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Abstract: There is always some randomness in the material properties of a structure due to several circumstances and 
ignoring it increases the threat of inadequate structural safety reserves. A numerical approach is used in this study to consider 
the spatial variability of structural parameters. Statistical moments of the train and bridge responses were computed using the 
point estimation method (PEM), and the material characteristics of the bridge were set as random fi elds following Gaussian 
random distribution, which were discretized using Karhunen-Loève expansion (KLE). The following steps were carried out 
and the results are discussed herein. First, using the stochastic fi nite element method (SFEM), the mean value and standard 
deviation of dynamic responses of the train-bridge system (TBS) were examined. The eff ectiveness and accuracy of the 
computation were then confi rmed by comparing the results to the Monte-Carlo simulation (MCS). Next, the infl uence of 
the train running speed, bridge vibration frequency, and span of the bridge on dynamic coeffi  cient and dynamic response 
characteristics of resonance were discussed by using the SFEM. Finally, the lowest limit value of the vibration frequency of 
the simple supported bridges (SSB) with spans of 24 m, 32 m, and 40 m are presented.
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1  Introduction

At present, high-speed railway (HSR) bridges are 
technologically mature, resulting in better ride comfort, 
usage of land resources, and lower passenger travel 
costs.  When a train runs through a bridge, the bridge 
and train will couple together (Montenegro et al., 2016, 
2021).  It is better to regard the train and bridge as a 
system for calculation. For example, Chen et al. (2018) 
and Chen and Zhai (2019) put forward the analytical 
method of single pier settlement and continuous multi-
ton settlement limit of simply supported bridge on HSR. 
The upper limit value of the above-mentioned structural 

deformation was proposed by numerical simulation, 
which provides a convenient method for train running 
analysis.  In the work of Yang and Wu (2002), the 
behavior of trains running over bridges shaken by 
earthquakes were discussed. Liu et al. (2021a) proposed 
the safety indexes of a HSR train running on a bridge 
under an earthquake, which is convenient for engineers 
to design and use.

 For a real structure, due to limitations in the process 
of making components in the factory and installation 
errors caused by artifi cial factors on a construction 
site, all the parameters of each part of the structure 
have a certain randomness, and there is an unavoidable 
deviation compared with the design value under the 
ideal state. In addition to the stochastic track irregularity 
(Lai et al., 2021), the material properties are also random 
fi elds, which  will aff ect the dynamic responses of the 
train bridge station (TBS). In addition, the comfort level 
and even running reliability of the train will be aff ected. 
On the basis of the conclusions of work of Liu et al. 
(2020a), the sensitivity of the bridge dynamic response 
to the random parameters of the bridge is much greater 
than that of track irregularity.

More and more focus has been placed on a more 
thorough numerical model that accounts for the 
unpredictability of parameter space in the present study 
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on numerical simulation of dynamic properties of the 
TBS. For example, Sofi  and Romeo (2018) analyzed 
the uncertainty structure from two diff erent perspectives 
of probability and non-probability, and compared the 
response variability of diff erent random models.  Jin et 
al. (2015, 2020) derived the dynamical equation of the 
TBS on the basis of the principle of virtual work, and 
analyzed the lateral random response of the system by 
using the pseudo excitation method. Perrin et al. (2013) 
proposed a method to generate more accurate track 
geometry by combining experimental measurement 
and numerical simulation. Xu et al. (2017, 2018, 2020) 
researched the dynamic response of the TBS using the 
probability density evolution method, and proposed a 
hybrid method to resolve the problem of the variation of 
the dominant frequency of the TBS and its subsystems, 
which can simultaneously realize the fi ne step and the 
coarse step. The calculation results are compared with 
Monte-Carlo simulation (MCS) to verify the accuracy. 
Based on the fi rst-order shear deformation theory, Chang 
(2014) carried out the stochastic analysis of a simply 
supported laminated composite bridge with random 
parameters, and studied the infl uence of diff erent vehicle 
speed and load driving frequency on the defl ection of 
the laminated composite bridge. Çavdar et al. (2010) 
proposed a stochastic fi nite element method (SFEM) for 
cable-stayed bridges under seismic action considering 
the stochastic process of  elasticity and density of 
material properties. Xin et al. (2019) modelled a train-
ballasted track-bridge system, and considered the 
randomness of geometric parameters, system damping 
and track irregularity, and analyzed the sensitivity of 
the system response to the diff erent factors. The method 
called Karhunen-Loève expansion-point estimation 
method (KLE-PEM) was applied to calculate a TBS 
model considering the randomness of track irregularity, 
and obtained the mean value and standard deviation 
(Std.D) of the dynamic model (Jiang et al., 2019; Liu et 
al., 2020a, 2020b, 2021a, 2021b). 

When a train passes across the HSR bridge, it may 
be thought of as an excitation source operating on the 
bridge′s structure. The resonance phenomenon will 
manifest in the TBS when the bridge′s inherent frequency 
is near to the train′s excitation frequency (Yang et al., 
2019, 1997; Yang and Yau, 2015, 2017; Zeng et al., 2016; 
Gharad and Sonparote, 2021). Consequently, it is of great 
practical value to study the limit value of various system 
parameters of HSR bridges and their infl uence on the 
dynamic characteristics of the TBS. Considering several 
kinds of factors, Xin et al. (2020) introduced stochastic 
analysis into the study of resonance characteristics of 
TBS, and expounded the statistical characteristics of 
stochastic resonance. Siringoringo and Fujino (2012) 
estimated the bridge′s natural frequency by using the 
acceleration response of the train using fi nite element 
(FE) simulation and compared it with the measured 
data of a full-scale short span simple supported bridges 
(SSB). 

The above literature describes a series of studies 
that have been conducted on a random TBS system and 
bridge resonance. According to Jiang et al. (2019), the 
variability of bridge parameters has a signifi cant impact 
on the natural vibration characteristics of the bridge, 
which will further aff ect the resonance speed of railway 
bridges, and the material parameters of the bridge are 
a random fi eld. Based on this, the resonance eff ect of 
TBS is analyzed herein considering the random fi eld of 
material properties.

To fully study the resonance phenomenon of bridges 
considering material random fi elds, a dynamic SFEM 
model of TBS was established,  in which the material 
properties such as modulus of elasticity and density were 
set as random processes following Gaussian random 
distribution, and the KLE was used to discretize them. 
The PEM was used to calculate the statistical moments 
of responses. The calculation accuracy of the dynamic 
TBS model was compared with the fi eld test data, and 
the statistical moments of structural responses were 
compared with those obtained by the MCS. Then, the 
displacement and acceleration responses of the TBS 
under diff erent conditions were further analyzed. Based 
on this random analysis method, the recommended limit 
values of vertical natural frequencies of a bridge with 
diff erent spans are proposed.

2  Stochastic fi nite element method 

2.1  Karhunen-Loève expansion (KLE)

The KLE is an orthogonal series expansion 
technique that works well with second moment random 
fi elds. KLE can expand the random fi eld into a cosine 
function and into the sum of a number of deterministic 
continuous functions and random variables when the 
uncertainty of the system follows a Gaussian random 
distribution (Ghanem and Spanos, 2003). Let the mean 
of the stochastic fi eld ω(x) be  x , then ω(x) can be 
expressed by Eq. (1).

     = +x x x                               (1)

where  x  is a stochastic process with the mean value 
of  x . The function of vector x is defi ned in the fi eld 
Ω, where θ belongs to the random event space D. If the 
covariance function of  x  is Cω(x1, x2), it must be a 
bounded, symmetric and nonnegative defi nite function 
according to the properties of the covariance function, 
and it can be expressed as the following formula,

     1 2 1 2
1

, = k k k
k

C x x x x   





               
(2)

where λk is the eigenvalue of covariance function and 
φk(x) is the eigenfunction. Equation (2) can be solved by 
the following equation,
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     1 2 1 1 2, dk k kC x x x x x   


  
       

(3)

Equation (3) can be solved by the Fredholm integral, 
and it can be expressed as the following equation,

   1 2 dk k klx x x  


                    
(4)

where kl  is a Kronecker delta function.
Therefore, the  x  can be transformed into a 

linear combination of φk(x) and the independent random 
variable system ξk(θ), which can be written as,

     
0

, = k k k
k

x x     



                 (5)

where ξk(θ) (k=1, 2, …) is the uncorrelated random 
variable, and E(ξk(θ))=0,

Thus, ω(x) can be expressed as:

       
0

, k k k
k

x x x


      


 
        

(6)

Usually, a fi nite dimension can be used to obtain the 
random fi eld within the permitted error range, and it can 
be expressed as,

0
( , ) ( ) ( ) ( )

M

k k k
k

x x x      


 
           

(7)

where M is the number of truncated items.

2.2  Point estimation method (PEM)

The random fi eld discussed in this study obeys 
Gaussian random distribution, so the variables in 
the expression of the KLE obey the standard normal 
distribution. Assuming that Y=h(x) is a continuous 
random variable and p(x) is its probability density 
function, its expectation and variance can then be 
obtained by the following formula:

       dE Y E h x h x p x x



                

(8)

     2 2
z2 ( ) [ ] dM D Y E Y h x p x x 




       

(9)

where x is the variable value; E is the math expectation 
and D is the variance; and  =  E Y . Mz2 denotes the 

second central moment.
There are many random variables in the expansion 

of the stochastic process, which can be simplifi ed by the 
dimension reduction method. h(x) can be transformed 
into a combination of one-dimensional variables h1(X) 
according to Rahman and Xu (2004):

         1

1

1
n

i i
i

h x h x h x n h c


           (10)

where n is the number of random variables; c denotes the 
reference value, and  h c  represents the corresponding 
response value when all variables are reference values.

Substituting Eq. (10) to Eqs. (8) and (9), the following 
equations can be obtained (Zhao and Ono, 2000),

       
1

1
n

i i
i

E Y E h X n h c


              (11)

        2 2
2

1

1 [ ]
n

z i i
i

M D Y E h X n h c 


       
(12)

where  i ih X  denote that all variables except the ith 
variable are references.

According to the above process and Gaussian 
integral theory, the following formula can be used for 
further calculation,

   GH,
GH,

1

2
a

l
i i i l

l

w
E h X h x



    
          

(13)

     22 GH,
GH,

1

2
a

l
i i i l

l

w
E h X h x 



          
 
(14)

where a is the number of Gaussian-Hermite integral 
points. xGH is the abscissa of the quadrature points, and 
wGH is the weight coeffi  cient corresponding to xGH. When 
the number of Gaussian integral points are three, fi ve 
and seven, the corresponding parameters are shown in 
Table 1, Table 2 and Table 3. In general, the reference 
value c can be set to zero.

 Table 1  Abscissa and weight coeffi  cient of three points Gauss 
               integral

 Integral point 1 2 3
xGH ‒1.22474 0 1.22474
wGH 0.29541 1.18164 0.29541

T able 2  Abscissa and weight coeffi  cient of fi ve points Gauss integral

Integral point 1 2 3 4 5
xGH ‒2.02018 ‒0.958572 0 0.958572 2.02018
wGH 0.0199532 0.393619 0.945309 0.393619 0.0199532
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2.3  Dynamic SFEM based on KLE-PEM

In engineering structures, due to some engineering 
deviations, materials exhibit random fi eld characteristics. 
In this study, the modulus of elasticity Eb and density ρb 
of the bridge structure are supposed to obey Gaussian 
random distribution (Wu and Law, 2010). Taking the 
SFEM of elastic modulus Eb for example, according to 
the above theory, the randomness of Eb can be expressed 
with KLE, and it can be written as

     b b b, =E x E x E x                 (15)

with

     b
1

, =
EM

i i i
i

E x x    



            
(16)

where  bE x  is the mean of modulus of elasticity and 
 bE x  is the random part of elastic modulus; ME is the 

number of truncated terms of the random expansion; and 
ξi is a combination of standard random variables.

According to the FE theory, the stiff ness matrix of 
the structural element can be expressed as

 e T e e
e b e, d

l
E x x  K B IB K K

       
(17)

with

 e T
e b edl

xE x K B IB                    
(18)

 e T e
e b e

1

, d
EM

i il
i

E x x 


 K B IB K  
        

(19)

 e T
e e di i il

x x  K B IB
            

(20)

where 
2

e
e 2

d
dx


NB , and eN  is the shape function matrix 

(Liu et al., 2022).
Similarly, the structural mass matrix of the element 

considering the material random fi eld can be obtained, 
which can be written as the following equations,

e e e M M M                        (21)

with
 e T

e edl
x A x M N N

                 
(22)

 e T e
e e

1

d
M

i il
i

x A x


 


 M N N M 
         

(23)

 e T
e edi i il

x A x  M N N
            

(24)

where  x  and  x  represent the mean part and 
random part in the density random fi eld, respectively; 
and A denotes the area of the section.

After obtaining the global stiff ness and mass 
matrices, the dynamic equation of the bridge can be 
expressed as the following formula,

       , , , ,r r r r     MX CX KX F 
    (25)

where  ,r F  denotes the force vector; and C denotes 
the damping matrix, which is assumed as the Rayleigh 
damping and can be expressed as,

  C M K                         (26)

where α=0.25 and β=0.5.
According to Eqs. (11) to (14), the values 

corresponding to each random variable can be brought 
into Eq. (25) one by one to obtain the response of interest, 
such as the midspan displacement response  l

iR t , and 
then all  l

iR t  can be summarized for calculation to 
obtain the statistics of SFEM system response. Note 
that when zero is chosen as the reference point value 
c, except for the i-th i , all other i  are equal to zero, 
which means that Eqs. (17) and (21) can be transformed 
as,

e e e

e e
i  




K K K

M M



                      
(27)

or

e e

e e e
i

 


 

K K

M M M                     
(28)

The detailed process is shown in Fig. 1. It can be 
seen that when the elastic modulus and density are 
independent, the calculation times Nc of the dynamic 
model that SFEM needs to call is

 c r 1 1N N a                        (29)

Table 3  Abscissa and weight coeffi  cient of seven points Gauss integral

Integral point 1 2 3 4 5 6 7
xGH 2.65196 1.67355 –0.81629 0 0.81629 1.67355 2.65196
wGH 9.71781×10-4 5.45456×10-2 0.425607 0.810265 0.425607 5.45456×10-2 9.71781×10-4
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where Nr denote the total number of random variables; 
that is, the total number of truncated items.

3  Train-bridge model

3.1  Model establishment 

As shown in Fig. 2, taking the SSB as an example, 
when the train passes over the bridge, the train, track 
and bridge will have corresponding responses that then 
aff ect the running state of the whole system. In general, 
there are various uncertain factors in the TBS. In the 

research of Liu et al. (2020), the responses of SSB 
considering track irregularity and structural parameters 
were analyzed, and the results showed that when the 
research object is the bridge, the randomness of track 
irregularity can be ignored, and only using deterministic 
irregularity samples can obtain accurate enough results. 
The research objects of the cases were mainly the bridge 
structure, so only the random parameters of the bridge 
structure are considered.

The TBS model is shown in Fig. 3. Based on the 
principle of conservation of potential energy in a 
dynamic system, the motion equation of the TBS can be 
derived as:

Fig. 1  Flowchart of SFEM for calculating TBS

 Fig. 2  Train passing through simply supported bridge
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(30)

where M, C and K denote mass, damping and stiff ness 
matrices, respectively; the subscripts tt, rr and bb denote 
the train, track and bridge; the subscripts tr and rt 
denote the coupled part of train and rail; X , X  and X 
denote acceleration, velocity and displacement vectors, 
respectively; and the subscripts t, r and b denote train, 
rail and bridge, respectively. F denotes the force vectors; 
among them, Ft includes the dead weight of the train 
and the wheel rail interaction force. In the model, the 
wheel rail is always closely attached, and the wheel rail 
interaction force is the excitation of track irregularity, 
which is calculated by using a linear model. Taking one 
wheel set as an example, the wheel rail force at time of t 
can be calculated by the following formula,

       p p wF t k u t c u t m u t   
          (31)

where kp and cp denote stiff ness and damping value of 
primary suspension, respectively; mw denotes the mass of 
wheelset; and  u t ,  u t  and  u t  are the irregularity, 
fi rst order derivation of track irregularity, and second 
order derivation of track irregularity acting on the wheel 
set at time t, respectively. More detailed information can 
be found in Liu et al. (2020b).

3.2  Model verifi cation

Track irregularity samples were generated by 
German low interference track spectrum. The numerical 
simulation results of the SSB were compared with 
the fi eld measured data for validation. The measuring 
instrument was the image by interferometric survey-
frequency structures (IBIS-FS) and the measured bridge 
was the Zhuzhou Xiangjiang bridge on the Wuhan 
Guangzhou passenger dedicated line. The IB IS-FS 
can monitor the static and dynamic defl ection of the 
bridge. The components of the IBIS-FS include a PC 
as the user interface, a radar head with two antennas 
(receiving signals) and a tripod, as shown in Fig. 4. 
The IBIS-FS radar points to the bottom surface area of 
the measurement position on the bridge deck, and the 
equipment measures the displacement of the target point 
illuminated by the electromagnetic beam emitted by 
the antenna. The device will measure the displacement 
in the viewing direction in all range bins located in the 
irradiation area. Then the vertical dynamic deformation 
can be obtained through the corresponding angle 

relationship. The measured section was a SSB with the 
span of 32 m. The train had sixteen carriages, and the 
mid-span displacement of the bridge was tested. The 
comparison results are shown in Fig. 5.

It can be seen that the three groups of test results 
are very close to the numerical calculation results. Since 
the train model was composed of sixteen carriages, there 
were 15 peaks in the dynamic response curves. The 
average values of three groups of test results at each 
of fi ve peaks are shown in Table 4, where η is the ratio 
of the numerical result to the measured average result 
and the time column shows the time corresponding to 
the peak displacement. The three groups of test data are 

  Fig. 3  TBS model

 Fig. 4  Survey site

Fig. 5 Comparison of bridge mid-span displacement time 
             history curves
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discrete, and because the TBS itself is a random system, 
the load of each train is diff erent, and the TBS is excited 
by random track irregularity. The ratio of the calculated 
results to the average measured data is in the range of 
0.95–1.13, which indicates that the numerical model has 
a very high accuracy. The variation trend of the bridge 
mid-span displacement time history curve is completely 
consistent with the measured data.

3.3  Calculation effi  ciency and accuracy

An instance of a HSR train passing through a 32 m 
standard SSB was examined to examine the eff ectiveness 
and accuracy of KLE-PEM in the calculation of the 
TBS model while taking the spatial random fi eld of the 
material properties into consideration. The German ICE3 
HSR train was adopted, and the parameters are shown in 
Table 5, and the train speed was 300 km/h. The bridge 
had a single span of 32 m and was simply supported. The 
track slab gave mass and stiff ness to the bridge. Other 
specifi c values are presented in Table 6.

In rai lway bridge dynamics, there are many random 
variables, such as concrete elastic modulus, concrete 
density, ballast density weight, dimensions of the member, 
and so on (Rocha et al., 2012, 2016). At present, China′s 
HSR bridges are basically prefabricated components, 
and their dimensional variability is almost negligible. 
In addition, according to the relevant research results 
(Jiang et al., 2019; Liu et al., 2020a) for the materials 
of the bridge, the dynamic characteristics of the TBS is 
most sensitive to the randomness of the elastic modulus 

and density. Therefore, in this numerical calculation, the 
modulus of elasticity Eb and density ρb are set to obey 
Gaussian random fi elds, and the coeffi  cients of variation 
are 0.06 and 0.04, respectively (Liu et al., 2020a). The 
covariance function of the Gaussian random fi eld is (Wu 
and Law, 2010):

   1 2 a/2
1 2, e x x lC x x                   (32)

where la denotes the correlation length, and is equal to 5.
The number of truncation terms was ten. Considering 

there were two kinds of random fi elds, there were 
twenty independent random variables in the system. 
The random system responses with three, fi ve and seven 
integration points were calculated, and named as KLE-
PEM-3, KLE-PEM-5 and KLE-PEM-7, respectively. 
The random responses of the system obtained from the 
MCS with 20,000 calculations were regarded as the 
exact solution to validate the result of KLE-PEM, and 
the results are shown in Fig. 6 and Fig. 7. The relative 
error RE was adopted to evaluate the precision of KLE-
PEM, which can be expressed as 

KLE-PEM MCS
E

MCS
100%

R R
R

R


 
            

(33)

where RKLE-PEM is the result of KLE-PEM, RMCS is the 
result of MCS. 

Table 4  Peak value of midspan displacement obtained from numerical and test

Time (s) Numerical result (mm) Test 1 (mm) Test 2 (mm) Test 3 (mm) Average (mm) η
1.84 ‒0.770 ‒0.710 ‒0.762 ‒0.746 ‒0.739 1.04
2.75 ‒0.781 ‒0.752 ‒0.794 ‒0.752 ‒0.766 1.02
3.65 ‒0.737 ‒0.721 ‒0.759 ‒0.771 ‒0.751 0.98
4.54 ‒0.778 ‒0.759 ‒0.769 ‒0.696 ‒0.741 1.05
5.44 ‒0.724 ‒0.718 ‒0.702 ‒0.765 ‒0.728 0.99

 Table 5  Parameters of ICE3 model

Parameters Symbol Unit Motor car Trail car
Car body mass mc kg 4.56×104 4.9×104

Bogie mass mt kg 4.4×103 2.7×103

Wheel mass mw kg 2.4×103 2.4×103

Moment of inertia of car body Jc kg·m2 2.397×106 2.576×106

Bogie moment of inertia Jt kg·m2 5.42×103 3.33×103

Half wheelbase Lt m 1.25 1.25
Bogie half distance Lc m 8.69 8.69

Primary suspension stiff ness kp N/m 1.124×106 6.9×105

Secondary suspension stiff ness ks N/m 5.61×105 6.03×105

Primary suspension damping cp N·s/m 8.8×103 5.4×103

Secondary suspension damping cs N·s/m 2.7×104 2.9×104
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According to Fig. 6(a), when the train with eight 
carriages passed the bridge, there were seven wave 
peaks in the mean value (mean) response process. 
The average relative error analysis of the midspan 
displacement response from 1.5 s to 3.5 s shows that the 
average relative error of MCS and KLE-PEM-3, KLE-
PEM-5, KLE-PEM-7 is 0.015%, 0.015% and 0.017%, 
respectively. Figure 6(b) gives the standard deviation 
value (Std.D) of the bridge displacement. The calculated 
results of MCS are slightly higher than those of KLE-

PEM at the curve peaks, and the average errors 
from 1.5 s to 3.5 s are 1.259%, 1.258% and 1.257%, 
respectively. The calculated data of the two methods are 
very similar.

Figure 7(a) shows the mean value of the time history 
curve of a car body acceleration. The average relative 
errors of the two calculation methods in 1.5 s to 3.5 s 
are 0.339%, 0.339% and 0.466%, respectively. Figure 7(b) 
indicates that the Std.D of the car body acceleration 
increases when the train enters the bridge until it reaches 

Table 6  Parameters of rail and bridge

Parameters Symbol Unit Value
Rail section area Ar m2 7.6×10-3

Moment of inertia of rail section Ir m4 2×3.22×10-5

Elastic modulus of rail Er N/m2 2.06×1011

Rail density Dr kg/m3 7.85×103

Cross section area of bridge Ab m2 7.32
Moment of inertia of bridge section Ib m4 12.74

Elastic modulus of bridge Eb N/m2 3.45×1010

Bridge density Db kg/m3 2.5×103

Damping ratio ζ - 0.02
Vertical stiff ness of bridge bearing kbb N/m 6.3×1012

Vertical damping of bridge support Cbb N·s/m 2.04×105

First natural frequency ω1 Hz 7.5301
Second natural frequency ω2 Hz 30.04

(a)

(b)
 Fig. 6 Random displacement response of bridge midspan:
             (a) mean; (b) Std.D

(a)

(b)
 Fig. 7 Random acceleration response of train: (a) mean;
             (b) Std.D
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the peak value of 1.440 × 10-6 m/s2 in 1.712 s. The 
average relative errors of the two methods in 1.5 s to 
3.5 s are 1.227%, 1.224% and 1.203%, respectively.

According to the above results, the number of 
Gaussian integration points has little eff ect on the 
calculation accuracy, and the calculation results of MCS 
and KLE-PEM are very similar. To analyze the accuracy 
of the calculation method more intuitively, the errors of 
KLE-PEM-3, KLE-PEM-5 and KLE-PEM-7 at the times 
of 1.7 s and 2.2 s are shown in Table 7 and Table 8. It can 
be seen that KLE-PEM has a very high accuracy with 
three Gaussian integral points. On the same computer 
with 16 G memory and 3.0 GHz dominant frequency, the 
calculation time of the conventional MCS method with 
20,000 calculations was about 16.8 hours; for the KLE-
PEM, when the number of Gaussian integration points 
were three, fi ve and seven, the calculation time was 62 s, 
116 s and 172 s, respectively, which is much faster than 
the traditional MCS method. In the subsequent analysis, 
three integral points were used for calculation.

3.4  Responses of TBS at various speeds

According to the rule of three-times-standard 
deviation value, the probability of datum distribution 
in the range of [μ-3σ, μ+3σ] is 99.74%, where μ and 
σ denote mean value and standard deviation value, 
respectively, and in the range of [μ-3σ, μ+3σ], the 
probability of random events is 99.74%, which can 
be approximately considered to cover all possible 
situations. In the subsequent analysis, the maximum of 
absolute values of 3   and 3   is regarded as the 
maximum probability value.

According to Fig. 8, the results of dynamic response 
considering the uncertainty of bridge material properties 
are evidently larger than those of deterministic results, 
and the change patterns of the curves of the two 
calculation results are basically the same. Without 
taking into account the random infl uence of the 
material properties, the results indicate that the vertical 

acceleration distribution of the bridge is 0.24 m/s2 to 
2.03 m/s2 and the vertical displacement is 1.04 mm to 
1.63 mm; however, when considering the randomness of 
material properties, the results indicate that the vertical 
acceleration distribution is 0.26 m/s2 to 2.27 m/s2 and the 
vertical displacement is 1.16 mm to 1.84 mm; both are 
larger than those of the deterministic model.

The expansion coeffi  cient α is used to express 
the increase range of the calculation results of the 
system dynamic response after considering parameter 
uncertainty, and the calculation formula is as follows 

(a)

(b)
 Fig. 8 Probability maximum and deterministic maximum 
    response of bridge midspan at various speeds: 
             (a) displacement; (b) acceleration

Table 7  Relative error at 1.7 s

Method MCS KLE-PEM-3 Relative error
Mean of bridge displacement (mm) ‒1.0977 ‒1.0979 0.02%
Std.D of bridge displacement (mm) 0.0372 0.0369 0.81%

Mean of train acceleration (m/s2) 0.1260 0.1260 0
StD.d of train acceleration (m/s2) 1.362 1.344 1.32%

 Table 8  Relative error at 2.2 s

Method MCS KLE-PEM-3 Relative error
Mean of bridge displacement (mm) ‒1.0994 ‒1.0995 0.01%
Std.D of bridge displacement (mm) 0.0407 0.0399 1.96%

Mean of train acceleration (m/s2) ‒0.2452 ‒0.2452 0
Std.D of train acceleration (m/s2) 0.9273 0.9158 1.24%
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to show how the structural dynamic response changes 
after taking the infl uence of parameter randomness into 
account,

u c

c
100%

R R
R




 
                    

(34)

where Rc represents the maximum value of the time 
history response of the system ignoring randomness, 
and Ru denotes the maximum value of the time history 
response of the maximum probability value.

Compared with the deterministic results, the average 
expansion coeffi  cients of the two response uncertainties 
are 13.05% and 12.51% in this speed range.

The probability maximum and deterministic 
maximum response of the car body acceleration at 
diff erent speeds are shown in Fig. 9. The calculation 
distribution range of the two calculation results is 
0.18 m/s2 to 0.40 m/s2 for train speeds between 100 km/h 
and 400 km/h. The maximum expansion coeffi  cient 
of the car body acceleration is 0.23 percent, which is 
much smaller than that of the bridge. It shows that the 
sensitivity of the bridge response to material randomness 
is much greater than the sensitivity of the train response 
to material randomness.

4  Resonance analysis based on KLE-PEM

4.1  Dynamic coeffi  cient index

A measure known as the dynamic coeffi  cient is 
used to defi ne the proportionate relationship between 
a structure′s maximal dynamic reaction and its static 
response. The defi nition of a dynamic coeffi  cient index 
  for railway bridges supporting train loads is as 
follows:

d

s







                             
(35)

where δd is the maximum response of midspan 
displacement caused by train load moving on the 
bridge; and δs is the maximum response of the midspan 
displacement due to the static train load.

The dynamic coeffi  cient is related to the bridge′s 
natural frequency and the train′s excitation frequency, 
and the excitation frequency of the train depends on the 
running speed and location arrangement of the wheel 
sets. At present, the calculation formula of the dynamic 
coeffi  cient of HSR and an intercity railway bridge in 
China is as follows:

b

1.44 0.82
0.2L

  
                  

(36)

where Lb is the span of the SSB.
For China′s HSR, the design criterion stipulated in 

the code is that the bridge dynamic response caused by 
the train does not exceed the bridge response caused by 
design load. Therefore, the calculation method of the 
allowable dynamic coeffi  cient of the HSR bridge can be 
obtained as follows:

ZK
allowable

train

load effect
load effect







                  
(37)

where β is calculated by Eq. (36).
The allowable dynamic coeffi  cients of simply 

supported box girders with spans of 24 m, 32 m and 
40 m under diff erent loads and train types are shown in 
Table 9. CRH2 multiple units has been widely used in 
China, therefore it is selected herein as the train model 
for dynamic analysis. The parameters of the CRH2 train 
are shown in Table 10.

4.2  Infl uence of random fi eld of material properties 
       on dynamic coeffi  cient

For short and medium span simply supported 
bridges, the excitation frequency fv of the train running at 
diff erent speeds can be calculated according to Eq. (38):

3.6v
v

vf
d

                              (38)

where v denotes the train speed, and dv denotes the 
carriage spacing.

According to Eq. (38), when the carriage spacing is 
fi xed, the excitation frequency of the train to the bridge 
is only related to the running speed. According to the 
resonance theory, while the train′s exciting frequency is 

Fig. 9 Probability maximum and deterministic maximum 
             response of car body acceleration at various speeds

Table 9  Allowable dynamic coeffi  cient of diff erent span

ZK load ICE2 CRH2 CRH3
24 m 1.13 2.69 3.26 2.68
32 m 1.06 2.55 3.65 3.00
40 m 1.06 2.55 3.65 3.00
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equivalent to 1/n (n=1, 2, 3, …) of the bridge′s natural 
frequency, the bridge structure will produce resonance 
or super-harmonic resonance. When the bridge′s natural 
frequency is fb, the n-order super-harmonic resonance 
velocity vv,n can be obtained by the following formula 
(Yang et al., 2004),

, b
3.6 v

v n
d

v f
n


                     

(39)

The dynamic coeffi  cients related to the vertical 
vibration frequency of various bridges are estimated as 
the train travels through a 32 m SSB using the CRH2 
HSR train as an example. The vertical frequencies of SSB 
were 5.13 Hz, 6.00 Hz, and 7.51 Hz, respectively, which 
were the natural frequencies commonly used in railway 
bridges. Meanwhile, the train speed range was 50 km/h 
to 600 km/h, and although the current speed is less than 
350 km/h, the calculation range was made larger to meet 
the future development needs. The dynamic coeffi  cient 
curves of a bridge with various vertical natural frequencies 
are shown in Fig. 10 for a speed range of analysis of 
every 10 km/h, both with and without taking into account 
the randomness of material properties. It can be seen that 
under the deterministic analysis, the train running speed 
that makes the dynamic coeffi  cient of SSB with vertical 
natural frequency of 5.13 Hz reach the maximum peak 
is 460 km/h, respectively. According to Eq. (38), and at 
this time, the excitation frequency of the train is 5.11 Hz, 
which is close to the natural vibration frequency of the 
bridge. The fi rst three order super-harmonic resonance 
speeds while the train is running and the corresponding 
order super-harmonic resonance speed in Fig. 10 are 
compared, as shown in Table 11. The comparison results 
show that the simulation results are highly consistent 
with the theoretical analysis results. Furthermore, the 
dynamic coeffi  cient of the girder body at the second and 
higher order super-harmonic resonance velocity is much 
smaller than that of resonance. In addition, the dynamic 
coeffi  cient of the girder body considering the uncertainty 

of structural parameters is more than 1.1 times larger than 
the result of the deterministic calculation, and the train 
running speed which causes girder body resonance also 
decreases to a certain extent. The dynamic coeffi  cients of 
SSBs with natural frequencies of 6.00 Hz and 7.51 Hz show 
the same change law as the speed of the train changes.

4.3  Resonance analysis

4.3.1  Infl uence of natural frequency of bridge and train 
          speed on resonance characteristics

The natural frequency of the SSB is expressed by 
Eq. (40).

b
b

mf
L

   
                           

(40)

where m is the fundamental frequency coeffi  cient and Lb 
is the SSB′s span.

By modifying the section form of a simply supported 
bridge, the natural frequency can be altered while the 
design weight of a HSR bridge is fi xed. The relationship 
between bending stiff ness and the vertical natural 
frequency of the SSB is depicted in Fig. 11. The increase 
in bending stiff ness leads to an improvement in the 

Table 10  CRH2 model parameters

Parameters Symbol Unit Motor car Trail car
Car body mass mc kg 2.88×104 2.88×104

Bogie mass mt kg 2.6×103 2.6×103

Wheel mass mw kg 1.97×103 1.97×103

Moment of inertia of car body Jc kg·m2 1.441×106 1.441×106

Bogie moment of inertia Jt kg·m2 1.424×103 1.424×103

Half wheelbase Lt m 1.25 1.25
Bogie half distance Lc m 8.75 8.75

Primary suspension stiff ness kp N/m 1.176×106 1.176×106

Secondary suspension stiff ness ks N/m 1.764×105 1.764×105

Primary suspension damping cp N·s/m 1.96×104 1.96×104

Secondary suspension damping cs N·s/m 9.8×103 9.8×103

 Fig. 10   Dynamic coeffi  cients under deterministic and uncertain 
             analysis
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bridge′s vertical natural frequency. Additionally, for a 
given bending stiff ness, the natural frequency decreases 
with increasing span size.

To further explore the infl uence of the bridge′s 
natural frequency and train′s running speed on the 
dynamic characteristics of the SSB, dynamic coeffi  cients 
corresponding to diff erent bridge vertical natural 
frequency are calculated when the CRH2 train passes 
through 24 m, 32 m and 40 m span SSB at diff erent 
speeds, and the resulting curves are shown in Fig. 12. 
Several conclusions can be observed: (a) when the natural 
frequency is not in the resonance region, the dynamic 
coeffi  cient corresponding to the same vertical natural 
frequency increases with the improvement of the speed 
of the train; (b) the higher the train speed, the higher 
the vertical natural frequency and dynamic coeffi  cient 
of the girder when resonance occurs. Therefore, 
increasing the bridge′s vertical natural frequency can 
eff ectively improve the resonance speed and reduce 
the dynamic coeffi  cient of the train traveling at a fi xed 
speed; (c) when the train with a fi xed speed causes the 
resonance of the simply supported bridge, the vertical 
natural frequency improves with the increase of the 
span, while the dynamic coeffi  cient diminishes with the 
improvement of the span; and (d) when the train′s speed 
is constant, the dynamic coeffi  cient of the girder with 
n-order super-harmonic resonance does not necessarily 
decrease with the increase of order, but it is far less than 
that of resonance.

4.3.2 Research on natural frequency limit of SSB at 
         design speed of 400 km/h

Figure 13 gives the maximum dynamic coeffi  cient 
βmax curve of the girder body under diff erent vertical 
vibration frequencies within the range of 200 km/h–
400 km/h. According to Table 9, the allowable dynamic 
coeffi  cients of the CRH2 train running on 24 m, 32 m and 
40 m span simply supported bridges are 3.26, 3.53 and 
3.65, respectively. It can be seen that with the increase 
of vertical natural frequency, the maximum dynamic 
response curve of the SSB has experienced three stages:

(1) On the left side of the sensitive range: when the 
resonance velocity of the bridge is vv,1=3.6dv  fb<400 km/h, 
the bridge will resonate in the design speed, and the 
maximum dynamic coeffi  cient of the simply supported 
bridge changes slightly and increases slowly with the 
increase of the vertical natural frequency.

(2) In the sensitive range: when the resonance velocity 
of the bridge is vv,1=3.6dv  fb, it is close to 400 km/h, and 
the peak value of the SSB′s response is directly related 
to the vertical natural frequency. In this range, increasing 
the vertical natural frequency can eff ectively reduce the 
maximum dynamic coeffi  cient.

(3) On the right side of the sensitive range, when the 
resonance velocity is vv,1=3.6dv  fb>400 km/h, the bridge 
will not resonate in the design speed. The SSB′s dynamic 
response is small, and almost no longer aff ected by the 
vertical natural frequency.

When the train′s maximum design speed is 400 km/h, the 
vertical natural frequency of the 24 m span SSB enters 
the sensitive range at about 110/L Hz, and the peak value 
of the maximum dynamic coeffi  cient is about 7.78. The 
maximum dynamic coeffi  cient is about 150/L Hz when 
the vertical vibration frequency of the bridge exceeds the 
sensitive range, and the maximum dynamic coeffi  cient of 
the girder is less than 2.38. The sensitive range of vertical 

 Table 11  Super-harmonic resonance parameters of bridge with natural frequency of 5.13 Hz

Order of super- harmonic resonance 1 2 3
Theoretical speed (km/h) 461.7 230.9 153.9
Uncertainty speed (km/h) 450 230 150
Certainty speed (km/h) 460 230 150

Uncertainty dynamic coeffi  cient 4.55 1.42 1.57
Certainty dynamic coeffi  cient 3.97 1.26 1.34

ε1 0.975 0.996 0.975
ε2 0.996 0.996 0.975
ζ 1.15 1.13 1.17

Note: ε1 and ε2 represent the ratio of the results of uncertainty analysis and certainty analysis to the theoretical 
velocity results respectively, and ζ represents the ratio of the dynamic coeffi  cients of uncertainty analysis and 
certainty analysis.

Fig. 11 Relationship between bending stiff ness and natural 
              frequency
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(a) 200 km/h (b) 250 km/h

(c) 300 km/h (d) 350 km/h

(e) 400 km/h (f) 450 km/h

Fig. 12  Dynamic coeffi  cients of beams with diff erent vertical natural frequencies

Fig. 13  Maximum dynamic coeffi  cient of beam under diff erent natural frequencies: (a) 24 m; (b) 32 m
(a) (b)
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natural frequency of the 32 m span simply supported 
bridge is about 145/L Hz–170/L Hz. The peak value of 
the maximum dynamic coeffi  cient in the sensitive area 
is about 3.86, and the maximum dynamic coeffi  cient is 
stable below 2.12 beyond the sensitive area.

For the 40 m span simply supported bridge, because 
the dynamic coeffi  cient under diff erent train running 
speeds is far less than the allowable value 3.65, its safety 
can be guaranteed in the common range of the vertical 
natural frequency; therefore, the lower limit of natural 
frequency of this span bridge can be appropriately 
relaxed, and 3 Hz in the Chinese code is recommended.

In summary, when the design speed of train is 400 km/h, 
the lower limit of vertical natural frequencies of the 24 m 
and 32 m span simply supported concrete bridges of 
HSR is 150/L (6.25 Hz) and 160/L (5.00 Hz), which 
can eff ectively reduce the dynamic response of simply 
supported concrete bridges.  A comparison between the 
results obtained and those in diff erent specifi cations 
is shown in Table 12. Since there is no requirement of 
more than 400 km/h in the current specifi cation, the 
comparison is only for trains with speeds of 350 km/h 
and below. It can be found that the lower limit value 
calculated in this study is close to the Japanese Code 
and greater than the current Chinese specifi cation and 
European specifi cations, indicating that the existing 
natural frequency limit value in the specifi cation is not 
applicable to the operation of 400 km/h speed-up trains, 
and should be adjusted accordingly.

5  Conclusions

To analyze the natural frequency limit of HSR 
bridges, a coupled vibration model of the train-bridge 
considering the material parameters random fi eld is 
established. The train model is established by a mass-
spring-damping system and the SSB is modeled by the 
SFEM method. The elastic modulus, density and other 
structural parameters of the bridge are set as random fi elds 
following a Gaussian process, which are discretized by 
KLE. Based on the SFEM, the corresponding stiff ness, 
mass and damping matrices are constructed, and the 
Newmark-β method is adopted to resolve the dynamic 
model. Then the statistical moment of the response data 
of the train and the bridge are output by PEM. There are 
several main conclusions:

(1) KLE-PEM-3 can accurately calculate the SFEM 

dynamic problems, and the computational effi  ciency 
is more than two orders of magnitude higher than the 
traditional MCS.

(2) Considering the uncertainty analysis of the spatial 
random fi eld of structural parameters, the dynamic 
response of a simply supported bridge is more than 12% 
larger than that of a deterministic analysis, and the train 
running speed decreases to a certain extent when the 
bridge resonates.

(3) The dynamic response caused by resonance can 
be eff ectively prevented by avoiding the bridge′s vertical 
frequency from getting close to the excitation frequency 
of the train, and the improvement of the vertical vibration 
frequency of the HSR bridge can eff ectively improve the 
resonance speed and diminish the dynamic coeffi  cient of 
the train running at a certain speed.

(4) When the design speed of the train is 400 km/h, 
the dynamic response of the SSB can be eff ectively 
reduced by limiting 150/L (6.25 Hz) and 160/L (5.00 Hz) 
under the vertical natural vibration frequency of SSB 
with span of 24 m and 32 m. The lower limit value is not 
required for SSB with a span of 40 m.
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