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Abstract: Improving the efficiency of ship optimization is crucial for modern ship design. Compared 

with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. 

For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the 

most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a 

coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary 

compatibility. However, there are some difficulties in applying the conventional CO method, such as 

difficulties in choosing an initial point and tremendous computational requirements. For the purpose of 

overcoming these problems, optimal Latin hypercube design and Radial basis function network were 

applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis 

function network approximates the optimization model, and is updated during the optimization process to 

improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO 

method are higher than with the conventional CO method. 
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1 Introduction
1

Modern engineering design problems are complex and 

involve multiple disciplines. We can benefit much 

from decomposition of the large complex problem 

into smaller tasks, which can be carried out by 

multiple teams in parallel. Therefore, more and more 

engineering designs are decomposed into different 

disciplinary tasks in order to exploit the computational 

benefits that usually arise from concurrent execution 

of analyses. However, during the development of this 

theory, it is found that smaller subtasks are hard to be 

solved independently since they are coupled. 

Subsequently, the multidisciplinary design 

optimization (MDO) 
[1]

 is brought into engineering 

design field to solve such large coupled systems. 

MDO was originally developed in the design of 

aircraft. With the rapid growth of MDO over the past 

decade, it has been also discussed and used in the field 

of ship design. The design of a ship is a complex, 

multidisciplinary process which is characterized by 
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thousands of design variables, multi-objectives and 

nonlinear constraints. A complete design requires 

analyses of hydrodynamics, structural mechanics, 

propulsion, performance, cost and others, some 

disciplinary are coupled during the process of ship 

design. Therefore, how to efficiently analyze and 

optimally design a ship is the key point. As MDO is 

developed for the system engineering governed by 

multiple coupled disciplines or made up of coupled 

components, it is a good choice for the ship design 

instead of traditional approach, which is a sequential 

order. However, after the past decade’s development 

of MDO, MDO method is not totally mature and still 

developing, especially for Collaborative Optimization 

(CO), which is one of the most frequently applied 

multidisciplinary design optimization methods. 

In this paper, the CO is analyzed and discussed, and 

the design of experiment (DOE) and global 

approximation are applied to improve CO. The 

methods of DOE and approximation are the optimal 

Latin hypercube design and the radial basis function 

network respectively. It is proved to be effective and 

robust through one mathematical example and one 
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engineering example. 

2 Implementation features of this method 

For engineering optimization problems, the choice of 

initial point is very important for optimization. DOE 

can analyze a design space and provide a rough 

estimate of an optimal design, which can be used as a 

starting point for numerical optimization. More 

important, the optimal Latin hypercube design could 

cover the design space more evenly than other DOE 

methods, and generate more evenly distributed points. 

Therefore, in this paper, the optimal Latin hypercube 

design is adopted to find the initial point and create 

the database for approximation model. Besides, 

engineering optimization problems often need 

tremendous computation time for several programs 

running at the same time, such as Fluent and Nastran. 

We cannot afford to execute so large scale of exact 

MDO analyses to provide the evaluation of the 

objective function and constraints. The application of 

approximation is a necessity and in this paper, the 

radial basis function network is adopted due to its 

robustness.

2.1 Collaborative optimization 

CO, one of the most frequently applied 

multidisciplinary design optimization methods, was 

thereafter developed to promote autonomy while 

providing a coordinating mechanism guaranteeing the 

progress toward an optimum and maintaining 

interdisciplinary compatibility (Braun, 1996; Kroo 

and Manning, 2000). It basically consists of a bi-level 

optimization structure, which is shown in Fig. 1. The 

task of the disciplinary-level teams to find a local 

design that satisfies local constraints and comes as 

close to that specified by system-level optimizer as 

possible. The task of the system is to provide a 

coordinating mechanism, which adjusts the target 

value to ensure the optimization progress towards the 

optimum and compatibility between the 

disciplinary-level designs. The significant advantage 

of this method is that its architecture is much like the 

plan of modern practical system engineering design, 

so CO has been widely studied and applied to 

practical engineering problems, such as launch vehicle 

design
[2]

, undersea vehicles design 
[3]

 and conceptual 

ship design 
[4]

.

However, there are still some problems in this 

immature method. First, because the subproblem 

optimization may involve substantial analysis, it will 

cause tremendous execution of disciplinary analyses. 

It makes the system optimizer endure heavy burden of 

large amount of computation. Secondly, Collaborative 

Optimization is sensitive to the initial point. When the 

initial point is not so close, it will lead to the slow rate 

of convergence and even non-convergence. Therefore, 

many researchers have focused on extension or 

modification to CO aiming at improving the overall 

efficiency. Sobieski et al. 
[5]

 proposed the use of 

response surface estimation in place of the 

disciplinary optimization in CO, and suggested two 
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approaches to estimate the disciplinary optimal results. 

But this method adopts just a local approximation and 

is not efficient. To resolve the convergence problem of 

CO, Kroo and Manning 
[6]

 adopted the direct search 

method such as Hooke and Jeeves method, or the 

probabilistic search method such as genetic algorithm 

instead of the gradient-based method. DeMiguel and 

Murray
[7]

 proposed a Modified Collaborative 

Optimization (MCO) at Stanford University in 1998. 

Han et al.
[8]

 proposed an Improved Collaborative 

Optimization (ICO) at Beijing University of 

Aeronautics and Astronautics in 2006. But these 

methods are difficult to determine the penalty factor.  

2.2 Introduction to optimal Latin hypercube design

Optimal Latin hypercube design 
[9]

, a modified Latin 

Hypercube design, is a kind of techniques in the 

design of experiment, in which the combination of 

factor levels for each factor is optimized, rather than 

randomly uniformly divided (the same number of 

divisions (n) for all factors). These levels are then 

randomly combined to generate a random Latin 

Hypercube as the initial DOE design matrix with n

points (each level of a factor studies only once). An 

optimization process is then applied to this initial 

random latin hypercube design matrix. By swapping 

the order of two factor levels in a column of the 

matrix, a new matrix is generated and the new overall 

spacing of points is evaluated. The goal of this 

optimization process is to design a matrix, in which 

the points are spread as evenly as possible within the 

design space defined by the lower and upper level of 

each factor. 

The optimal Latin hypercube design concept is 

illustrated in Fig.2 for a configuration with two factors 

(x
1
, x

2
) and 9 design points. In Fig.2(a), a standard 

three level orthogonal array is shown. While this 

matrix has nine design points, there are only three 

levels for each factor. Consequently, a quadratic 

model could be fit to this data, but it is not possible to 

determine if the actual functional relationship between 

the response and these two factors is more nonlinear 

than quadratic. Fig.2(b) shows a random latin 

hypercube. This matrix also includes nine design 

points for the two factors, but there are nine levels for 

each factor as well, allowing higher order polynomial 

models to be fit to the data and greater assessment of 

nonlinearity. However, the design points in Fig.2(b) 

are not spread evenly within the design space. For 

example, there is little data in the upper right and 

lower left corners of the design space. An optimal 

Latin hypercube design matrix is displayed in Fig.2(c). 

With this matrix, the nine design points cover nine 

levels of each factor and are spread evenly within the 

design space. For example, there is little data in the 

upper right and lower left corners of the design space. 

An optimal Latin hypercube design matrix is 

displayed in Fig.2(c). With this matrix, the nine design 

points cover nine levels of each factor and are spread 

evenly within the design space. For cases where one 

purpose of executing the design of experiment is to fit 

an approximation model to the resulting data, the 

optimal Latin hypercube design gives the best 

opportunity to model the true function or true 

behavior of the response across the range of the 

factors.

Optimal Latin hypercube design ensures the sample points distributing more evenly than other DOE 

x
1

x
2

x
1

x
2

x
1

x
2

(a) 3-level orthogonal array (b) Random Latin hypercube (c) Optimal Latin hypercube

Fig. 2 Optimal Latin hypercube design configuration for two factors, with nine points
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techniques. By making use of this characteristic, the 

more evenly distributed sample points are gained. 

2.3 Introduction to radial basis function network 

One of the most general uses of the approximation 

functions is the artificial neural network. Usually, we 

suppose the existence of a relation between several 

input variables and one output variable. After the 

learning of artificial neural networks, an approximator 

between these inputs and this output can be built to 

represent this unknown relation. Radial basis function 

(RBF) network is a type of neural network layer of 

linear units, and is characterized by reasonably 

fastening the training and reasonably compacting 

networks. A traditional radial basis function network 

is shown in Fig.3. It contains three layers, including 

the inputs, the hidden layer and the output node(s). 

Each component of the input units x  feeds forward 

to m  hidden units, whose outputs are linearly 

combined with weights { }
−

m

j
j 1

w  into the network 

output units 
y

, where each hidden unit represents a 

single radial basis function φ . A set of RBFs can 

serve as a basis for representing a wide class of 

functions that are expressible as linear combinations 

of the chosen RBFs: 

( ) ( )y

=

= −∑

M

j j

j

x w xiφ μ

1

.          (1) 

Fig. 3 Traditonal radial basis function network 

The main characteristics
[10]

 of RBFNs are powerful 

function approximation capabilities, good local good 

local structure and efficient algorithms, so they have 

been used in many research fields, such as chaotic time 

series prediction
[11]

, nonlinear modeling and 

prediction
[12]

 and nonparametric regression 

estimation
[13]

.

In this paper, the Hardy
[14]

 method is adopted as 

described by Kansa
[15]

:

Let
1

, ,

n

N

x x ∈Ω⊂… R be a given set of nodes. Let 

( ) ( ) , , ,

j
g x  , j 1 N≡ − ∈ = …

j
x g x R      (2) 

be a set of any RBF basis functions. Here −

j

xx  is 

the Euclidean distance. Given interpolation data 

values
1

, ,

N

y y ∈… R at locations
1

, ,

n

N

x x ∈Ω ⊂… R ,

the RBF interpolate 

( ) ( )

=

= +∑

N

j j N+1

j 1

F gα αx x            (3) 

is obtained by solving the system of 1N +  linear 

equations

( )
1

1

1

,  1, , ,
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N

j j N i

j

N

j

j
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α
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+ = =
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∑

∑

x …

    (4) 

for 1N +  unknown expansion coefficients j
α .

Hardy
[14]

 adds a constant to the expansion and 

constrains the sum of the expansion coefficients to be 

zero. Introducing the notation 

( ) ( )N+1 N+1N

T

1

 ,   ,

1
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the system (4) can rewritten in the matrix form as  

=iH yα .                   (5) 

Then the interpolation expansion coefficients are 

given by  

1−

= iH yα .                  (6) 

Therefore, either the value of interpolate or the 

derivatives at the nodes
i

x can be easily found, e.g. 

( ) ( )

1

,  1, , ,

N

i j j i

j

F x g x i Nα

=

′ ′= =∑ …        (7) 

( ) ( )

1

,  1, , .

N

i j j i

j

F x g x i Nα

=

′′ ′′= =∑ …        (8) 

The radial basis function used in this paper is   

−

i

x cx ,                 (9) 

where c is a shape function variable between 

0.2 3c< < , the reason for choosing this basis function 

is its ability to model extreme functions within a 

narrow range of values of c .
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2.4 Procedure of optimal Latin hypercube design 

and radial basis function network applied in 

CO

Remaining the advantage, i.e. the disciplinary-level 

autonomous optimization in CO, the initial point is 

created with the optimal Latin hypercube design and 

the approximations of compatibility constraints and 

system-level objective are modeled with the radial 

basis function network.  

In order to achieve more accurate approximation, the 

adaptive approximation is used in single optimization 

(AASO)
[16]

. In this strategy, the approximation model 

is improved and updated during the process of 

optimization until convergence. The main procedure is 

specified as follows:  

1) Use optimal Latin hypercube design to create a 

dispersion of inputs vectors{ }
k

z  to a disciplinary to 

provide a wide and unbiased coverage of the design 

space defined by the system design variables. 

2) Perform disciplinary-level optimizations at each 

sample point from the DOE. Minimize the difference 

between the target vector { }z and local values of{ }x ,

which is the compatibility constraint J , and compute 

the system-level objective f .

3) Find the best point among these sample points as 

the initial point 
0

z of optimization. 

4) Create a surrogate approximation model for each 

output item with radial basis function network. 

5) Perform one complete optimization with 

approximation model, and calculate the penalty 

function of optimal design point 
∗

z  in the 

approximation model. 

( ) ( )( )

2

approximation approximation i

F f g lb= + −∑x x ,   (10)

where ( )
i

g x  is the constraint value, lb  is the 

boundary value. 

6) Update the approximation model with the optimal 

design point 
∗

z .

7) Perform exact analysis of the optimal design point, 

and also calculate the penalty function of the optimal 

design point 
∗

z  in exact model. 

( ) ( )( )

2

exact i

F f g x lb= + −∑x .        (11) 

8) Compare 
approximation

F with
exact

F , if 
exact approximation

F F≤ ,

set initial point 
0next

z  with 
∗

z  in the next iteration, 

otherwise, set initial point 
0next

z  with 
0

z  in the next 

iteration.

9) Check if the design history has converged. If the 

convergence has been achieved, terminate the process. 

Otherwise, continue steps 5) to 8) until convergence. 

3 Examples 

In order to verify the ability of the application of 

optimal Latin hypercube design and radial basis 

function network to Collaborative Optimization, two 

examples are adopted, one is a typical nonlinear 

inequality constraint optimization problem, the other 

is an MDO benchmark optimization problem of 

NASA. All the optimizations in this paper are 

performed with iSIGHT (Engineous Software Inc. 

2004).

3.1 Mathematical example 

This example was first used by Robert 
[17]

 to test the 

MDO method. It is a nonlinear inequality constraint 

optimization problem, which is specified as follows:

( )
2 2

1 2

1 2

1 2

min  ,

s.t.  0.1 4,

     0.1 2.

f x x x

x x

x x

⎧ = +

⎪
+ <⎨

⎪
+ >

⎩

               (12) 

The conventional CO model of this mathematical 

example is shown below: 

The system-level optimization problem is

( )

( ) ( )

( ) ( )

2 2

1 2

2 2

1 1 1 2 2

2 2

2 1 1 2 2

min   ,

s.t.   sub1 sub1 ,

sub2 sub2 ,

f x z z

J z x z x

J z x z x

ε

ε

⎧ = +

⎪
⎪

= − + − <⎨

⎪

= − + − <⎪⎩

     (13) 

where ε  is the compatibility constraint, here we 

set 0.0001ε = .

The subsystem1 optimization problem is

( ) ( )
2 2

1 1 1 2 2

1 2

min   sub1 sub1 ,

s.t.  sub1 0.1 sub1 4.

J z x z x

x x

⎧ = − + −⎪

⎨

+ <⎪⎩

(14)

The subsystem2 optimization problem is  

( ) ( )
2 2

2 1 1 2 2

1 2

min  sub2 sub2 ,

s.t.  0.1 sub2 sub2 2.

J z x z x

x x

⎧ = − + −⎪

⎨

+ >⎪⎩

.           (15) 

The optimal point of this problem is (0.198, 1.980)
[19]

,



ZHAO Min, et al: Application of the optimal Latin hypercube design and radial basis function network to collaborative optimization 29

the value of objective function is 3.998f
∗

= . This 

paper performs optimization with four different initial 

points. The method used in system-level and 

disciplinary-level optimizations is NLPQL (Sequential 

Quadratic Programming). Table 1 shows the 

optimization results with the conventional CO model. 

Table 1 Results of example1 with standard CO model 

Initial

point

Optimal

point

Value of 

objective

System-level

iterations

(0,0 ) 

(0.177 1, 

1.972 3) 

3.921 2 65 

(1,1)

(0.205 8, 

1.969 7) 

3.922 0 67 

(-5,5)

(-5.000 0, 

4.995 0) 

49.950 0 78 

(-3,3)

(-3.000 0, 

2.997 0) 

17.982 0 36 

It can be seen that the conventional CO model is 

sensitive to the initial point, but it is difficult for us to 

determine an initial point for practical engineering. 

Then optimal Latin hypercube design and radial basis 

function network are applied to collaborative 

optimization. The method used in system-level and 

disciplinary-level optimizations is NLPQL. Set 50 

sample points in optimal Latin hypercube design, and 

construct approximation between system design 

variables and system-level outputs with radial basis 

function network. The result and cycle procedure are 

shown in Table 2 and Fig. 4 respectively. 

Fig.4 Optimal system-level objective function value vs 

system-level cycle 

Fig.4 demonstrates that the optimization problem is 

close to convergence after 22 cycles and converges at 

the 41st cycle. The optimization result is near to the 

optimal value. Comparing with the result of the 

conventional CO, this method finds the optimal point 

with relatively less computation, and does not need to 

choose initial point. Therefore, it is more efficient and 

more robust than the conventional CO.

Table 2 Results of example1 with application of optimal 

Latin hypercube design and radial basis function 

network

Optimal point Value of objective  System-level cycle

(0.195 4, 1.970 4) 3.920 8 41 

3.2 Golinski’s Speed Reducer Optimization 

Golinski’s Speed Reducer Optimization 
[18]

 is one of 

the ten standard examples which is used by NASA to 

provide the MDO researchers with a set of problems 

for the development of new optimization 

methodologies, to establish a “standard” set of 

problems for comparing relative advantages of MDO 

approaches and formulations and to provide the 

applied mathematics community with MDO 

problems’ representative of various engineering areas. 

This problem represents the design of a simple gear 

box and is posed as an artificial multidisciplinary 

design problem comprising the coupling between gear 

design and shaft design disciplines. The objective is to 

minimize the speed reducer weight while satisfying a 

number of constraints imposed by gear and shaft 

design practices. Seven design variables are available 

to the optimizer, and each has an upper and lower 

limit imposed. The Speed Reducer model is shown in 

Fig. 5. 

Fig. 5 The Speed Reducer model 

Mathematically, the original definition of its 

optimization is specified as follows: 

( ) (

) ( )

( ) ( )

2 2

1 2 3 3

2 2

1 6 7

3 3 2 2

6 7 4 6 5 7

min  0.785 4 3.3333 14.933 4

                   43.093 4 1.508

                   7.477 0.785 4

f x x x x x

x x x

x x x x x x

=   +  −

 − + +

+ +  +

(16)  

s.t.

2

1 1 2 3

27 /( ) -10 0g x x x= ≤ ,

2 2

2 1 2 3

=397.5/( ) 1 0g x x x − ≤ ,

4

3 2 3 6

=1.93 /( ) 1 0g x x x − ≤ ,
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4

4 2 3 7

=1.93 /( ) 1 0g x x x − ≤ ,

5 1 1

/ 1100 0g A B= − ≤ ,

6 2 2

/ 850 0g A B= − ≤ ,

7 2 3

40 0g x x= − ≤ ,

8 1 2

/ 12 0g x x= − ≤ ,

9 1 2

/ 5 0g x x= − + ≤ ,

( )
10 6 4

1.5 1.9 / 1 0g x x= + − ≤ ,

( )
11 7 5

1.1 1.9 / 1 0g x x= + − ≤ ,

where,

0.5

2

6 34

1 1 6

2 3

0.5

2

6 35

2 2 7

2 3

745

16.9 10 0.1

745

157.5 10 0.1

x

A B x

x x

x

A B x

x x

⎧
⎡ ⎤
⎛ ⎞

⎪
⎢ ⎥= + × =⎜ ⎟

⎪
⎢ ⎥⎝ ⎠

⎪ ⎣ ⎦

⎨

⎪ ⎡ ⎤
⎛ ⎞

⎪ ⎢ ⎥= + × =⎜ ⎟

⎪ ⎢ ⎥⎝ ⎠
⎣ ⎦⎩

�

�

1

2.6 3.6x≤ ≤  width of the gear face, cm; 

2

0.7 0.8x≤ ≤  teeth module, cm; 

3

17 28x≤ ≤   number of pinion teeth; 

4

7.3 8.3x≤ ≤  shaft 1’s length between bearings, cm; 

5

7.3 8.3x≤ ≤  shaft 2’s length between bearings, cm; 

6

2.9 3.9x≤ ≤  diameter of shaft 1, cm; 

7

5 5.5x≤ ≤    diameter of shaft 2, cm. 

The optimal point of this problem is ( 3.5, 0.7, 17, 0.3, 

7.71, 3.35, 5.29 ) 
[19]

. The value of objective function 

is 2 996.1701f
∗

= . This paper performs optimization 

with four different initial points. The method used in 

system-level and disciplinary-level optimizations is 

NLPQL (Sequential Quadratic Programming). Table 3 

shows the optimization results with conventional CO 

model.

The same as the first example, it is also found that 

conventional CO model is sensitive to the initial point, 

which is difficult for us to determine for practical 

engineering problem. Therefore, in this paper, optimal 

Latin hypercube design and radial basis function 

network are applied to collaborative optimization. The 

method used in system-level and disciplinary-level 

optimizations is NLPQL. Set 50 sample points in 

optimal Latin hypercube design, and construct 

approximation between system design variables and 

system-level outputs with radial basis function network. 

The result and the cycle procedure are shown in Table 4 

and Fig. 6 respectively. 

Table 3 Results of example 2 with conventional CO model 

Initial

point

Optimal

point

Values of 

objective

System-level

iterations

(3.500,

0.700,

 20.00, 

 7.300, 

7.714,

3.350,

5.286 ) 

(3.499,

0.699,

17.00,

7.300,

7.723,

3.350,   

5.291 ) 

2 997.111 7 14 

(3.000,

 0.800, 

 20.00, 

 7.300, 

 7.300, 

3.350,

5.100 ) 

(3.499,

0.699,

17.00,

7.300,

7.786,

3.350,

5.305)

3 007.050 6 49 

(3.500,

0.800,

17.00,

7.500,

7.600,

3.000,

5.500)

(3.498,

0.709,

17.00,

7.485,

7.762,

3.351,

5.329 ) 

3 024.437 6 43 

(3.500,

0.800,

 20.00, 

 7.300, 

 7.300, 

3.500,

5.300)

(3.499,

0.699,

17.00,

7.300,

7.723,

3.500,

5.292)

3 037.263 4 50 

Table 4 Results of example 2 with application of optimal 

Latin hypercube design and radial basis function 

network

Optimal point Value of objective 

System-level

iterations

 (3.493, 

0.701,

17.00,

7.953,

7.715,

3.355,

 5.287 ) 

3 000.754 76 22 

Fig.6 demonstrates that the optimization problem is 

close to convergence after 7 cycles and converges at 

the 22nd cycle. The optimization result is much close 

to the optimal value. Therefore, with the application 

of optimal Latin hypercube design and radial basis 

function network to CO, there is no need for 

researchers to choose the initial point, and more 
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accurate results can be found while reducing the 

heavy burden of computation. Comparing with the 

result of conventional CO, this method is more 

efficient and more robust. 

Fig.6 Optimal system-level objective function value vs 

system-level cycle 

4 Conclusions 

Collaborative optimization is a widely used 

multidisciplinary design optimization method. 

However, conventional CO has suffered from some 

difficulties such as the choice of initial point and 

tremendous computation. By applying the optimal 

Latin hypercube design and the radial basis function 

network to conventional CO, it has been shown in this 

paper that these deficiencies can be overcome. optimal 

Latin hypercube design can generate more evenly 

distributed sample points, and provide a rough 

estimate of an optimal design which can be used as an 

initial point for optimization. Since the radial basis 

function network has powerful function 

approximation capabilities, it is adopted in this paper 

to approximate the disciplinary-level optimal 

objective function and the system-level objective 

function. The approximation model is updated during 

the optimization. Comparing with the conventional 

CO, the advantages of this method are as follows: 1) 

avoiding the choice of initial point; 2) relieving the 

heavy burden of computation while satisfaction of 

accuracy; 3) improving the efficiency of convergence 

and the robustness. The example results have proved 

that the above performances are better than 

conventional CO. 

The ship optimization design also belongs to MDO, 

which contains many disciplines, such as structure 

mechanics, propulsion, resistance, machinery and cost. 

There is much interactive coupling among these 

disciplines. How to coordinate these disciplines in the 

optimization design is very important. CO is a feasible 

and effective way to coordinate all disciplines 

simultaneously. However, some disciplinary analyses 

need lots of time to operate, such as Fluent for 

hydrodynamics and Nastran for structural analysis. 

The computation will be tremendous if these 

disciplinary analyses are integrated into the overall 

design optimization directly. The application of 

optimal Latin hypercube design and radial basis 

function network to CO is an effective way to relieve 

the burden of computation while satisfying the 

accuracy, and provides a promising method for the 

ship optimization design. So the future research is to 

apply this method to the ship design optimization. 
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