanometers) and macroporous (larger 
than 50 nanometers). Metallic foams are good examples of 
porous materials with higher porosity (ranging from 0.6 to 
0.96). The construction of these types of materials can be 
accomplished through many means–the main one being the 
‘lost-foam casting’. Porous structures, with high porosity but 
with considerable stability, to be used as breakwater in 
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ocean and coastal engineering, can be constructed from low 
melting metals and alloys such as copper, aluminum, lead, 
tin, zinc, etc. The porous structure under consideration in 
this manuscript is taken as such a type of structure. Fig. 1 
presents a rough visual representation of the present 
structural model. 

2.2 General theory for flow inside porous medium 
Small amplitude wave motion is considered within an 

undeformable porous medium. It is assumed that the porous 
structure is homogeneous and isotropic. The fluid motion 
follows the continuity equation and the equation of motion 
in terms of the seepage fluid velocity U  and dynamic 
pressure P  which are given by 

0 U                    (1a) 

0
P

S f
t




 
  


U

U             (1b) 

where   is the density of the fluid, f  is the linearized 

friction factor and   is the angular frequency of the 
incident wave. 

The inertial coefficient S is defined by 

1 (1 ) /MS C                    (2) 

where MC  is the added mass coefficient and  is the 

porosity of the porous structure. The physical significance 
and derivation of Eqs. (1a), (1b) and (2) are described in 
Appendix A. 

A pore velocity potential ( , , , )x y z t is introduced to 

describe the wave-induced fluid motion in the porous 
medium: 

U                     (3) 
Integration of equation of motion (1b) leads to Bernoulli’s 
equation 

0
P

S f
t





  


              (4) 

The potential   is assumed to be harmonic in time. So the 
fluid velocity, dynamic pressure and velocity potential can, 
respectively, be written as  

( , , )exp( i )x y z tU u    

( , , )exp( i )P p x y z t             (5) 

( , , )exp( i )x y z t     

where u , p  and  are spatial functions independent of 

time. Substitution of these values into Eqs. (1a), (1b) and (3) 
leads to the equations  

0u                     (6a) 

p
u




 0                 (6b) 

u                     (6c) 
where if S    is the dimensionless impedance of the 

porous medium. Using Eq. (6a) in Eq. (6c), the spatially 
dependent potential function   satisfies Laplace’s 

equation 

2 0                       (7) 

If the free surface is defined by ( , , )z x y t , then the 

linearized dynamic free surface boundary condition can be 
obtained from (4) with P g   as 

( , ,0)exp( i )x y t
g

               (8) 

The linearized kinematic free surface boundary condition 
can be written as 

at 0z
z t

  
 

 
            (9) 

Combining (8) and (9), the following single free surface 
condition is obtained: 

         i 0 at 0z
z

 
  


           (10) 

where 2 / g   with g  as the gravitational constant. 

The condition at the impermeable bottom is 

      0 t ( , )a z h x y
n


  


          (11) 

where / n   represents differentiation along the normal to 

the bottom boundary  ,h x y  which depicts a variable 

bottom topography. 
For a flat sea-bed at z h   when h  is constant, the 

general solution of the two-dimensional wave motion within 
a porous medium can be obtained as follows by solving Eqs. 
(7)–(11) for the potential in x  and z  with the help of the 
technique of separation of variables: 

0

( , ) exp(i ) exp( i ) ( , ) n n n n n
n

x z A k x B k x Z h z 




        (12) 

where ,n nA B   are constants and ( , )nZ h z  is the 

depth-dependent function defined by 
cosh ( )

( , ) , 0,1,2,
cosh

n
n

n

k h z
Z h z n

k h


        (13a) 

with the complex wave number nk  satisfying the complex 

dispersion relation 

i tanhn nk k h                  (13b) 

The characteristics of waves in the porous medium can be 

described by the dimensionless complex wave number nk h . 

It is known that for a non-dissipative medium ( 0f  ), 0k  

is purely real, while 1nk   are purely imaginary. For a 

dissipative medium, it is noted that the influence of the 
friction factor f is to damp the wave motion. This damping 

can be achieved by adding an imaginary part to 0k  and real 

parts to 1nk  . Subsequently, the amplitudes of both 

propagating mode and evanescent mode will decay. 

2.3 Formulation 
Let us consider a vertical porous structure of width L  

along the mean free surface, placed on a p-step bottom 
topography above the horizontal ocean bottom, which is at a 

constant depth 1h  from the free surface. Using Cartesian 
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coordinate system, the positive x -direction is defined as 
the direction of the wave incident on the porous structure at 

0x  , the positive z -direction considered vertically 
upwards and the mean free surface as 0z  . Due to the 
p -step bottom topography under the porous structure, p  

different heights of the porous structure exist, namely, jh  

when 1j jxx x    for each j=2, 3,…, p+1 where 

1 2 1 1  0 wit  h   p j jx x x L x x l        

The water medium 1( 0, 0)x h z       is labeled as 

region I, the porous structure above the jth step 

1( , 0)j j jx x x h z       as region 1j   with the 

structure split into a total of p  regions (Fig. 2). Further a 

water region 2( , 0)pL x L D h z       in between the 

porous structure and the rigid vertical wall placed at a 
distance x L D   is considered and labeled as region 

2p  . The horizontal bottom for region I is at 1z h  . 

After propagating through the porous structure, the wave 
passes through region 2p   and gets reflected by the 

vertical wall placed at x L D  . The fluid is assumed to 
be incompressible, homogeneous and inviscid, and the 
motion irrotational. According to Sollitt and Cross (1972), 
velocity potentials can be assumed to exist within the porous 
structure as well as in the fluid region. We define 2p   
velocity potentials ( , , , ) ( , )exp(i i )j jx y z t x z y t      in 

region j  for each j=1, 2,…, p+2, where 1,0 sink   

with 1,0k  and  , respectively, the incident wave number 

and the angle made by the incident wave to the positive 
x -direction. The variation of the potential functions in the 
y -direction is considered same in all the regions to satisfy 

the matching conditions along the vertical boundaries (by 
Snell’s law).  
 

 
Fig. 2 Schematic diagram of the problem with rigid vertical 

wall 
 
The governing equation and the boundary conditions in 

region I 1( 0, 0)x h z       are 
2 2

1 1 10; 0, 0x h z                (14a) 

1
1 0; 0, 0x z

z

 
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
         (14b) 

1
10; 0,x z h

z


     


           (14c) 

1
1 20; 0,x h z h

x


     


          (14d) 

The governing equation and the boundary conditions in 
region j ( j=2, 3,…, p+1) are 

2 2
10; , 0j j j j jx x x h z                (15a) 

1i 0; , 0j
j j jx x x z

z


 


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
      (15b) 

10; ,j
j j jx x x z h

z





    


        (15c) 

10; ,j
j j jx x h z h

x





     


      (15d) 

The governing equation and the boundary conditions in 
region 2p  2( , 0)pL x L D h z       are 

2 2
2 2 20 0p p pL x L D h z            ； ，  (16a) 

2
2 0 0p

p L x L D z
z







     


； ，       (16b) 

2
20p

pL x L D z h
z

 



     


； ，         (16c) 

2
20 0p

px L D h z
x

 



     


； ，       (16d) 

In addition to the governing equations and different 
boundary conditions for each region, there exist some other 
conditions, called matching conditions, along the common 
boundary of any two successive media. These conditions 
imply the continuity of pressure and mass flux across the 
boundaries. The matching conditions along the boundaries 

0, ( 2, , )jx x x j p     and 1px x   are given by 

1 2 2;i 0 0x h z     ，            (17a) 

1 2
2; 0 0x h z

x x

  
    

 
 ，          (17b) 

1 1; 0j j j jx x h z        ，          (17c) 

1
1; 0j j

j jx x h z
x x

  


 
    

 
，         (17d) 

1 2 1 2i ; 0p p p px x h z         ，       (17e) 

1 2
1 2; 0p p

p px x h z
x x

 
  

 

 
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 
 ，      (17f) 

Derivation of the matching conditions (17a–f) is detailed in 
Appendix B. 

2.4 Reflection and transmission by the porous structure 
The velocity potential 1( , )x z  in region I is given by the 

following form: 

1 1,0 0 1,0 1,0 1

1, 1, 1
1

( , ) [exp(i ) exp( i )] ( , )

exp( i ) ( , )n n n
n

x z K x R K x Z h z

R K x Z h z






   


   (18) 
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where 0R  is the complex reflection coefficient, nR  

correspond to the decaying modes of reflection; and the 
depth-dependent function 1, 1( , )nZ h z  and 1,nK  are, 

respectively, given by 

1, 1
1, 1

1, 1

cosh ( )
( , ) , 0,1,2,

cosh
n

n
n

k h z
Z h z n

k h



        (19a) 

2 2 1/2
1, 1,( )n nK k                  (19b) 

with 1,nk  satisfying the dispersion relation 

1, 1, 1tanhn nk k h                  (19c) 

Eq. (19c) has one positive real root 1,0k corresponding to the 

incident and reflected modes of wave propagation, and 

infinitely many purely imaginary roots 1,nk ; 1,2,n  , 

which correspond to the evanescent modes. We truncate the 
infinite sum at  n N  so as to consider a finite number of 
evanescent modes N  only: 

1 1,0 0 1,0 1,0 1

1, 1, 1
1

( , ) [exp(i ) exp( i )] ( , )

exp( i ) ( , )
N

n n n
n

x z K x R K x Z h z

R K x Z h z





   


   (20) 

In region 1( 2,3, , 1, )j jj j p x x x     , the horizontal 

impermeable bottom is considered at jz h  . Therefore, 

the integrals in this porous region must be from jz h   to 

z=0 in order to meet the matching conditions and it is 
required to compute the relevant integrals from jz h   to 

z=0. By using separation of variables method, the velocity 
potential ( , )j x z , after truncating the infinite sum at 

n N , can be written as 

, , 1
0

, , ,

( , ) { exp[i ( )]

exp[ i ( )]} ( , )

N

j j n j n j
n

j n j n j j n j

x z A K x x

B K x x Z h z

 

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 


       (21a) 

where ,j nA  and ,j nB  are arbitrary constants; 

2 2 1/2
, ,( )j n j nK k    with ,j nk  satisfying the dispersion relation 

, ,i tanhj n j n jk k h               (21b) 

and , ( , )j n jZ h z  is the depth-dependent function given by 

,
,

,

cosh ( )
( , ) , 0,1,2, ,

cosh
j n j

j n j
j n j

k h z
Z h z n N

k h



      (21c) 

In region p+2 (L<x<L+D, −hp+2<z<0), the horizontal 
impermeable bottom is considered at 2pz h   . Hence, the 

integrals in the porous region must be from 2pz h  
 

to 

z=0 in order to meet the matching conditions and it is 
required to compute the relevant integrals from 2pz h    

to z=0. The velocity potential 2 ( , )p x z  , after truncating 

the infinite sum at n=N, can be written as 

2 2,
0

2, 2, 2

( , ) { exp[i ( )]

exp[ i ( )]} ( , )

N

p n p n
n

n p n p n p

x z C K x L

D K x L D Z h z

  

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  

  


     (22a) 

where 0C  is the dimensionless amplitude of the 

transmitted progressive wave, Cn (n=1, 2,…,N) and Dn (n=1, 

2,…,N) are arbitrary constants; 2 2 (1/2)
2, 2,( )p n p nK k   

 
with 2,p nk   satisfying the dispersion relation 

 2, 2, 2tanhp n p n pk k h                 (22b) 

And 2, 2( , )p n pZ h z  is the depth-dependent function given 

by 

2, 2
2, 2

2, 2

cosh ( )
( , )

cosh
p n p

p n p
p n p

k h z
Z h z

k h
 

 
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
        (22c) 

Further, using (16d), 2p   
can be reduced to the following 

form: 

2 2,
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When the energy loss during the whole process of scattering 
is discussed, the following definition is tobe used: 

2 2
loss 0 0(1 | | | | ) 100%E R C              (24) 

Using the matching conditions (17a, 17b) along the 

boundary 1x x , 2 0h z   , we get 
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Further, using the matching conditions (17c, 17d) along the 

boundary jx x , 1 0jh z    (j=2, 3,…, p), it follows 
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Applying the matching conditions (17e, 17f) along the 

boundary 1px x L  , 2 0ph z   , we obtain 
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Further, using the orthogonality property of 2,mZ , 1,j mZ   

(j=2, 3,…, p) and 2, p mZ  , for each m=0, 1,…,N, in (25a, 

25b), (25c, 25d) and (25e, 25f), respectively, we have 

1, , 2, 2, 2, 2, 2, 1,0,
0

i i exp(i )
N

n m n m m m m m m
n

R a A K l a B 


     (26a) 

1, , 1, 2, 2, 2,
0

2, 2, 2, 2, 1,0 1,0,exp(i )

N

n m n n m m m
n

m m m m m

K R K a A

K K l a B K






 






       (26b) 

, , , , , , , 1, 1,
0 0

1, 1, 1,

exp(i )

exp(i ) 0

N N

j n j n m j n j n m j n j m j m
n n

j n j m j m

K l A B a A

K l a B

 
 

  

 



  
  (26c) 

, , , , , , , , ,
0 0

1, 1, 1, 1, 1, 1, 1,

exp(i )

exp(i ) 0

N N

j n j n j n m j n j n j n m j n
n n

j m j m j m j m j n j m j m

K K l A K B

K a A K K l a B
 

      

 

 

  
 (26d) 

1, 1, , 1, 1, , 1,
0 0

2, 2,

i exp(i ) i

1 exp(2i ) 0[ ]

N N

p n p n m p n p n m p n
n n

p n p m m

K l A B

K D a C

     
 

 

 

 

  
 (26e) 

1, 1, 1, , 1,
0

1, 1, , 1,
0

2, 2, 2,

exp(i )

1 exp(2i ) 0[ ]

N

p n p n p n m p n
n

N

p n p n m p n
n

p m p n p m m

K K l A

K B

K K D a C





   


  


  





 







       (26f) 
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Eqs. (26a)–(26f) reduce to the following system: 
AX=c 

where A is a square matrix of size 2(p+1)(N+1), 

0 2,0 2,0 2, 2,
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is the unknown vector, and 
T

1,0,0 1,0, 1,0 1,0,0 1,0 1,0,

2 ( +1)-times

[ , , , , , ,0, ... ,0]N N

p N

K K      c      

By solving the above system of linear equations, 0R  and 

0C  can be evaluated and subsequently the overall scattering 

phenomenon by the porous structure can be discussed. 

3 Numerical results 
Results are shown for variation in the reflection 

coefficient 0R  and the dimensionless amplitude of the 

transmitted progressive wave 0C  against the 

dimensionless width of the porous structure (L/h1) as well as 
the angle of incidence (θ) for various parameters such as the 
number of evanescent modes (N), porosity   , friction 

factor (f) and number of steps (p). Energy loss curves are 
also plotted against (L/h1) and θ. For computational purpose, 
some constant values for different parameters are considered: 
L/h1=3, 0   , N=10, γ=0.9, f=1 and p=7. Throughout the 

computation, the dimensionless wave number 1( )h  is 

considered fixed at 1h =0.8.  

In order to study the effect of the number of evanescent 
modes on scattering characteristics, 0R  and 0C  are 

plotted against L/h1 in Fig. 3 by keeping all other parameters 
constant. Fig. 3(a) shows large values of 0R  for relatively 

small value of L/h1, suggesting that in order to get lower 
reflection, thin porous structure needs to be avoided. It is 
noted that around L/h1=1.25, the reflection coefficient 
attains a minimum value and then increases with an increase 
in the value of L/h1 before stabilizing at a fixed value of 

0R ≈0.2. The minimum value may occur due to the 

cancelation of reflection from the step bottom as well as the 
rigid vertical wall and vertical front face of the porous 
structure (Straub et al., 1957). It is also found that the 
reflection characteristic is independent of the number of 
evanescent modes. Now large transmission is found to take 
place for relatively lower value of L/h1 (Fig. 3(b)). Further 
increase in L/h1 results in decrease of 0C  and it 

approaches zero. The behavior of 0C  is also independent 

of the number of evanescent modes. 
The effect of different values of porosity on scattering 

phenomenon is studied by plotting 0R  and 0C  against 

L/h1 (Fig. 4). From Fig. 4(a), it is observed that in each 
curve, as the dimensionless width of the structure is 
increased, 0R initially decreases rapidly, attains a 

minimum value and again increases slightly before 
obtaining a constant value. It is notable that higher value of 
porosity gives rise to lower 0R  the occurrence of which is 

as per expectation. Fig. 4(b) suggests that 0C  is 

independent of the value of the porosity considered. It is 
observed that higher values of 0C  occur for a thin porous 

structure but with an increase in L/h1, 0C decreases rapidly 
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before converging to zero. 
 

 
(a) Variation of 0R  

 

 
(b) Variation of 0C  

Fig. 3 Effect of dimensionless width of the porous structure 
L/h1 for different numbers of evanescent modes N 
with υh1=0.8, D/h1=10, θ=0°, γ=0.9, f=1 and p=7 

 

 
(a) Variation of 0R

 
 

 
(b) Variation of 0C

 
Fig. 4 Effect of dimensionless width of the porous structure 

L/h1 for different γ with υh1=0.8, D/h1=10, θ=0°, 
N=10, f=1 and p=7 

 
(a) Variation of 0R

 

 
(b) Variation of 0C

 
Fig. 5 Effect of dimensionless width of the porous structure 

L/h1 for different f with υh1=0.8, D/h1=10, θ=0°, 
N=10, γ=0.9, and p=7 

 
(a) Variation of 0R

 

 
(b) Variation of 0C

 
Fig. 6 Effect of dimensionless width of the porous structure 

L/h1 for different p with υh1=0.8, D/h1=10, θ=0°, 
N=10, γ=0.9 and f=1

 
 

In Fig. 5, 0R
 
and 0C  are plotted against different 

values of friction factor f in order to illustrate its effect on 
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scattering characteristics. Values of both 0R  and 0C  are 

very high for small L/h1 and further increase in L/h1 reduces 
the values of 0R  as well as those of 0C . Oscillation in 

0R  is observed in Fig. 5(a) for lower value of the friction 

factor (f=0.25). But the oscillation disappears if higher value 
of friction factor is considered (f=1). Higher values of 
friction factor result in lower transmission coefficient (Fig. 
5(b)) and approaches zero for large values of L/h1.  

Now variation in 0R  and 0C  against L/h1 is studied 

for the different number of steps (p) in Fig. 6. It is noticeable 
from Fig. 6(a) that for p=3, a very steep portion of the curve 
exists in 0.8<L/h1<2 which suggests the minimum 
admissible length of the porous structure. For higher number 
of steps, the nature of the curve remains the same but the 
minimum admissible length of the porous structure 
decreases. It is also observed that 0R  converges as the 

number of steps is increased. Similar kind of behavior exists 
for 0C  also (Fig. 6(b)). Higher admissible length of the 

porous structure is required for p=3. 0C  is very high for 

the initial portion of the curve but decreases with an increase 
in L/h1 and finally converges to zero for all the values of the 
number of steps considered.  

We observe in Figs. 3–6 that reflection and transmission 
are very high when the porous structure is very thin. When 
the width of the porous structure is almost zero, i.e., no 
porous structure is present, total transmission takes place 
and hence the amplitude of incoming wave is same as the 
amplitude of the transmitted wave.

 

 
(a) Variation of 0R

 

 
(b) Variation of 0C

 
Fig. 7 Effect of angle of incidence θ for different γ with 

υh1=0.8, D/h1=10, L/h1=3, N=10, f=1 and p=7 

 
(a) Variation of 0R

 
 

 
(b) Variation of 0C

 
Fig. 8 Effect of angle of incidence θ for different γ with 

υh1=0.8, D/h1=10, L/h1=3, N=10, γ=0.9 and p=7 
 

We also observe that the left propagating mode arising 
from the solid wall placed at x L D   has the same 
magnitude as that of the transmitted wave. This left 
propagating mode is responsible for reflection taking place 
(virtually) at  0x  . Therefore 0 1R   in this case. This is 

the reason why both the reflection and transmission are very 
high when  0L  . 

Further 0R  and 0C  are plotted in Fig. 7 against the 

angle of incidence ( )  for different values of porosity 

considered. From Fig. 7(a) it is observed that, with an 
increase in  , 0R  decreases slowly before reaching the 

minimum value and then increases rapidly until it reaches 

0 1R   at 90    which is justified as the wave passes 

tangentially with respect to the front surface of the porous 
structure causing no penetration in the structure. It is 
observed that in 0 44    (approx.), lower porosity 
results in higher reflection. But afterwards this characteristic 
starts reversing and from 52    (approx.) onwards, 
higher porosity gives rise to higher reflection. Fig. 7(b) 
shows that 0C  is independent of the values of porosity 

considered. It takes very small value for 0   and 
decreases to zero as   is increased 

In Fig. 8, the effect of incident wave angle on scattering 
characteristics is studied for different values of friction 
factor. Fig. 8(a) shows the variation of for different values of 
f . Oscillation is observed for lower values of friction 
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factor ( 0.25)f   which disappears if higher value of 

friction factor ( 1)f   is considered. Convergence of 0R  

is observed for higher values of friction factor. Variation in 

0C  for different values of f  is shown in Fig. 8(b). The 

higher the value of  , the lower is the value 0C  takes 

before converging to zero. It is found that up to 40    

(approx.), 0C  is higher for lower value of f  considered. 

Afterwards the above mentioned property reverses but the 
difference in their values is very small compared to those for 

0  . 

3.1 Energy loss 
The energy loss of the wave incident on the porous 

structure is discussed graphically in Figs. 9–10. 
 

 
(a) For different γ 

 

 
(b) For different f

 
Fig. 9 Energy loss (%) against dimensionless width of the 

porous structure (L/h1) with υh1=0.8, D/h1=10, θ=0°, 
N=10 and p=7 

 

 
(a) For different γ 

 

 
(b) For different f

 
Fig. 10 Energy loss (%) against angle of incidence θ with 

υh1=0.8, D/h1=10, L/h1=3, N=10 and p=7 
 

Fig. 9 depicts the energy loss  in %  against 1/L h  for 

different values of porosity and friction factor. Steep portion 
of the energy loss curve in Fig. 9(a) suggests the admissible 
width of the porous structure in order to be an effective 

wave absorber. Further increase in 1/L h  results in 

obtaining a constant value of energy loss. This characteristic 
is observed for all the values of porosity taken. It is also 
found that higher porosity causes higher energy loss 
compared to lower values of porosity. On the other hand, 
minimum admissible width of the porous structure varies for 
different values of f –larger admissible width of the porous 

structure is required for lower values of f  as compared to 

the higher values of f . It is noticeable that higher f  

results in higher energy loss but converges ultimately for 
larger width of the structure. 

The effect of   on scattering phenomenon for different 
values of porosity and friction factor is studied graphically 
from Fig. 10. Energy loss is very high for different values of 
porosity considered (Fig. 10(a)). But steep descent in the 
energy loss curves is observed for large values of   before 
converging to zero. It is observed that energy loss is higher 
for higher values of porosity when 50    (approx.). 
Beyond that range of  , the curves cross each other and the 
characteristic reverses. Convergence in energy loss curves is 
found for higher values of friction factor taken (Fig. 10(b)). 
Maximum energy loss occurs in 40 50   , irrespective 
of the value of f. When 0  , i.e., for normal incidence, 

energy loss is much higher for 1f   than that for f=0.25, 

but increases rapidly for 0.25f   as  increases. 

Oscillation in the energy loss curve is also found 
corresponding to 0.25f  . 

3.2 Comparison with existing result 
In order to ascertain that our model is effective, we 

compare our reflection coefficients plotted against the 

dimensionless porous structure width  1,0k L  with those 

from the work of Madsen (1974). This is accomplished by 
taking 1 1ph h  , i.e., by placing the porous structure on the 
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horizontal sea-bed instead of a p-step bottom. Excellent 
agreement between our result and Madsen’s result can be 
observed from Fig. 11. This confirms that our model is valid 
and hence can be employed effectively to investigate various 
issues related to scattering of waves by a porous structure 
placed on a p-step bottom. 
 

 
Fig. 11 Variation of reflection coefficient 0R  against 

dimensionless width of porous structure (k1,0L) for 
different porosity (γ) with steps=40, h1=21, hp+1=h1, 
D=0, f=1, δ=0.2, T=17.3, ai=0.87 and N=10 
(Comparison with Madsen (1983)) 

4 Special case: unbounded (p+2)th region 
In this case, the formulation of the problem is same as 

that of the previous one except for the last region where no 
solid wall is placed, i.e., the last region is unbounded (Fig. 
12). Potential functions j , depth dependent functions 

,j nZ (n=0, 1,…,N) and ,j nK in region j (j=1, 2,…, p+1) 

satisfy the forms as described earlier. The only difference 
occurs in the potential function 2p   in region 2p   
which, after truncating the infinite sum at n N , can be 
written in the following form: 

 

 
Fig. 12 Schematic diagram of the problem of particular case 

in unbounded region 

2 2, 2, 2
0

( , ) exp[i ( )] ( , )
N
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n

x z T K x L Z h z    
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where 0T  is the transmission coefficient, nT  (n=1, 2,…,N) 

are arbitrary constants, 2,  p nZ  satisfies Eq. (22c) and 

 1/ 22 2
2, 2,p n p nK k     with 2,p nk   satisfying Eq. (22b). It 

is to be noted that now transmission coefficient appears in 

2 ( , )p x z   because of the consideration of an infinite fluid 

domain. 
By applying the same technique adopted earlier, the 

following system of linear equations is obtained: 
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A matrix system can be constructed as per our earlier 
discussion and subsequently the scattering phenomenon can 
be discussed. 

4.1 Numerical results 
Here also the same study is carried out as was done in the 

previous case, with the same set of constant parameter 
values. 

Fig. 13 depicts the variation of 0R  and 0| |T  against 

1/L h  for different numbers of evanescent modes. Both 

0R  and 0| |T  are independent of N and follow the same 

pattern as observed in Fig. 3. But the difference occurs in 

0R  (Fig. 13(a)) where for a thin porous structure, the 

value of 0R  is quite small and the minimum value occurs 

at a smaller value of 1/L h  compared to that in Fig. 3(a). 

The effect of porosity on scattering process is shown in 
Fig. 14. Reflection characteristic (Fig. 14(a)) is same as 
described in Fig. 4(a) except for the fact that the value of 

0R  is small for small values of 1/L h  as compared to that 

in Fig. 4(a). Fig. 14(b) describes the effect of 1/L h  on 

0| |T  for different values of porosity. The nature of the 

curves is very similar to that in Fig. 4(b). 
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(a) Variation of 0R

 

 
(b) Variation of 0| |T

 
Fig. 13 Effect of dimensionless width of the porous 

structure L/h1 for different numbers of evanescent 
modes (N) with υh1=0.8, θ=0°, γ=0.9, f=1 and p=7 

 
(a) Variation of 0R

 

 
(b) Variation of 0| |T

 
Fig. 14 Effect of dimensionless width of the porous 

structure L/h1 for different γ with υh1=0.8, θ=0°, 
N=10, f=1 and p=7 

 

Further Fig. 15 shows the variation of 0R  and 0| |T  

against L/h1 for different values of friction factor. Small 
value of friction factor (f=0.25) results in oscillation in the 

value of 0R  which disappears with an increase in the 

value of friction factor (Fig. 15(a)). Moreover, higher 
friction factor gives rise to higher reflection except for a thin 
width of the porous structure. The nature of transmission 
(Fig. 15(b)) is same as described in Fig. 5(b). 

The effect of number of steps on variation of 0R  and 

0| |T  is shown in Fig. 16. In Fig. 16(a), steep vertical 

portion of the curve for p=3 defines the minimum 
admissible width of the porous structure. Convergence of 
the curves for higher values of p is observed from the graph. 

0| |T  is very high for a thin porous structure (Fig. 16 (b)) for 

all the values of p and decreases with the increase in the 
value of L/h1 before vanishing for large value of L/h1. 

Fig. 17 demonstrates scattering against the angle of 
incidence for different values of porosity. The nature of the 
curves is very similar to that discussed in Fig. 7. 

Moreover, the study of scattering characteristics against θ 
for different values of friction factor is carried out (Fig. 18). 
Unlike the behavior observed in Fig. 8(a), the oscillation in 

0R  does not exist for f=0.25 in Fig. 18(a). It is also 

noticeable that up to θ=44° (approx.) higher values of 
friction factor result in relatively higher 0R  as against that 

of lower friction factor. Beyond the aforementioned value of 
θ, 0R  starts increasing with the increase in the value of θ. 

The nature of transmission characteristics (Fig. 18(b)) is 
very much similar as discussed in Fig. 8(b). 

 
(a) Variation of 0R

 

 
(b) Variation of 0| |T  

Fig. 15 Effect of dimensionless width of the porous structure 
L/h1 for different f with υh1=0.8, θ=0°, N=10, γ=0.9 
and p=7 
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(a) Variation of 0R

 
 

 
(b) Variation of 0| |T  

Fig. 16 Effect of dimensionless width of the porous structure 
L/h1 for different p with υh1=0.8, θ=0°, N=10, γ=0.9 
and f=1 

 

 
(a) Variation of 0R

 
 

 
(b) Variation of 0| |T  

Fig. 17 Effect of angle of incidence θ for different γ with 
υh1=0.8, L/h1=3, N=10, f=1 and p=7 

 

 
(a) Variation of 0R

 
 

 
(b) Variation of 0| |T  

Fig. 18 Effect of angle of incidence θ for different f with 
υh1=0.8, L/h1=3, N=10, γ=0.9 and p=7 

 
4.2 Energy loss 

The energy loss due to the propagation of water wave 
through the porous structure is discussed in Figs. 19–20. 

In Fig. 19, energy loss against L/h1 is discussed for 
different values of porosity and friction factor. Now when 
L/h1→0 (non-existence of porous structure), Eloss should be 
zero due to the absence of the porous structure, because 
incident wave coming from x→−∞ will transmit towards 
x→∞ without passing through any dissipative medium. It is 
noticeable that the curves do not exactly start from zero. 
This is due to the difference in height between region I and 
region p+2 (Massel, 1993). Each of the energy loss curves 
increases rapidly with an increase in the value of L/h1 and 
attains a constant value afterwards (Fig. 19(a)). For a thin 
porous structure, energy loss is independent of the values of 
porosity taken. Higher porosity gives rise to higher energy 
loss compared to the lower values of porosity. The 
analogous pattern exists for the energy loss for different 
values of friction factor. But the energy loss curves converge 
to each other at large values of L/h1 unlike the curves for 
different porosity where they do not converge to each other 
for large values of L/h1. 

Fig. 20 illustrates the nature of energy loss against   for 
different values of porosity and friction factor. Energy loss 
for different values of porosity is shown in Fig. 20(a) which 
is very much similar to that of Fig. 10(a). It is noticeable 
that oscillation does not exist in the energy loss curve for 
f=0.25 (Fig. 20(b)) unlike that in Fig. 10(b). Though energy 
loss for f=0.25 is much less at 0   compared to the other 
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values of f considered, energy loss increases rapidly and 
attains a maximum value at other values of f. 
 

 
(a) For different γ 

 
(b) For different f 

Fig. 19 Energy loss (%) against dimensionless width of the 
porous structure (L/h1) with υh1=0.8, θ=0°, N=10 
and p=7 

 

 
(a) For different γ 

 

 
(b) For different f 

Fig. 20 Energy loss (%) against angle of incidence θ with 
υh1=0.8, L/h1=3, N=10 and p=7 

5 Conclusions 
Variations of the reflection coefficient and the 

dimensionless amplitude of the transmitted progressive 
wave are studied against the dimensionless width of a 
porous structure for different values of number of 
evanescent modes, porosity, friction factor and steps, in the 
presence of a rigid vertical wall placed at a finite distance 
from the porous structure. It is observed that for a thin 
porous structure, irrespective of the parameters considered, 
the reflection coefficient decreases rapidly from a very high 
value to attain some constant value which is observed for 
relatively higher dimensionless width of the porous structure. 
Reflection is independent of the number of evanescent 
modes considered whereas higher porosity gives rise to 
lower reflection. Lower values of friction factor leads to 
oscillation in reflection coefficient which disappears with an 
increase in the value of friction factor. Minimum admissible 
length required for the porous structure in order to be able to 
act as an effective wave absorber is observed from the very 
steep portion of the graphs. This admissible length of the 
porous structure decreases with an increase in number of 
steps. The dimensionless amplitude of the transmitted 
progressive wave, irrespective of the different parameters 
considered, decreases from a very high value attained at 
lower values of the dimensionless width of the porous 
structure to zero with an increase in the dimensionless width. 
The dimensionless amplitude of the transmitted progressive 
wave is independent of the number of evanescent modes and 
porosity, but lower friction factor as well as lower number of 
steps result in higher dimensionless amplitude. The effect of 
the angle of incident wave on scattering phenomenon for 
different values of porosity and friction factor is also taken 
into account. Lower reflection is observed for higher values 
of porosity up to a fixed range of the angle of incidence 
beyond which the characteristic reverses and the reflection 
coefficients start assuming higher values after attaining the 
minimum reflection. Oscillation in the reflection coefficient 
for lower value of friction factor is observed. The 
dimensionless amplitude of the transmitted progressive 
wave is independent of the values of porosity considered 
whereas lower friction factor results in higher transmission 
which reduces with an increase in the angle of incidence. 
Further the energy loss pattern is studied against 
dimensionless width of the porous structure and the angle of 
incidence for different values of porosity and friction factor. 
The requirement of minimum width of the porous structure 
is observed. Higher values of porosity and friction factor 
cause higher energy loss. Up to a fixed range of incident 
angle, higher porosity results in higher energy loss. Lower 
value of friction factor shows oscillation in energy loss. A 
convergence is observed for higher values of the friction 
factor. For the validity of our mathematical model, we 
compare our work with Madsen (1974) by plotting 
reflection coefficient against dimensionless width of the 
porous structure for different values of porosity and we find 
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excellent agreement in this regard. This shows that our 
model will be effective for solving problems of wave 
scattering by porous structures placed on a p-step bottom. 

A special case of unbounded  th
2p   region is 

considered and the same study is carried out corresponding 
to the same set of constant parameter values. For this case 
also we observe similar reflection characteristics as in the 
earlier case except for when the structure is very thin in 
which case reflection is less. For lower values of friction 
factor, oscillation in the reflection coefficient and in the 
energy loss curves against dimensionless width as well as 
the angle of incidence do not exist. 
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Appendix A 
Principle of conservation of mass inside a fluid region 

leads to the following equation known as the equation of 
continuity: 

( ) 0
t

U
 
  


              (A1) 

Now for the steady state flow of fluid having constant 
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density, Eq. (A1) reduces to 
0U                   (A2) 

For a potential flow, i.e., where  U , the equation of 

continuity reduces to Laplace’s equation 
2 0   

The incompressible equations of motion inside the porous 
structure can be written in the following form: 

0U                   (A3a) 

resistance forces
P

t 
 

  

U

        (A3b) 

The resistance forces in Eq. (A3b) are evaluated by 
combining known steady and unsteady stress relationships. 
Under steady state flow conditions the pressure drop 
through the porous medium is specified by Ward (1964) as  

2 | |fk

p p

CP v

K K
U U U 




            (A4) 

where kv  is the kinematic viscosity, pk
 

is the intrinsic 

permeability and fC  is a dimensionless turbulent 

resistance coefficient of the medium. 
It is hypothesized by Sollitt and Cross (1972) that 

unsteadiness may be accounted for by introducing an 
additional term which evaluates the added resistance caused 
by the virtual mass of discrete grains within the medium. 
The resistance force due to the virtual mass is equal to the 
product of the displaced fluid mass, the virtual mass 
coefficient and the acceleration in the approach velocity. The 
resulting force is distributed over the fluid mass within the 
pore so that the force per unit mass of fluid is simply 

1
MC

t

U

 


                  (A5) 

Combining Eqs. (A4) and (A5); and replacing the resistance 
force in Eq. (A3b) with them, we get 

2

2

1
| |

| |

fk
m

p p

fk

p p

CP v
C

t K tK

CP v
S

t K K

 
 

 


   
     

 

 
   



U U
U U U

U
U U U

  

(A6) 

where 1 (1 ) /MS C     . It is worth mentioning that 

1S   accounts for two different cases, namely, 1   or 

the absence of structure and 0MC   or the presence of 

inviscid fluid. 
Now, linearization of Eq. (A6) is necessary in order to 

find an analytical solution and hence, the dissipative stress 
term is replaced by a linear stress term in U  by the 
following form: 

2 | |fk

p p

Cv
f

K K
U U U U              (A7) 

Combination of Eqs. (A6) and (A7) leads to Eq. (1b). 
In order to evaluate f, Lorentz’s principle of equivalent 

work is applied which says that the average rate of energy 
dissipation should be identical whether evaluated using the 

true non-linear resistance law or its linearized equivalent. 
Since the resistance terms of the above relation represent 
friction force per unit mass acting at a point in the flow field, 
the following equality (energy dissipation) holds: 

2

d d =

d | | d

t T

V t

t T fk

V t
p p

V f t

Cv
V t

K K

U U

U U U U

  

   







 
  
 
 

 

 
    (A8) 

where V  is the volume of the flow field and T is the 

wave period. Now assuming f  to be constant throughout 

the flow field, the following form can be written 
2

2 3

2

d | | d
1

d d

t T fk

V t
p p

t T

V t

Cv
V t

K K
f

V t

U
U

U




 





 
  

 
 

 
      (A9) 

Appendix B 
Let us consider U1 and U2, respectively, to be the 

velocities of a fluid at any point inside the water and porous 
region attached to each other. Then the following relation 
holds true: 

1,2i i iU                  (B1) 

Now, inside the porous region 

2 2 2 2
2 2

2 2 2
2 2 2 2i ( i )

P P
S f S f

t t

P P P
S f f S

 
 

     
  

  
      

 

        

U
U

(B2) 

where P1 and P2 are the dynamic pressures of the water and 
porous regions, respectively. 

In the water region, Bernoulli’s equation gives 

1 1 1 1 1
1i

U P P P

t t

 
  

  
        

 

    

(B3) 

Now, along the vertical boundary between the water and 
porous regions, continuity of pressure  1 2P P

 
results in 

(from Eqs. (B2) and (B3)) the following matching condition: 

1 2i                     (B4) 

Mass flux per unit volume and unit time inside the porous 
region is  U  and the same inside the water region is 

U . Along the vertical boundary, the continuity of mass 

flux implies 

1 2
1 2 along directionx

x x

     
   

 
U U    (B5) 

Moreover, if both the regions consist of the same medium, 
then Eqs. (B4) and (B5) reduce to 

1 2                      (B6a) 

1 2 along directionx
x x

  
 

 
       (B6b) 

It is obvious that these matching conditions are valid along 
the vertical boundary separating any two regions next to 
each other. 


