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Abstract: Extensive high-speed railway (HSR) network resembled the intricate vascular system of the human body, 
crisscrossing mainlands. Seismic events, known for their unpredictability, pose a signifi cant threat to both trains and bridges, 
given the HSR’s extended operational duration. Therefore, ensuring the running safety of train-bridge coupled (TBC) system, 
primarily composed of simply supported beam bridges, is paramount. Traditional methods like the Monte Carlo method fall 
short in analyzing this intricate system effi  ciently. Instead, effi  cient algorithm like the new point estimate method combined 
with moment expansion approximation (NPEM-MEA) is applied to study random responses of numerical simulation TBC 
systems. Validation of the NPEM-MEA’s feasibility is conducted using the Monte Carlo method. Comparative analysis 
confi rms the accuracy and effi  ciency of the method, with a recommended truncation order of four to six for the NPEM-
MEA. Additionally, the infl uences of seismic magnitude and epicentral distance are discussed based on the random dynamic 
responses in the TBC system. This methodology not only facilitates seismic safety assessments for TBC systems but also 
contributes to standard-setting for these systems under earthquake conditions.
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  1  Introduction

In 2022,  a high-speed railway ( HSR) network, 
appearing like blood vessels do throughout the human 
body, has already spread across the Chinese mainland. 
Just as blood vessels should remain unblocked, the 
safety of this train system should be guaranteed. Bridges 
comprise a large proportion of the HSR lines, especially 
simply supported beam bridges (Guo et al., 2021). Train-
bridge coupled (TBC) vibrations are quite complex under 
ambient excitations, such as an earthquake occurring 
when a train is passing across the bridges. An earthquake, 
as an unpredictable random factor, poses a serious 

threat to trains and bridges, particularly considering 
the long operation time of the HSR network (Fig. 1). 
Therefore, seismic reliability analysis for TBC system 

 Fig. 1  Earthquake-induced damage in TBC systems: (a) derailment 
      of an HSR train on bridges caused by the Niigata 
     Chuetsu earthquake in Japan (Apostolakis et al., 
              2007; Ogura, 2006; Zhao  et al., 2023b); (b) rail bending 
      and track slab cracking resulting from the Qinghai 
            earthquake in China
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has gradually become a burning issue (Zhai et al., 2019). 
Earthquakes display strong randomness, such as 

occurrence location, intensity, soil, frequency, etc. (Wang 
et al., 2021b). Therefore, it is inevitable that analyzing 
some random variables with non-Gaussian processes in 
seismic design must be carried out. The  Monte Carlo 
method (MCM) is a straightforward and primary method 
to study random responses of TBC systems (Shao et al., 
2023). However, it demands a large number of samples 
for multivariate analysis, a requirement that presently 
is unacceptable for a complex system. Instead, many 
effi  cient algorithms have been applied to study the 
random analysis of TBC systems, including the pseudo 
excitation method (Lin et al., 1994), the probability 
density evolution method (Mao et al., 2016), the new 
point estimate method (NPEM) (Jiang et al., 2019), deep 
learning (Li et al., 2023; Xiang et al., 2023b), and so on. 

Diff erent methods are used for various random 
parameters and problems. Zeng et al. (2015a and 2015b) 
used the pseudo-excitation method to investigate the 
random vibrations of a high-speed train traversing a slab 
track on a continuous girder bridge that was subjected 
to track irregularities and traveling seismic waves. Mao 
et al. (2016) established a random analysis model for a 
three-dimensional, high-speed train-track-bridge system 
subjected to random vehicle load, elastic modulus 
and mass density of a bridge by use of the probability 
density evolution method. Later, Liu et al. applied the 
 point estimate method (PEM) and the NPEM to simulate 
random rail irregularities and calculate the system 
dynamic response as subjected to Young’s modulus of 
concrete, damping ratio of concrete, control prestressing 
stress, and so on (Jiang et al., 2019; Liu et al., 2020a). 
They prove that the PEM and NPEM have excellent 
computational effi  ciency and applicability to multiple 
random variables. On balance, the stochastic method 
is no longer a bottleneck that restricts the development 
of random vibration analysis for the TBC system in 
2022. In contrast, the mathematical mapping models 
of the system’s stochastic characteristics and the safety 
prediction of system response are still not precise 
enough.

 Random distributions of parameters in random 
analysis are important features that diff ers from 
deterministic dynamic analysis. Previously, the vast 
majority of random parameters in the TBC system 
obeyed normal or lognormal distribution, such as initial 
rail irregularities (Liu et al., 2020b), bridge structure 
parameters (Cho et al., 2010; Wang et al., 2021a), train 
parameters (Tan et al., 2022), and so on. As a result of 
the high-precision moment formulas and the convenient 
triple standard deviation method for determining  a 
confi dence interval, Gaussian distribution parameters 
have been extensively studied and exploited regarding 
random analysis of TBC systems. However, there 
exist many critical random parameters that satisfy 
non-Gaussian distribution in seismic analysis,  such as 
seismic magnitude (SM),  epicentral distance (ED), etc. 

(He et al., 2011).  Therefore, a compatible and effi  cient 
approach is necessary for seismic safety assessment in 
TBC systems. 

In this paper, the NPEM is applied to fast calculate 
statistical moments of system responses based on 
the Gaussian integral method (Jiang et al., 2020). 
Furthermore, the moment expansion approximation 
(MEA) is introduced to obtain the  probability density 
functions (PDFs) of the system responses based on 
calculated statistical moments. Thus, the statistics can be 
deduced according to the obtained PDFs. Consequently, 
the NPEM combined with the MEA (NPEM-MEA) 
can solve the probabilistic analysis with non-Gaussian 
processes. More than that, the NPEM-MEA can be 
helpful for the standard-setting of TBC systems under 
earthquakes. In addition, the MEA is applicable to 
the stochastic methods that can calculate the original 
moment.

The rest of this paper is organized as follows. 
Firstly, random variables, the NPEM, and the MEA 

are illustrated in Section  2. 
Secondly, the TBC system shaken by an earthquake 

is established in Section 3. 
Thirdly, some verifi cations about the NPEM-MEA 

in the TBC system are conducted in Section 4. 
Fourthly, infl uences of the two diff erent random 

parameters on the TBC system are studied in Section 5. 
Lastly, several conclusions are drawn in Section 6.

 2  Methodology

 2.1  Random variables

In this seismic analysis, two critical parameters, SM 
and ED, are considered as random variables of non-
Gaussian distributions, and only strong earthquakes 
(magnitude equal to or greater than six) are adopted. 
Specifi cally, the seismic magnitude-frequency statistics 
satisfy the truncated Gutenberg-Richter distribution (Ji  
et al., 2021; Xu and Gao, 2012; Zhao et al., 2022) in this 
research, which is a complex exponential distribution. 
Secondly, the ED herein is assumed to be satisfying 
uniform distribution because the train could be hit by an 
earthquake at any location.

The PDF of the truncated Gutenberg-Richter model 
and the relation between the SM and peak ground 
acceleration (PGA) of the ground motion attenuation 
model employed in the paper can be formulated as 
Eqs. (1)  and (3), respectively (Pang et al., 2020, 2022; 
Zhao et al., 2022).
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wh ere ln10t b , 0.85b  ; aE represents seismic PGA; 

jm  means the SM; Mu are the lower and upper limit of 
seismic magnitude, which are six and nine, respectively; 
Req denotes the random ED, whose value range is (10 km, 
100 km); A, B, C,  D and E are all regression coeffi  cients 
of the ellip tical attenuation relationship, which are listed 
in Table 1. The coeffi  cients of the eastern active region 
are used in this research.

2.2  New point estimate method

   The PEM provides a practical solution for reducing 
computation costs in stochastic analysis (Zhao and Lu, 
2008, 2021). However, the early PEM’s computational 
effi  ciency is still low due to the complexity of 
structural response functions. Eventually, the PEM 
was greatly improved so that the NPEM became one 
of the mainstream estimation methods, by virtue of 
introducing the reduced dimension method and an 
approximation model (Cai et al., 2019; Zhao and Lu, 
2021) to the response function. Nevertheless, it cannot 
solve a random analysis with a non-Gaussian process. 
In this connection, this research employs a method that 
combines the NPEM and the MEA to fi ll this gap. The 
details are presented as follows, and the fl ow chart of the 
NPEM-MEA is pictured in Fig. 2.

First, the distributions of random parameters should 
be determined and then standardized based on the Nataf 
transformation (Zhao and Ono, 2000). In this research, 
the random parameters can be expressed as listed below 
(Lu et al., 2017; Zhao et al., 2021): 

1( )i iX F Y                                   (4)
 

 where Xi means the random variable after the Nataf 
transformation,    means the standard normal 

cumulative distribution function, 1( )F    means the 
inverse function of the cumulative distribution function, 
and Yi represents the Gauss point of a standard Gaussian 
distribution.

Second, the number of Gauss point r and a reference 
point μc must be confi rmed, and the reduced dimension 

Table 1   Coeffi  cients of the elliptical attenuation relationship of aE
 
for the Chinese mainland 

                                               (all data can be referred to in Ref. (Zhao et al., 2022))

 Region A B C D E
Xinjiang  region Major axis 3.403 0.472 –2.389 1.772 0.424

Minor axis 2.610 0.463 –2.118 0.825 0.465
Qingzang region Major axis 3.807 0.411 –2.416 2.647 0.366

Minor axis 2.457 0.388 –1.854 0.612 0.457
Eastern active region Major axis 3.533 0.432 –2.315 2.088 0.399

Minor axis 2.753 0.418 –2.004 0.944 0.447
Moderate seismic region Major axis 3.706 0.298 –2.079 2.802 0.295

Minor axis 2.690 0.321 –1.723 1.295 0.331

 Fig. 2  Flowchart illustrating the NPEM-MEA computational 
            framework
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method and an approximation model are introduced to 
solve multiple parameters. For explaining the reduced 
dimension method, the structural response function 
containing n random variables is assumed as ( )h x , 

 1 2, , , nx x xX  , and a dimension-reduction formula 
can be expressed as follows (Zhao and Lu, 2021):
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1 2, , , nc c c  means a set of reference points. Additionally, 
s = 2 herein.

Third, each estimate point ,2 k ix  (subscript k and i 
represent the ith Gauss point of the kth random parameter, 
similarly hereinafter) should be substituted into Eq. (4)  
as Yi, and then the calculated ,k iX  ought to be taken into 
the TBC system as parameters. Next, the structural time-
history response  , ,k ih X t  can be obtained.

Fourth, the actual time-history response moments 
(the mean value  t , the qth order central moment 

 cqM t
 
and the qth order original moment  oqM t  at 

each time point can be calculated by substituting the 
 ,lh X t  ( lX  means a summation of all Gauss points of 

the lth random variable considering weights, similarly 
hereinafter) and  , ,l mh X X t  into Eq.  (6)  throug h Eq.  (8) , 
which are (Jiang et al., 2019; Zhang et al., 2023):
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where n means t he n  umbe r of random parameters, 
 c ,h u t  denotes the time-history response when the 

estimate points are equal to the reference points, and the 
expectations of some items in Eq.  (6)  throug h Eq.  (8) are 
as follows:
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where r is the number of estimate points (r = 7 is 
recommended due to the convenience of obtain upper 
and lower limits of the random variables for the MEA) 
and GH,iw  and GH, jw  are the weights of the Gaussian-
Hermite estimate point, which can be refer to in specifi c 
literature (Jiang et al., 2019; Zhao and Lu, 2021). 

When considering a single random parameter, such 
as the kth random variable,  Eq.  (6) throug h Eq.  (8) can be 
rewritten as:
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More details of the NPEM c an b e referred to in 

monograph (Zhao and Lu, 2021).

2.3   Moment expansion approximation

Statistics required for safety a  ssessment can be 
obtained according to the PDFs of system responses 
(Kolassa, 2006). To obtain the PDFs of such resp onses, 
the MEA method can be adopted based on the 
aforementioned moments obtained according to the 
NPEM. It should be noted that the MEA method is 
unsuitable for some special random distributions, such as 
the Cauchy distribution, but these random distributions 
rarely appear in the fi eld of TBC.

In the MEA method, the best square approximation 
function  nS x  of the target PDF,  f x , exists for a 
given closed interval [a, b] according to approximation 
theory (Burden et al., 2015), which can be written as 
follows:

 22 2

2 2
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b
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where 2

  means the Euclidean norm.
Then, according to multivariate extremes theory 

(Castillo, 2012), the normal function can be obtained as 
expressed below: 
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where (variable 1, variable 2) means  the inner product 
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of variable 1 and variable 2; the polynomial basis 
of  1 2span 1, , , ,,k j nx x x x x  , which are linearly 
independent of each other, and ja  are the coeffi  cients 
to be calculated.

Therefor e, Eq. (15) can be rewritten in the matrix 
form:
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where Moq means the n-order original m  ome nt (ori ginal 
moments can be gained according  to Eq. (8)  and Eq. (13)  
calculated by the NPEM).

 After the coeffi  cients 1,  ,  na a  are calculated, the 
best square approximation of the PDF can be described 
as:

0 1
0 1( ) n

n nS x a x a x a x                  (17)

where n denotes the truncation order of moment 
expansion.

Subsequently, the obtained PDF allows for the 
generation of random numbers with a high level of 
precision. This process can be accomplished using the 
acceptance-rejection method, and it can be organized as 
follows (Zhao et al., 2023c):

(1) A constant  should be determined to satisfy 
  1nS x  ,  ,x a b .

(2) The random numbers 1r  and 2r  are generated 
based on the uniform distribution in an interval [0, 1]. 
Subsequently, let   1= +y a b a r .

(3) If  2 nr S y , let x y , or else eliminate 1r  
and 2r , then repeat step (2).

The cycle repeats itself until suffi  cient quantities of 
random numbers, 1 2, , , nx x x , are generated according 
to  nS x . Finally, the desired confi dence interval can be 
obtained based on 1 2, , , nx x x .

  3  TBC simulation system

This section presents a sys tem consisting of an 
ICE-3 train modeled according to multibody dynamics, 
ballastless track slab models with three layers of elastic 
point-support, and a fi nite element bridge model (Fig. 3(a)). 
Additionally, the energy variational method is introduced 
to calculate matrices in the equation of motion (Lou and 
Zeng, 2005; Xu et al., 2020). 

3.1  Model of train

An HSR train is a three-dimension al vibration system 
containing an elastic suspension device. For enhanced 

numerical effi  ciency, the car-body, bogies, and wheelsets 
are assumed to be rigid bodies (Xu et al., 2020; Xu and 
Lu, 2021). Also, the coupler and suspension system of 
the train are simulated utilizing a three-dimensional 
linear spring-damper. Each train vehicle has one car-
body with six degrees of freedom (DOFs), two bogies 
with six DOFs each, and four wheelsets with fi ve DOFs 
apiece (Fig. 3). In addition, details and symbols of the 
basic motions are listed in Table 2.

The detail of the mass matrix Mvv, stiff ness matrix 
Kvv and damping matrix Cvv of the train have the same 
form as Refs. (Jiang et al., 2019; Zhao et al., 2023b).

3.2   Model of track slab and bridge

As referenced in Figs. 4(a) and 4(b), multi-span 
prestressed HSR simply supported box-girder with 
concrete piers and China railway track system type Ⅱ 
slab ballastless tracks are adopted for this research, 
which is modeled based on the fi nite element method 
(Gharad and Sonparote, 2021; Xia et al., 2020; Feng et al., 
2020).

Liu et al. (2020a) compared the infl uence of the 
Rayleigh damping model and the Caughey damping 
model and concluded that the Rayleigh damping model 
is accurate enough to show the dissipation of the system. 
Therefore, the Rayleigh damping model is adopted for 
this research, which can be expressed as follows (Zhao 
et al., 2023a): 

b b
bb bb bb

2 2i j

i j i j

  
   

 
 

C M K
              

(18)

where i  means the fi rst-order natural circle frequency 
of the bridge, j  means the second-order natural circle 
frequency of the bridge, and b  represents the damping 
ratio of the bridge.

3.3  Mo del of wheel-r ail contact

The spa tial geometric relationship of wheel-
rail (WR) contact can be calculated according to the 
monograph (Zhai, 2020), and the schematic diagram is 
shown in Fig. 4(c).

The coordinate of the WR contact point in the 
absolute coordinate system can be deduced as: 

Table 2  DOFs of the train

Vehicle 
components

DOFs
Longitudinal Lateral Vertical Roll Pitch Yaw

Car-body xc yc zc θc φc ψc

Front bogie xfb yfb zfb θt1 φt1 ψt1

Rear bogie xrb yrb zrb θt2 φt2 ψt2

Wheelsets, 
i=1‒4

xwi ywi zwi θwi - ψwi
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where 

R means the contact angle of the right wheel tread;
wR denotes the rolling radius of the wheel; 

xl , yl , zl  are the direction cosines of the x-axis, 
y-axis, z-axis, respectively; 

Bx , By , Bz  represent the coordinates of the center 
of the wheel rolling circle; 

wd  means the abscissa of the wheel rolling circle in 
the wheel coordinate.

The WR normal force can be solved by using the 
nonlinear Hertz elastic contact theory (Guo et al., 2023). 
The WR creep force is formulated according to the Shen-
Hedrick-Elkins nonlinear model (Xu and Zhai, 2017). 
Additional details of the WR contact geometries and 
forces can be found in the monographs (Kalker,  1990; 
Zhai, 2020). 

3.4  Model of rail  irregularity

The infl uence of pr imary rail irregularity on dynamic 
train response has been considered. The rail irregularities 
in the TBC system are generated according to German 
low disturbance power spectral dens ity (PSD), based on 

Fig. 3  Schematic representation of the TBC system:  (a) ov erall system, (b) side view, (c) top view and (d) front view of the train 
            vehicle model



No. 1                 Zhao Han et al.: Seismic safety assessment with non-Gaussian random processes for train-bridge coupled systems                   247

the harmonic synthesis method (Chen et al., 2013; Jiang 
et al., 2019), which can be expressed as:
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where vS , aS , and gS  are the irregularity PSD function 
of vertical rail profi le, rail alignment and gauge distance, 
respectively 2m /(rad/m) ; 

cS  is the PSD function of rail cross-level irregularity 
1/(rad/m) ; 

vA , aA , and gA  represent roughness coeffi  cients; 
c , r  and s  embody truncation frequencies;

and b denotes the half distance between two sides of 
the rail. 

The detailed parameters of the irregularity PSD 
function are shown in Table 3. The vertical rail profi le 
irregularity of the left rail LZr  and right rail RZr , and 
alignment irregularity of left rail LYr  and right rail 

RYr  can be referred to in literature (Jiang et al., 2019). 

   3.5  Model of an earthquake

 Only a far-fi eld earthquake is adopted for this 
research, and the Clough-Penzien PSD functions are 
used to simulate the seismic wave sample, which has a 
form of (Zeng et al., 2015b; Zhang et al., 2011):

Fig . 4  Diagrams depicting (a) the side view and (b) rear view of the bridge model, along with (c) the WR contact model

Table 3   Parameters of German low di  sturbance PSD of rail irregularity (all data refer to Zhai (2020))

c (rad/m) r (rad/m) s (rad/m) aA (m2.rad/m)
vA (m2.rad/m) gA (m2.rad/m)

0.8246 0.0206 0.438 2.119×10-7 4.032×10-7 5.32×10-7



248                                               EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 23

   
4 2 2 2 4

02 22 2 2 2 2 2 2 2 2 2

( )

4

4 4

y ya a

gy gy gy
y

gy gy gy fy fy fy

S

S



    

         





   

(23)

   
4 2 2 2 4

02 22 2 2 2 2 2 2 2 2 2

( )

4

4 4

z za a

gz gz gz
z

gz gz gz fz fz fz

S

S



    

         





   
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where gy  and gz  denote the predominant frequency 
of the bridge site; 

fy  and fz  mean the damping ratios of the bridge 
site; 

fy , fz , fy  and fz  denote the parameters of the 
fi lter; 

0 yS  and 0zS  represent the spectral intensity factor; 
and

gy gz  ,  fy gy  , fz gz  , 0.1 0.2fy gy gy   ,

0.1 0.2fz gz gz    and 0 00.218z yS S . 
The other parameters of the PSD functions can be 

referred to Zhao et al. (2022).
Seismic wave has obvious non-stationarity of 

intensity. Hence, it is described as a product of a 
stationary fi ltered wave and a time-varying function in 
engineering applications (Shinozuka and Sato, 1967), 
that is:

g g( ) ( ) ( )x t D t X t                           (25)
 

with

0.4 0.512.21 (e e )( ) t tD t                      (26)

3.6  Motion equation  

In the TBC system, t he earthquake loads are treated 
as external excitations, and the acceleration input mode 
is adopted. Specifi cally, it is assumed that the bridge 
piers are connected to the ground through the supporting 
nodes. Meanwhile, the dynamic equation of the system 
is partitioned, as supporting nodes block matrix 
(supporting nodes) and other structures block matrix 
(structure nodes) in the absolute coordinate system, 
which can be expressed as follows (Chopra, 1995; Sun  
et al., 2016; Zhao et al., 2023a):

ss sb s ss sb s

bs bb b bs bb b

ss sb s
 

bs bb b b
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M M X C C X
M M X C C X

K K X
K K X f

      

(27)

 
where:

bX  means the e nforced displacements of the 
supporting nodes; 

sX  represent the displacements of structure nodes; 
ssM , ssC  and ssK  are the mass matrix, damping 

matrix, and stiff ness matrix of the structure nodes, 
respectively; 

bbM , bbC  and bbK  are the mass matrix, damping 
matrix, and stiff ness matrix of the supporting nodes, 
respectively; 

sbM , bsM , sbC , bsC , sbK  and bsK  denote the 
coupling mass matrices, the coupling damping matrices, 
and the coupling stiff ness matrices of the supporting 
nodes and the structure nodes; 

 
bf  is the force of the supporting nodes subject to the 

ground.
The fi rst row of Eq. (27)  is expanded based on the 

lumped mass assumption, and it can be calculated that:

ss s ss s ss sb b sb bs     M X C K CX X X XK      (28)

 
where  

sX  is decomposed into pseudo-st atic displacement 
psY

 
and dynamic displacement  

dY , namely:

s ps d
  X Y Y

                           
(29)

 
The pseudo-static displacement psY  satisfi es st atic 

equilibrium (set dynamic displacements, all velocities 
and accelerations to zero), hence psY  can be deduced as 
follows (Chopra, 1995):

 
ps bY RX

                              
(30)

Naturally, the pseudo-static velocity and   acceleration 
can be obtained based on Eq.  (30):

 
ps b

  Y RX
                             

(31)

 
b

 
ps  Y RX

                             
(32)

where  1
ss sb
R = K K  represents the infl uence matrix 

(Z hao et al., 2023).
In particular, the damping force is considered to be 

proportional to the dynamic velocity dY , so Eq . (28) can 
be transformed into:

ss d ss ss ss ps sb b ss sb bd d ps       M C Y MY YK XC Y KY K X
(33)

Afterward, considering Eq s. (31)  and (32) ignoring 
the  damping forc e of the supporting nodes sb bC X ,  
Eq. (33) can be recast as:
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ss d ss ss ssd d b    M MYY RCY XK           (34)

In the system, the acceleration of the earthquak e is 
uniformly input for each bridge pier. Thus, the motion 
equation of the system can be e xpressed as follows: 

dss d ss s sds s g ( )t    Y YM Y XC K M R
          

(35)
 

where g ( )tX  represents the earthquake acceleration of 
 all support nodes in three directions.

  4  Verifi ca tion

In this section, a relatively simp le system has 
been established (Fig. 5(a)), as the low computational 
effi  ciency of the MCM. First, an ICE-3 train with two 
motor vehicles and one trailer vehicle (MTM) is applied. 
Its main parameters are listed in Table A1. Second, a fi ve-
span 32 m prestressed HSR two-way, simply supported 
box-girder bridge is established based on Section 3.2. 
The main parameters of the track slab and bridge are 
listed in Table A2. Third, primary rail irregularities are 
generated by the use of German low disturbance PSD 

functions (Section 3.3). Also, a set of three-dimensional 
artifi cial seismic waves is adopted (Fig. 5, Secion 3.5). 
Lastly, the train ran a short distance (about 50 m) before 
crossing the bridge, and maintained a constant speed 
(200 km/h) until leaving the bridge. The ground motion 
is loaded exactly at the instant when the train enters the 
bridge.

4.1  Verifi cation of random variables

To verify the  feasibility and effi  ciency of each 
random variable calculated by the NEPM-MEA, a series 
of calculations are accomplished according to NPEM-
7 and MCM-1000 (the numbers mean the number of 
Gauss points adopted for NPEM and calculation times 
for MCM, respectively). Thereafter, the comparison of 
the 3rd car-body response between the MCM-1000 and 
the NPEM-7 from the 1st to 4th order moment is applied 
to validate the method. As the topmost unit of the TBC 
system, the fi ndings are convincing enough to verify the 
acceleration of the car-body rather than the remaining 
part of the system.

Figure 6 compares the acceleration time history of 
the 3rd car-body in the lateral and vertical directions 
between the NPEM-7 and the MCM-1000, with random 

Fig. 5 (a) The schematic diagram of the TBC model,  (b, d, f)   three-dimensional seismic acceleration time-history curves and 
            (c, e, g) the pertinent PSD curves of the three components
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SM. The horizontal axis in each subgraph denotes the 
distance of the fi rst wheelset passing through the start 
point. It can be observed that the NPEM-7 curves and 
the MCM-1000 curves all agree well with one another 
in both directions and in each subgraph. Furthermore, 
the simulation results demonstrate that even the 4th 
central moment, as calculated by the NPEM-7 is still 
accurate. Regarding calculation effi  ciency, the NPEM-7 
outperforms MCM-1000 by two orders of magnitude in 
this simulation.

Similarly, Fig. 7 compares the acceleration time 
histories of the 3rd car-body in the lateral and vertical 
directions between the NPEM-7 and the MCM-1000, 
with random ED. Figure 8 compares the acceleration 
time-histories of the 3rd car-body in the lateral and 
vertical directions between the NPEM-7 and the MCM-
1000, with both random variables. Consistent results 
in all the subgraphs displayed in Figs. 7 and 8. This 
consistency confi rms that the accuracy of the NPEM-7 
is suffi  cient for diff erent random variables with non-
Gaussian distribution characteristics.

4.2  Optimal truncation order of moment expansion

The moments calculated by the NPEM become 
increasingly inaccurate as the order of moments increases 
(Jiang et al., 2019). Therefore, there is an optimal value 
for the truncation order of the MEA method. Thereafter, 
the PDF curves at several randomly selected time points 
in the 3rd car-body acceleration under MCM-1000 and 
the NPEM-MEA with diff erent truncation orders are 
used to fi nd the optimal value.

Diff erent PDF curves of the 3rd car-body acceleration 
presented in Fig. 9 are generated by the MCM-1000 and 
the NPEM-MEA, with a truncation order from three to 
eight in two directions (lateral and vertical) calculated at 
two points of time (distance = 139 m and distance = 60 m) 
and with diff erent random variables. The diff erent time 
points and directions shown in Fig. 9 are chosen randomly 
for generality. Wherein the PDF curves of MCM-1000 
are generated by ksdensity function, a built-in function in 
MATLAB (used version: R2020b), which uses a kernel 
smoothing function for estimating univariate or bivariate 
data. More details can be found in MATLAB help fi les. 

 Fig. 6     Comparative analysis of the 3rd car-body’s a cceleration time-history curves between NPEM-7 and MCM-1000 with random 
       SM: (a) mean value, (b) variance, (c) third moment, and (d) fourth moment in the lateral direction (y-direction, 
         similarly hereinafter); (e) mean value, (f) variance, (g) third moment, and (h) fourth moment in the vertical direction
             (z-direction, similarly hereinafter)
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This type of probability density estimation method has 
a signifi cant error at the boundary of the domain, which 
explains the dropping part (inaccurate part) at the end 
of the MCM-1000 curves. However, the remainder of 
the curve is suffi  ciently accurate (Bowman and Azzalini, 
1997).  For comparing the PDF curves among diff erent 
truncation orders,  the Euclidean distance approach is 
introduced, and it is modifi ed as follows to satisfy the 
demands of this research:

 2
Euclidean 1 2

1

1 ( ) ( )
n

i
D y i y i

n 

 
           

(36)
 
 

 where y1(i) and y2(i) are the ith vertical coordinates of the 
two curves, which have the same abscissa; n means there 
are n points on the curve with equal abscissa spacing, 
and n is large enough to ensure accuracy.

Naturally, the smaller the Euclidean distance is, the 
closer are these two curves, according to Eq. (36) . In Fig. 9, 
the MCM-1000 curves are considered to comprise 
target curves (in addition to the inaccurate part), and the 

calculated Euclidean distances are listed in Table 4. By 
comparison, it can be observed that the NPEM-MEA 
curves are all close enough to the MCM-1000 curve in 
each subgraph, but the proximity of these NPEM-MEA 
curves to the target curves shows a slight diff erence. 
Specifi cally, the NPEM-MEA curves of n = 5 and 6 
are closest to the MCM-1000 for Figs. 9(a) and 9(d); 
the NPEM-MEA curves of n = 3 and 4 correspond to 
Figs. 9(b) and 9(e); and the NPEM-MEA curves of n = 
4 and 5, correspond to Figs. 9(c) and 9(f). Therefore, t he 
optimal truncation order of the NPEM-MEA will change 
with the random variable, but four to six are accurate 
enough for the truncation order.

Figure 10 c ompares acceleration probability curves 
of the 3rd car-body generated by the MCM-1000 and the 
NPEM-MEA with a truncation order n = 6 in the vertical 
direction, with both random variables and at diff erent 
confi dence levels. In addition, the confi dence interval 
curves include the upper and lower curves, and the space 
between the two curves has a specifi c probability, which 
is the confi dence level, containing the true value. The 
confi dence interval curves for estimating the response of 

Fig. 7  Comparative analysis of the 3rd car-body’s a cceleration time-history curves between NPEM-7 and MCM-1000 with random 
           ED: (a) mean value, (b) variance, (c) third moment, and (d) fourth moment in the y-direction; (e) mean value, (f) variance,
           (g) third moment, and (h) fourth moment in the z-direction
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the TBC system at any designated confi dence level can 
be obtained by means of the NPEM-MEA. However, a 
confi dence level with guiding signifi cance for seismic 
design results from careful consideration of economics, 
safety and many other factors, which is still blank at 
present, will not be studied herein. Therefore, two 
randomly chosen confi dence levels (0.6 and 0.8) are 
used to validate the confi dence interval curves that are 
generated based on the NPEM-MEA by comparing them 
with the MCM-1000. According toSecondly, the TBC 
system shaken by an earthquake is established in Section 
3.0, it can be found that the upper and lower curves are 
almost coincident at both confi dence levels. In addition, 
the computing time of the MEA method is about fi ve 
minutes (used MATLAB version: R2020b, used CPU: 
Intel Core i7-10700), and it is negligible compared to the 
computing time of the NPEM.

  5    Safety assessment

A much more complex model can be evaluated within 
an acceptable computing time according to the NPEM-

MEA with multiple non-Gaussian distribution random 
variables. Therefore, a seven-span, simply supported 
beam bridge and a train consisting of two motor vehicles 
and two trailer vehicles (MTTM) are adopted (Fig. 12(a)). 
Also, the other system’s parameters are consistent with 
Section 4, except that the train’s speed is 250 km/h. 
Thereafter, Figs. 12 and 13 depict the lateral and vertical 
acceleration time-history curves of the 4th car-body at 
the three confi dence levels, with random SM and ED, 
respectively, as well as the displacement of the 4th span 
midpoint.

5.1   Infl uence of a single random variable

 It is impractical to build the HSR railway bridge, 
which can withstand an earthquake of extreme intensity, 
considering construction diffi  culties and attendant 
economic eff ects. Since earthquakes cannot be predicted 
at present, Figs. 12, 13, and 14 can evaluate the response 
range of the TBC system from the perspective of 
probability. Additionally, according to vibration criteria 
for HSR bridges and train vehicles in China (Xia et al., 
2018; Xiang et al., 2023a), it is recommended that a 

Fig. 8  Comparative analysis of the 3rd car-body’s a cceleration time-history curves between NPEM-7 and MCM-1000 with both 
                   random SM and ED: (a) mean value, (b) variance, (c) third moment, and (d) fourth moment in the y-direction; (e) mean value,
            (f) variance, (g) third moment, and (h) fourth moment in the z-direction
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car-body’s lateral and vertical acceleration not to exceed 
1.3 m/s2 and 1.0 m/s2, respectively. In addition, the 
lateral displacements of the bridge midpoints should 
be limited to 3.5 mm. Accordingly, the over-limit area 
will be considered a dangerous space, and the remaining 
area will be judged to be safe (Guo et al., 2010). On 
this basis, three confi dence levels are chosen to evaluate 
the reliability of the TBC system, by which the 0.99 
confi dence interval curves can be considered the extreme 
state.

In Fig. 12, it can be seen that for the train, three 
confi dence interval curves exceed its limits in the 
lateral direction. Meanwhile, the vast majority of 

Fig. 9    PDF curves of the 3rd car-body acceleration    between the MCM-1000 and the NPEM-MEA with truncation orders from three 
         to eight: (a, b, c) for the time point (distance = 139 m) in the lateral direction (SM, ED, both); and (d, e, f) for the time 
            point (distance = 60 m) in the vertical direction (SM, ED, both)

Table 4   Euclidean distance among diff erent curves

Truncation order
 Euclidean distance

Fig. 9(a) Fig. 9(b) Fig. 9(c) Fig. 9(d) Fig. 9(e) Fig. 9(f)
n = 3 0.4719 0.0812 0.0842 76.2949 18.5967 13.6556
n = 4 0.3197 0.0700 0.0484 51.4067 15.8192 8.4336
n = 5 0.2789 0.0887 0.0554 41.7215 13.6838 8.0005
n = 6 0.2754 0.1875 0.0657 42.6831 24.6951 9.5073
n = 7 0.2603 0.1861 0.0684 48.2546 25.1419 9.6052
n = 8 0.2390 0.2526 0.1084 42.2220 32.6822 15.1627

the 0.6 area (confi dence interval curves enclose the 
pertinent confi dence level areas) is within the safe area 
in the lateral direction of the bridge. It is found that train 
running safety is threatened in more than half of the 
cases when a single random SM is considered. Another 
fi nding is that the train and the bridge are much safer 
in the vertical direction. This particular phenomenon 
indicates that train running safety is more vulnerable 
than is the case with the bridge itself. 

Conversely, a diff erent situation is displayed in 
Fig. 13. Three confi dence level areas exceed the safe 
area for both the train and the bridge in the lateral and 
vertical directions. Therefore, the train and the bridge 
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F    ig. 12   Train and bridge response safety assessment curves under seismic excitations with the random SM: 4th motor car-body in 
              the (a) y and (b) z directions; 4th span midpoint in the (c) y and (d) z directions

are highly likely to become damaged with a single 
random ED. Further, the train exhibits a high probability 
of strong vibration in the vertical direction.

5.2   Infl uence of both random variables

Figure 14 shows the lateral and vertical acceleration 
time-history curves of the 4th car-body at the three 
confi dence levels, with both random SM and ED, 
as well as the displacement of the 4th span midpoint. 
Subsequently, the standard deviation (Std.D) time-
history curves of the train and bridge responses with 
each random variable are depicted in Fig. 15. 

Figure 14 shows that all three confi dence level 
areas seriously exceed the limits for the train and the 
bridge in both directions. These results reveal a much 
more dangerous set of circumstances compared to the 
simulation results with a single random variable, as 
shown in Figs. 12 and 13. Consequently, an earthquake 
as a multivariate control system demonstrates a character 
of high randomness. With regard to seismic reliability 
analysis, it is necessary to simultaneously consider the 
randomness of multiple vital parameters. According 
to Fig. 15, the uncertainty in the dynamic response of 
the TBC system under the eff ects of an earthquake can 

 F ig. 11  Schematic diagram of the TBC model

4th
4th

F  ig. 10  Acceleration probability curves of the 3rd car-body 
         generated by the MCM-1000 and the NPEM-MEA 
            with truncation order n = 6 in the vertical direction 
         with both random variables for several confi dence 
               levels: (a) 0.6, and (b) 0.8
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F  ig. 13  Train and bridge response safety assessment curves under seismic excitations with the random ED: 4th motor car-body in 
              the (a) y and (b) z directions; 4th span midpoint in the (c) y and (d) z directions

F  ig. 14   Train and bridge response safety assessment curves under seismic excitations with both the random SM and ED: 4th motor 
               car-body in the (a) y and (b) z directions; 4th span midpoint in the (c) y and (d) z directions

be divided and allocated to diff erent random variables. 
It can clearly be observed that the Std.D time-history 
curves of ED are consistently above the curves of SM 
for the train and the bridge in both directions at any time 

point when the train is passing across the bridge. There 
is no doubt that the ED has greater infl uence than the SM 
on the response of the train and the bridge. 



  6   Conclusions

This research investigated a seismic safety 
assessment in an established three-dimensional TBC 
system with non-Gaussian distribution parameters based 
on the NPEM-MEA. The NEPM-MEA is verifi ed by 
comparing it with the simulation results taken from 
the MCM. A safety assessment of the train and bridge 
under both random variables is discussed. The main 
conclusions of the study are as follows:

(1) The NPEM-MEA demonstrates a high degree 
of accuracy in the seismic safety assessment of the 
TBC system with non-Gaussian distribution variables, 
verifi ed by comparing it with the MCM results. In terms 
of calculation effi  ciency, the NPEM-7 is two orders of 
magnitude higher than the MCM-1000. 

(2) The recommended truncation order of the 
NPEM-MEA is 5 or 6 for the random SM, 3 or 4 for 
the random ED, and 4 or 5 for both SM and ED. The 
optimal truncation order of the moment expansion will 
change with diff erent stochastic methods and random 
distributions of parameters. In addition, four to six will 
be suffi  ciently accurate for the truncation order of the 
NPEM-MEA.

(3) Train running safety is more vulnerable than 
for the bridge in the lateral direction, and train running 
safety is threatened in more than half of the cases when 
considering a single random SM. However, both the train 
and the bridge are much safer in the vertical direction.

(4) The train and the bridge have a high probability 
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F ig. 15    Std.D time-history curves of the train and bridge response with both the random SM and ED: 4th motor car-body acceleration 
              in the (a) y and (b) z directions; 4th span midpoint in the (c) y and (d) z directions

of being damaged, considering random ED. Additionally, 
the train shows a high probability of strong vibration in 
the vertical direction, which would seriously aff ect train 
running safety. The randomness of ED has a greater 
infl uence than that of SM on the response of the train 
and the bridge in both directions at any time point when 
the train is passing across the bridge. 

(5) From the perspective of probability and the 
limit state, the responses of the train and the bridge with 
random SM and ED are signifi cantly higher than those 
having a single random variable. This highlights the 
importance of considering the randomness of multiple 
parameters simultaneously in seismic safety assessment.
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  Table A2   Parameters of the track slabs and bridge (partial data refer to Liu et al. (2020b) and Zeng et al. (2015))

Notation Defi nition Unit Value

Mass per unit length of the rail kg/m 60.64

Iry Flexural moment of inertia about the y-axis of a cross-section of the rail m4 3.22×10-5

Irz Flexural moment of inertia about the z-axis of a cross-section of the rail m4 5.24×10-6

Mass per unit length of the slab kg/m 1.2×103

Irz Flexural moment of inertia about the y-axis of a cross-section of slab m4 1.4×10-3

Isz Flexural moment of inertia about the z-axis of a cross-section of slab m4 0.22

krsy Lateral stiff ness of a fastener N/m 3.0×107

krsz Vertical stiff ness of a fastener N/m 5.0×107

 

Eb Elastic modulus N/m2 3.45×1010

Ib Mass moment of inertia of a cross-section m4 12.744

μ Poisson’s ratio ‒ 0.2

Mass per unit length kg/m 2.972×104

Le Length of the element m 3.2

ζ Damping ratio ‒ 0.05

rm

sm

bm

Track slab

Bridge

A ppendix

 T able A1  Parameters of the tractor and trailer (partial data refer to Jiang et al. (2019))

Notation Unit Tractor/Trailer Notation Unit Tractor/Trailer

mc kg 4.8×104/4.4×104 k2x N/m 0.24×106/0.28×106

mt kg 3.2×103/2.4×103 k2y N/m 0.4×106/0.3×106

mw kg 2.4×104/2.4×104 k2z N/m 0.48×106/0.56×106

Waxle kg 1.60×104/1.46×104 c1x N/(m/s) 5.0×104/0

fc1 Hz 0.78/0.84 c1y N/(m/s) 5.0×104/5.0×104

fc2 Hz 1.09/1.06 c1z N/(m/s) 3.0×104/3.0×104

k1x N/m 9.0×106/1.5×107 c2x N/(m/s) 6.0×104/12×104

k1y N/m 1.04×106/0.7×106 c2y N/(m/s) 6.0×104/6.0×104

k1z N/m 3.0×106/5.0×106 c2z N/(m/s) 3.0×104/2.5×104
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