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Abstract: Several studies on functionally graded materials (FGMs) have been done by researchers, but few studies 
have dealt with the impact of the modifi cation of the properties of materials with regard to the functional propagation of the 
waves in plates. This work aims to explore the eff ects of changing compositional characteristics and the volume fraction of 
the constituent of plate materials regarding the wave propagation response of thick plates of FGM. This model is based on 
a higher-order theory and a new displacement fi eld with four unknowns that introduce indeterminate integral variables with 
a hyperbolic arcsine function. The FGM plate is assumed to consist of a mixture of metal and ceramic, and  its properties 
change depending on the power functions of the thickness of the plate, such as linear, quadratic, cubic, and inverse quadratic. 
By utilizing Hamilton’s principle, general formulae of the wave propagation were obtained to establish wave modes and 
phase velocity curves of the wave propagation in a functionally graded plate, including the eff ects of changing compositional 
characteristics of materials.
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1  Introduction

The propagation of waves is a temporary local 
disturbance that moves in an elastic, homogeneous, 
and isotropic material medium without the transport 
of matter. A mechanical wave propagates with a 
transport of energy without the transport of matter. 
Wave propagation seems to have diff erent applications 
(Zhang et al., 2015; Ghorbanpour Arani et al., 2017b; 
Hentati et al., 2017). Recently, several studies of wave 
propagation in functionally graded material (FGM) 
constructions have been performed with the use of 
theoretical and numerical modeling. For example, Wang 
et al. (2010), analyzed the propagation of bending 
waves of nanoplates in an elastic foundation, based on 
the classical theory that utilizes initial stress. Aminipour 
et al. (2018) presented a new model for the analysis 
of wave propagation in anisotropic double-curvature 

FGM shells. Aminipour and Janghorban (2017) used 
the trigonometric theory of shear strain for an analysis 
of wave propagation in anisotropic plates. Becheri et al. 
(2016) presented the theory of n-order shear strain plates 
to study the buckling of composites of simply supported 
symmetries with curvature eff ects. 

Composites are used particularly in high technology 
applications. They also fi nd applications in the fi eld of 
civil engineering (Bouazza et al., 2019a; Chen et al., 
2019; Gong et al., 2021; Zeng et al., 2023; Liang et al., 
2022; Bouazza and Zenkour, 2024). Ellali et al. (2018) 
investigated the buckling response of piezoelectric plates 
resting on the Pasternak foundation by applying the 
higher-order shear strain and analytical method. Bouazza 
et al. (2019b) presented a simple refi ned analytical theory 
of shear strain and numerical method that was off ered by 
Ansys, in which in-plane and transverse displacements 
involve bending and shear components. The mechanical 
behavior of FGMs in a thermal environment using 
higher order shear deformation theories in which the 
material properties of FGMs are found by using diff erent 
methods proved that the material is hot. Numerous other 
papers on the subject have been published, including 
Karami et al. (2018), Ghorbanpour Arani et al. (2020), 
Derbale et al. (2021),  Merazka et al. (2021) and Ellali 
et al. (2022a).
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Naceri et al. (2011) examined the analysis of 
the propagation of single-walled carbon nanotubes 
(SWCNTs) and armchair sound waves in a thermal 
environment. Bouazza et al. (2016) analytically 
examined the thermal buckling of nano-plates resting 
on Winkler-Pasternak elastic foundations by using 
a non-local theory with four elasticity unknowns. 
Subsequently, Dihaj et al. (2018) used Euler Bernoulli’s 
non-local theory to analyze the vibration of a chiral 
double-walled carbon nanotube in an elastic medium. 
Belmahi et al. (2018) examined the eff ect of boundary 
conditions on the vibration performance of a nanobeam 
of a polymer matrix material. Other papers have studied 
the behavior of FGM and sandwich plates, including 
Kouider et al. (2021), Liu et al. (2022), Hachemi et al. 
(2021), Bakoura et al. (2021), Bennedjadi et al. (2023), 
Bouazza and Zenkour (2018, 2020, 2021), Bouazza et al. 
(2018), Hadji et al. (2023), Bot et al. (2022), Al-Furjan 
et al. (2022a, 2022b, 2022c, 2023) and Chu et al. (2023). 
FGMs that have variable microstructures from one 
material to another, and the size of the microstructures 
involved ranges are typically of in several orders 
of magnitude; they can be modeled using classical 
continuum mechanics, but it also is possible that one can 
using non-continuum mechanics such as Li et al. (2015, 
2016), Farrokhian (2020), Farrokhian and Salmani-
Tehrani (2020), Keshtegar et al. (2020a, 2020b), 
Ghorbanpour Arani et al. (2016a, 2016b), Shahsavari 
et al. (2018, 2023), Guo et al. (2022), Kolahchi et al. 
(2020, 2022), Hajmohammad et al. (2018, 2021), and 
Wan et al. (2023).

Bouazza and Zenkour (2021) evaluated the impact 
of temperature and humidity on the vibration response of 
laminated composite plates by utilizing the refi ned four-
variable n-order shear strain plate model. Sun and Luo 
(2011) explored wave propagation of FGM plates with 
simply supported supports, taking into account thermal 
impacts and temperature-dependent material properties 
by using the plate theory of order shear strain. New 
two-variable nth-form functions have been proposed 
by Bouazza et al. (2017). Tahir et al. (2021a) analyzed 
the wave propagation response of FGM plates with a 
hygrothermal eff ect, by employing diff erent types of 
porosity. Ebrahimi and Seyfi  (2022) analytically studied 
the wave propagation of foamed metal plates, including 
the Kerr substrate eff ect and the thermal environment. 
Qian et al. (2009) explored the transverse surface waves 
of structures that consisted of graduated functioning 
layers. Tahir et al. (2021b) presented an effi  cient theory 
of shear strain for FGM plates with diff erent types of 
porosity variation in a viscoelastic foundation, based 
on a four-variable integral hyperbolic high order. 
Zhang et al. (2018) analytically studied the evanescent 
wave response of FGM-type spherical curved 
plates. Gafour et al. (2013) compared the structures 
of embedded zigzag double-walled carbon nanotubes 
(DWCNTs) to reality by studying the propagation of 

sound waves in an elastic structure by employing the 
theory of nonlocal elasticity. Other interesting studies 
of dynamic problems and Wave propagation responses 
include Wang et al. (2022), Hei et al. (2016), Bendine 
et al. (2016), Ghorbanpour Arani et al. (2017c), Heidari 
and Ariaei (2022), Zhang et al. (2022), Luo et al. (2019), 
Wang et al. (2017), Dorafshan et al. (2013), Yang et al. 
(2013), and Chen et al. (2016). The analysis of wave 
propagation in FGM structures also has received much 
attention from various researchers, whose formulations 
have focused on applications to beams and  plates (Sun 
and Luo, 2011; Nami and Janghorban, 2014; Aminipour 
and Janghorban, 2017; Aminipour et al., 2018; Ellali et al., 
2023, 2024a, 2024b; Boucheta et al., 2024; Xie et al., 
2023; Zhang et al., 2021; Yang et al., 2021).

Considering everything mentioned above, to the 
best of the authors’ knowledge, little has been done to 
suffi  ciently investigate the impacts of the modifi cation of 
material properties of the Wave propagation of the FGM 
plate, using the integral shear strain model. The present 
work off ers a major contribution in the study of this 
eff ect by considering the linear exponential, quadratic, 
cubic, and inverse quadratic fourth functions, in addition 
to the commonly used power-law function P-FGM 
through the use of a theory presented by a displacement 
fi eld that incorporates indeterminate integral terms. 
The use of the integral term in plate kinematics leads 
to a decrease in the number of unknowns and the wave 
propagation equations in FGM plates. It is expected that 
the plate consists of a mixture of metal and ceramic, 
whose properties change with four types of power 
functions across the thickness of the plate. The eff ects 
of changing material arrangement characteristics and the 
volume fraction of constituent plate materials on wave 
propagation of FGM plates with simply pressed edges 
are also examined.

2  Model mathemat൴c

2.1  Material propr൴et൴es of an FGM plate

A laminated plate with thickness h  is shown in 
Fig. 1. The present plate is prepared using a mixture of 
a metal level (indicated by ‘‘m”) and a ceramic level 
(indicated by ‘‘c”), with its material composition varying 
smoothly along its thickness direction (i.e., in the z-axis) 
only. Thus, the material properties of the FGM plate, like 

FGM plate
x

zy

h/2

h/2

Fig. 1  A typical FGM plate
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Young’s modulus E , can be expressed as: 
 

   m c m cP z P P P V                             (1)

where Pc and Pm are the material properties of the 
ceramic and metal, Vc represents the ceramic volume 
fractions, and it is assumed that the formula follows one 
of the following simple power-laws (Pitakthapanaphong 
and Busso, 2002; Bouazza et al., 2018):
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(5) Inverse quadratic: 
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2.2   Indeterm൴nate ൴ntegral var൴ables model

The present methodology is established based on the 
assumptions of the inverse trigonometric shear strain 
theory, in which the axial displacements contain an 
integral component and can be given as follows (Tahir 
et al., 2022; Hebali et al., 2022; Bouafi a et al., 2021; 
Zaitoun et al., 2022; Mudhaff ar et al., 2021; Djilali et al., 
2022; Ellali et al., 2022b):
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where t  denotes time; 0u , 0v , 0w  and   are the four 
unknowns of the displacements of the mean surface of 
the plate; and  f z  presents the shape function, which 
defi nes the distribution of transverse shear stresses 
and strains throughout the thickness of the plate. The 
constants 1S  and 2S  depend on the geometry. In this 
study, we take the function  f z  as follows:
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In the fi eld of linear elasticity, the displacement-
strain relation associated with the fi eld for this approach 

is expressed in the following form: 

 

 

0

0

0

0

0

, 

 .

b s
x x x x

b s
y y y y

b s
xy xy xy xy

xz xz

yz yz

k k
z k f z k

k k

g z

      
                

       
       

        
      

 
 
 

 
 

             

(5)
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The integral terms utilized in the displacement fi eld 
equations can be resolved by using Navier’s solution and 
can be given by:
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Note that the integrals do not have limits. The present 
paper is considered using terms with integrals instead of 
terms with derivatives (see displacement in Sun and Luo 
(2011), Aminipour and Janghorban (2017)). Therefore, 
to better represent a new fi eld of displacement, this paper 
includes indeterminate integrated terms. According to 
the type of solution used, the coeffi  cients A , B , 1k  
and 2k  are chosen, and for this contribution the Navier’s 
solution is used. The coeffi  cients A , B , 1k  and 2k  are 
given as follows:

2 2
1 1 2 22 2

1 2

1 1,  ,  ,  A B S k S k
k k

     
            

(8)

The constitutive equations of the plates FGM for the 
linear elasticity of the relation of the stresses to strains 
takes into account that the thermal eff ects are given by:
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where (Bouazza and Benseddiq, 2015): 

  
 
 

   
 

 
 

11 22 12 212 2

44 55 66

,  ,  
1 1

2 1

E z z E z
Q Q Q Q

z z

E z
Q Q Q

z

   
 

  
  



 



   

(10)

The resultants of stress  , ,b s
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in the FGM plate can be expressed by integrating the 
corresponding stresses by means of the thickness. Such 
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The resulting stresses from this proposed model can 
be obtained in terms of strains and stiff ness elements. 
Replacing Eq. (9) with Eq. (11) gives us:

  ,     ,

s T

b s b bT s

s s s s s sT

N A B B N
M B D D k M S A
M B D H k M

      
              

            




 
(12)

where

     
     

   

T

0 0 0

TT

T T T

T T0 0 44

55

, , ,  , , ,  , , ,

, , ,  , , ,  , , ,

0
, ,  , ,  ,

0

b b b b s s s s
x y xy x y xy x y xy

b b b b s s s s
x y xy x y xy x y xy

s
s s s
xz yz xz yz s

N N N N M M M M M M M M

k k k k k k k k

A
S S S A

A

  

  

 
    

 

   

  

 
 

11 12 11 12 11 12

12 22 12 22 12 22

66 66 66

11 12 11 12 11 12

12 22 12 22 12 22

66 66

0 0 0
0 ,  0 ,  0 ,

0 0 0 0 0 0

0 0 0
0 ,  0 ,  0

0 0 0 0 0 0

s s

s s s

s

s s s s

s s s s s s

s

A A B B B B
A A A B B B B B B

A B B

D D D D H H
D D D D D D H H H

D D H

    
           
         

  
      
      66

s

 
 
 
  

(13)

The stiff ness terms of this approach are defi ned as 
follows:
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With this contribution, we use Hamilton’s principle 
to obtain the equations of motion. This principle can be 
given in analytical form as follows (Ghorbanpour Arani 
et al., 2017a):
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where U  represents the change in strain energy, while 
K  represents the change in kinetic energy.
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where the dot-superscript convention implies the 
diff erentiation concerning the time t ,  z  denotes 
mass density, and  ,I J  are the mass inertias as defi ned 
by:
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By replacing the expressions of the stress and 
the deformations of Eqs. (16) and (17) with Eq. (15), 
and integrating by parts while separately isolating 
the coeffi  cients 0u , 0v , 0w , and  , we obtain the 
equilibrium equations as follows:
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We assume solutions for 0 0 0, ,u v w  and   as 
representing waves propagating in the x-y  plane in the 
form (Sun and Luo, 2011):
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(20)

where U , V , W  and X  denote the coeffi  cients of the 
amplitude of the wave, 1k  and 2k  are the wavenumbers 
of wave propagation along the x-axis and y-axis 
directions, respectively, and   denotes the frequency

 

 2 K M 0 
                            

(21)

where

 T,  ,  ,  U V W X                          (22)

By substituting Eq. (20) with Eq. (19), we obtain:
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(23)

The dispersion relations of the wave propagation in 
the FGM plate are presented by

2 K M 0
                                 

(24)

Assuming 1 2k k k  , the roots of Eq. (24) can be 
given as:

  ,  1,2,3,4i iW k i                          (25)

They communicate to the wave modes 1M , 2M ,
3M  and 4M , respectively. 1M  and 4M  wave modes 

correspond to the bending wave, and the 2M  and 3M  
wave modes correspond to the extension wave. The 
wave propagation phase velocity in the FGM plate can 
be stated by:

  ,  1,2,3,4i
i

W k
C i

k
 

                     
(26)

3  Numerical results and discussion

3.1  Compar൴son of results

In this part, several numerical examples are studied 
and discussed to verify the accuracy of the new theory 
via indeterminate integral variables with an inverse sine 
hyperbolic shape function in the prediction of wave 
propagations of functionally graduated plates. The 
results obtained by the use of this theory are compared 
with those of theories, such as classical plate theory  
(CPT), fi rst-order shear deformation theory (FSDT), 
higher-order shear deformation theory (HSDT), higher-
order shear strain theory (HOSST), and third-order shear 
deformation theory (TSDT).

First, we analyze a simply supported isotropic 
square plate. This analysis is carried out for a plate with 
a of thickness 2 mm and mechanical characteristics 
(ρ=7480 kg/m3, E=210 GPa, ν=0.3), and for diff erent 
wavenumber values of k =k1=k2. The results are reported 
in Table 1. The outcomes obtained by the use of the current 
theory are compared to the results from the closed-form 
solution distributed by Nami and Janghorban (2014), 
which were based on the classical theory of plates and 
data available in published literature as obtained by 
Aminipour et al. (2018), which in turn were based on 
higher-order shear strain theory. The comparison shows 
good agreement between the three cases.

Still, to validate the results of the wave propagation 
one must carry out a comparison of frequencies related 
to modes 1M  and 4M  of an isotropic square plate 
simply supported with a thickness 0.02 m and mechanical 
characteristics (ρ=7480 kg/m3, E=210 GPa, ν=0.3) and for 
diff erent wavenumber values with k =k1=k2. The values 
obtained by using the present variable indeterminate 
integral theory with the hyperbolic arcsine shape 
function are also compared to the results of Aminipour 
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and Janghorban (2017) and Aminipour et al. (2018). It is 
stated that the frequencies of the 4M  mode gained from 
this study are contrasted with the 5M  modes obtained by 
Aminipour et al. (2018) and Aminipour and Janghorban 
(2017), as the new four-variable theory introduces 
indeterminate integral variables, while the models of 
Aminipour and Janghorban (2017) and Aminipour et al. 
(2018) contain fi ve variables. From Table 2 we fi nd that 
our results are in good agreement with those available 
results for wave propagation in isotropic plates.

In the third comparison, wave propagation in a 
functionally graded (FG) plate that consists of a mixture 

of silicon nitride (Si3N4) ceramic and stainless steel 
(SUS304) metal constitute the materials in the upper 
and lower surfaces of the FGM plate, respectively. The 
properties of the ceramic andhe metal are provided 
in Table 4. The results are illustrated in Table 3. This 
comparison also is carried out using the results of 
Sun and Luo (2011) and the results of Aminipour 
et al. (2018) under thermal environmental conditions 

b t 300 KT T  . We notice that the results obtained by 
Sun and Luo (2011) and Aminipour et al. (2018) and the 
present theory are in great agreement for distinct volume 
fraction indices.

Table 1  Comparison of the results of the frequencies of the mode M1. The case of a simply supported square isotropic plate with 
                h = 2 mm, wavenumber k=k1=k2, ρ=7480 kg/m3, E=210 GPa, ν=0.3

Theory
                                                                                     k

5 10 15 20 25 30 40 50 75 100
HOSSTa 160.336 641.28 1442.61 2564.00 4004.96 5764.87 10238.39 15976.97 35789.62 63239.08

CPTb 160.342 641.37 1443.08 2565.47 4008.55 5772.32 10261.89 16034.21 36076.97 64136.83
Present 160.336 641.28 1442.61 2563.99 4004.93 5764.81 10238.21 15976.53 35787.40 63232.19

        Note: aAminipour et al. (2018), bNami and Janghorban (2014).

Table 2  Comparison of the results of the circular frequencies of the modes. The case of a simply supported square isotropic plat    
               h = 0.02 m, wavenumber k=k1=k2, ρ=7480 kg/m3, E=210 GPa, ν=0.3

 k Mode (01) Mode (i)
Present HOSSTa TSDTb Present HOSSTa TSDTb

1 64.13 64.13 64.23 516579.15 521261.66 516246.77
3 576.47 576.49 577.41 517192.35 521869.59 516866.97
5 1597.54 1597.70 1600.16 518415.07 523081.86 518103.70
7 3120.27 3120.86 3125.43 520240.09 524891.41 519949.78
9 5134.31 5135.89 5142.89 522656.86 527287.94 522394.66
11 7626.37 7629.83 7639.29 525651.81 530258.18 525424.84
13 10580.61 10587.24 10598.83 529208.75 533786.30 529024.19
15 13979.06 13990.57 14003.60 533309.30 537854.31 533174.41
17 17802.08 17820.66 17834.04 537933.34 542442.49 537855.47
20 24286.86 24321.12 24332.19 545803.93 550253.95 545825.60
25 36913.44 36991.33 36987.99 561226.23 565566.82 561452.39
30 51517.44 51666.69 51631.75 579223.26 583445.63 579704.49
35 67775.30 68029.61 67942.46 599457.77 603557.60 600247.88
40 85397.08 85795.13 85633.10 621624.15 625600.48 622780.64
45 104132.79 104717.40 104456.78 645455.09 649309.21 647039.46
50 123772.52 124590.00 124206.70 670721.91 674456.55 672799.75
55 144143.08 145242.79 144712.72 697231.45 700850.25 699872.52
60 165103.31 166537.39 165836.55 724821.65 728328.72 728099.80
65 186539.04 188362.24 187466.67 753356.77 756756.43 757349.76
70 208358.46 210628.05 209513.65 782722.92 786019.56 787512.26
75 230488.02 233263.71 231906.00 812824.24 816022.20 818494.96
80 252868.99 256212.90 254586.76 843579.61 846683.11 850219.95

 Note: aAminipour et al. (2018), bAminipour and Janghorban (2017), (i) Mode (04) for Present, (i) Mode (05) for HOSSTa and TSDTb
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3.2  Parametr൴c study

The outcomes of the numerical calculations in this 
part are shown in Figs. 2‒5. The FGM material used 
Si3N4/SUS304 for thermal conditions Tb = Tt = 300 K. 

The variations of the four modes of dispersion curves 
for homogeneous and functionally graduated plates 
concerning the numbers of propagation waves for all 
composition profi les are shown in Fig. 2. SUS304 and 
Si3N4 correspond to all-metal plates and all-ceramic 

Table 4  Properties of Si3N4 and SUS304 in thermal environmental conditions Tb=Tt=300 K (Sun and Luo, 2011)

Material
Properties

E (GPa) ν ρ (kg/m3)
Ceramic (Si3N4) 348.43 0.24 2370
Metal (SUS304) 201.04 0.3262 8166

Table 3  Comparison of the results of the mode frequencies. The case of a simply supported FGM plate, material Si3N4/SUS304 in 
              thermal environmental conditions Tb=Tt=300 K (Sun and Luo, 2011)

k

N
0 0.5 1 2

Aminipour 
et al. 

(2018)

Sun and 
Lou 

(2011)
Present

Aminipour 
et al. 

(2018)

Sun and 
Lou 

(2011)
Present

Aminipour 
et al. 

(2018)

Sun and 
Lou 

(2011)
Present

Aminipour 
et al. 

(2018)

Sun and 
Lou 

(2011)
Present

20 52758.57 52.6899 52.7389 36572.35 36.5236 36.5580 32134.22 32.0916 32.1219 28,886.10 28.8495 28.8747
30 112408.02 112.1074 112.3230 77814.20 77.6051 77.7545 68311.13 68.1256 68.2584 61,302.08 61.1407 61.2531
40 187238.35 186.4332 187.0144 129427.56 128.8765 129.2735 113518.57 113.0247 113.3806 101,690.08 101.2544 101.5612
50 272701.67 271.0430 272.2490 188248.29 187.1288 187.9414 164973.83 163.9613 164.6967 147,536.97 146.6312 147.2766
60 365473.56 362.5580 364.6936 251989.82 250.0447 251.4674 220681.79 218.9086 220.2068 197,063.64 195.4564 196.6148
70 463288.52 458.6690 462.0776 319111.09 316.0583 318.3079 279308.89 276.5064 278.5745 249,096.62 246.5266 248.3987
80 564654.89 557.8450 562.9057 388607.51 384.1406 387.4562 339993.49 335.8684 338.9356 302,889.03 299.0677 301.8785
90 668609.41 659.0849 666.2111 459835.71 453.6233 458.2669 402189.39 396.4238 400.7416 35976.27 352.5894 356.5868
100 774540.38 761.7401 771.3784 532389.66 524.0754 530.3316 465556.32 457.8079 463.6497 414,076.15 406.7849 412.2388

(a) M1 (b) M2

(c) M3 (d) M4

Fig. 2   The dispersion curves of various functionally graded plates with Tb=Tt=300 K 
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(a) M1 (b) M2

(c) M3 (d) M4

Fig. 4  The dispersion curves of various functionally graded plates with Tb=Tt=300 K
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Fig. 3  The phase velocity curves of various functionally graded plates Tb=Tt=300 K
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plates, respectively. But in the other cases, the linear, 
quadratic, and inverse quadratic profi le composition is 
for the graduated plates with two constituent materials, 
Si3N4/SUS304. Figure 2 shows that the dispersion curves 
of the FGM plates are lower than those of the all-ceramic 
plates, but highr than those of the all-metal plates. The 
dispersion curves were taken from the composition 
profi le at a quadratic lower than the linear, cubic, and 
inverse quadratic cases. The dispersion curves were 
obtained from the composition profi le with a quadratic 
inverse greater than the linear and cubic cases. In all 
material cases, the dispersion curves increase when 
the number of wave propagation waves also increase. 
For modes 1, 2, and 3, the lines corresponding to the 
compositional case of the cubic profi le coincide with the 
lines for the linear compositional profi le; however, for 
mode 4, the cubic compositional case of the profi le is 
greater than that of the linear compositional profi le.

Figure 3 shows the variation of phase velocity with 
respect to the wavenumber ( k ) for various volume 
fractions and diff erent modes 1M , 2M , 3M  and 4M . It 
is observed that with an increase in the number of modes 
of the plate from mode 1 to mode 4, the phase velocity 
increases regularly. It is also found that the phase velocity 
curves of the FG plates are higher than those of fully 
metal plates but lower than those of fully ceramic plates. 
However, we see that the values of the quadratic case 

are lower than the phase velocity values of the cubic, 
linear and inverse quadratic cases, whereas the values 
of the cubic and linear cases are greater than the phase 
velocity values of the quadratic case. In addition, the 
line corresponding to the case of the cubic composition 
profi le coincides with the lines of the linear composition 
profi les for modes 1, 2 and, 3. However, for mode 4, 
we see that the values of the cubic case are greater than 
those of the phase velocity of the linear case.

Figure 4 shows the changes in wave frequencies 
for the wavenumbers of FGM plates for diff erent 
thicknesses. We can see from these graphs that the wave 
frequencies increase with an increase in thickness ( h ) 
for the 1M  mode. It also can be noted that for the 2M  
wave mode, regardless of the thickness value, the wave 
frequencies are almost identical. The fi gure also shows 
that the eff ect of thickness on wave frequencies in the 
cubic type can be reversed as the mode increases; then 
the 3M  and 4M  modes decrease with the increasing 
thickness ( h ) of the FGM plates.

The variations of the curves of phase velocity vs 
wavenumber for the cubic composition profi le are shown 
in Fig. 5. It can be seen that phase velocity increased 
with increasing thickness for 1M  and 2M . Also, this 
eff ect can be reversed as the mode increases for 3M  and 

4M .

(a) M1 (b) M2

(c) M3
(d) M4

Fig. 5  The phase velocity curves of various functionally graded plates Tb=Tt=300 K
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4   Conclusions

This contribution presents an analytical model based 
on a high order theory and new displacement fi eld 
with four unknowns, while introducing indeterminate 
integral variables and a hyperbolic inverse sine function 
to study the propagation of the waves of FGM plates. 
It is presumed that the plate is a mixture of metal 
(SUS304) and ceramic (Si3N4) and that its properties 
change according to the thickness of the plate. Applying 
the method and the Navier procedure, the dispersion 
and phase velocity of the FGM plates are achieved. The 
formulas for the case of homogeneous isotropic plaques 
are found as a special case. The infl uences of volume 
fraction and the composition of constituent materials 
and the variation in plate thickness on dispersion and 
phase velocity are also studied. The results are compared 
to their counterparts in the literature. The following 
remarks pertain to this research:

(1) The study of wave propagation interests 
diff erent fi elds related to civil engineering: earthquake 
engineering, vibration isolation, non-destructive testing, 
etc. Wave propagation problems are characterized by 
diff erent phenomena, dispersion, diff raction, damping, 
wave type conversions, etc.

(2) The use of indeterminate integral terms allows 
for the reduction of the number of variables and the 
equations of propagation, thereby making the model 
simple and effi  cient to use.

(3) Wave propagation frequency and the phase 
velocity in the graduated plate are functionally infl uenced 
by the type of volume fraction distributions.

(4) Wave propagation frequency and the phase 
velocity in FGM plates are higher than those of all metal 
plates but lower than those of all ceramic ones.

(5) The impact of the heterogeneity of the functionally 
graduated materials on wave propagation in the 
functionally graduated plate is great. When the values of 
wave propagation frequency and phase velocity of FGM 
plates are compared with those of a homogeneous metal 
plate; the least impact is encountered in the quadratic 
case; the maximum impact is found in the inverse 
quadratic case.

(6) The thickness variation has an obvious infl uence 
on wave propagation frequency values and the phase 
velocity of functionally graduated plates, an infl uence 
that depends on the wave modes.

Due to the interesting features of the present 
approach, these fi ndings will serve as a useful benchmark 
for evaluating the reliability of other future FGM plate 
modeles. Additionally, future work is needed to solve 
the problems of wave propagation for a functionally 
graded plate through the use of the integral variables 
model to take into account the eff ects of damping and 
temperature-dependent material properties.
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