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Abstract: This paper proposes a risk analysis framework for substation structures based on reliability methods. Even 
though several risk assessment approaches have been developed for buildings, detailed risk analysis procedures for 
infrastructure components have been lacking in prior studies. The proposed framework is showcased by its application to a 
system of interconnected structures at a power substation in Tehran. Finite element models of structures are developed and 
validated in accordance with previous experiments. The uncertainties in the material, mass, and geometric properties of 
structures are described by random variables that are input to the fi nite element model. An artifi cial ground motion model is 
employed to comprehensively consider uncertainty in ground motion. Monte Carlo sampling is subsequently conducted on 
the library of probabilistic models. The analysis resulted in the loss distribution in the life cycle of structures. Additionally, 
the loss associated with six earthquake scenarios having specifi c magnitudes and return periods is computed. The application 
provides insight into the most vulnerable equipment in the considered system. Furthermore, introduced risk measures can 
guide stakeholders to make risk-based decisions to optimize design or prioritize a retrofi t of infrastructure components under 
conditions of uncertainty.
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1    Introduction

This paper puts forward an innovative framework 
for detailed seismic risk analysis of power substation 
structures based on reliability methods. The risk analysis 
in this context involves estimating the exceedance 
probability (EP) of loss, known as the loss curve. Power 
substation equipment incurred severe damage from 
previous earthquakes (Alessandriet al., 2015; Gökçe et 
al., 2019). In accordance with earthquake reconnaissance 
reports (Apostolakis et al., 2007; Azevedo et al., 2010; 
Kongar et al., 2017; Kwasinski et al., 2014), brittle 
material, slenderness, and huge mass are the main reasons 
for the notable vulnerability of these structures under 
ground motion excitations. Damage to equipment may 
interrupt the functionality of the substation, which in turn 
leads to disruption of emergency response, business, and 
recovery procedures. Although several risk assessment 

methodologies have been developed for various types of 
buildings — see, for instance, FEMA-P58 (2012) and 
Ansal et al. (2009), D′Ayala and Ansal (2012), Mahsuli 
and Haukaas (2013b), Narjabadifam et al. (2021), 
Palanci (2019), Papagiannopoulos et al. (2012), Shang 
et al. (2020) — risk analysis procedures for substation 
structures and other infrastructure components have 
been inadequately investigated in the literature (Zheng 
and Li, 2022). Thus, developing a comprehensive risk 
analysis procedure for infrastructure components, 
especially electrical equipment, is of great importance.  

Several risk assessment methodologies have been 
developed at the regional and structural levels in recent 
years. The Applied Technology Council proposed the 
ATC-13 approach (1985), the fi rst comprehensive 
procedure for seismic damage evaluation at the regional 
level. This approach used the subjective opinions of 
experts to estimate damage and loss at various values 
of modifi ed Mercalii intensity. Two decades later, the 
Federal Emergency Management Agency (FEMA) of 
the U.S. proposed the HAZUS methodology (FEMA, 
2003), which employed the capacity spectrum method. 
Unlike the ATC approach, this methodology accounts 
for the mechanical properties of structures in damage 
evaluation. Cornell and Krawinkler (2000) suggested a 
risk analysis procedure based on conditional probability 
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models and the total probability theorem, presented in 
greater detail by Moehle and Deierlein (2004). This 
procedure utilizes probabilistic models representing the 
distribution of hazard, response given hazard, damage 
given response, and loss given damage. These models 
were combined using the total probability theorem, 
forming a triple integral, entitled PEER triple integral. 
Yang et al. (2009) solved this integral by using a 
sampling-based procedure to obtain loss distribution. 
This procedure is then incorporated in the FEMA-P58 
(2012) as a detailed risk analysis methodology for 
buildings. Mahsuli and Haukaas (2013b) proposed an 
alternative procedure wherein a chain of interacting 
probabilistic models are subjected to a reliability analysis 
to estimate the exceedance probability of loss, i.e., the 
loss curve. They demonstrated its application in the 
Vancouver, Canada, metropolitan region. In the regional 
risk analysis, simple models were utilized to estimate the 
EP of loss. For instance, the intensity of an earthquake is 
computed by using ground motion prediction models; or, 
simple regression models can predict the overall response 
of structures. Thus, this procedure provides a rough 
estimate of loss. The present study extends reliability-
based risk analysis to a more detailed level, by which 
more refi ned models are employed to simulate ground 
motion and the response of infrastructure components. 

The combinations of reliability and fi nite element 
methods have been extensively investigated in the 
literature (Altieri et al., 2018; Der Kiureghian and 
Zhang, 1999; Jahangiri and Shakib, 2020; He and Li, 
2004; Mohsenian et al., 2021; Shang et al., 2020; Sudret 
and Der Kiureghian, 2002), and seismic reliability-
based design approaches are proposed for various 
structural systems (Castaldo et al., 2016, 2017, 2018). 
Reliability-based performance evaluation of structures 
in the literature involves a limit state function that 
defi nes the failure state of the component. The expected 
cost is obtained by summing construction costs with the 
multiplication of the failure probability by the cost of 
failure. In contrast, this study considers the total cost as a 
random variable whose probability distribution depends 
on numerous probabilistic models and random variables 
predicting the hazard, response, damage, and loss.    

Seismic damage assessment of power infrastructure 
components has been the subject of numerous studies, 
(Baghmisheh and Estekanchi, 2020, 2021; Bai et al., 
2017; Mohammadi et al., 2012; Mohammadi and 
Tehrani, 2014; Wen et al., 2019; Yang et al., 2021) among 
others. Zareei et al. (2017) investigated the vulnerability 
of high-voltage circuit breakers with the use of bivariate 
fragility models. Paolacci et al. (2014) developed an 
analytical fragility curve for a 380 kV disconnect switch 
and carried out a sensitivity analysis to determine 
the eff ects of model parameters. Baghmisheh and 
Estekanchi (2019) developed analytical fragility models 
for four interconnected components of substations. They 
examined the eff ects of conductors between equipment 
on the amplifi cation of responses and the fragility of 

that equipment. Zheng et al. (2017) investigated the 
progressive collapse of steel power transmission towers 
under ground motion. Moreover, probability of collapse 
was evaluated based on fragility curves. Yang et al. (2017) 
addressed the failure probability of towerline systems 
using incremental dynamic analysis. Baghmisheh and 
Mahsuli (2021) examined seismic damage patterns and 
the collapse probability of concrete power poles by 
means of the dynamic analysis of detailed fi nite element 
models. Even though estimating seismic damage and the 
subsequent failure probability of power components has 
been broadly discussed, a comprehensive approach for 
evaluating seismic loss of equipment is missing from the 
literature.        

This study aims to develop a detailed reliability-
based risk analysis framework for substation equipment 
that explicitly accounts for all substantial uncertainties 
involved in loss estimation. Even though few studies 
have investigated detailed seismic risk analysis of 
buildings by using reliability methods (Aghababaei and 
Mahsuli, 2018), the application of reliability methods 
to detailed seismic risk analysis of infrastructure 
components is presented in this study for the fi rst time. 
Although some classic reliability analyses have been 
conducted to compute the failure probability of substation 
structures (Bagen et al., 2019; Kulhawy et al., 2007; Li 
et al., 2019), none of them extended the application of 
reliability methods to explicitly calculate the probability 
distribution of loss. The proposed procedure utilizes 
random variables and probabilistic models to account 
for uncertainty in hazard, response, and loss. In contrast 
to the approach based on the total probability theorem, 
probabilistic models are not conditional herein. That is, 
they receive realizations of random variables as input 
and produce a measurable physical parameter rather 
than a probability. This enables the employment of 
fi nite element models in a probabilistic framework. To 
conduct risk analysis, the limit state function is defi ned 
on the monetary loss of equipment. Then, a chain of 
interacting probabilistic models is constructed and 
subjected to Monte Carlo sampling to estimate the EP 
of loss. This framework is showcased by its application 
to a system of interconnected structures at a power 
substation in Tehran. Furthermore, this study discusses 
various risk measures derived from the loss curve. Each 
of these measures can be used to optimize the design 
of infrastructure components in accordance with the 
attitude of the designer toward risk, i.e., risk-neutral or 
risk-averse.   

The paper begins by describing the risk analysis 
approach. Then, it proceeds to introduce probabilistic 
models used in detailed risk analysis. Application of 
the proposed procedure in the seismic risk analysis 
of a system of substation equipment under various 
earthquake scenarios is subsequently discussed. The 
paper concludes by introducing four risk measures to 
summarize risk analysis results that yield insight into 
diff erences among various measures.  
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2   Risk analysis approach 

The two main components of each reliability method 
are random variables and limit state functions. Random 
variables represent prevailing uncertainty in a system. 
Limit state functions defi ne the failure state of the 
system.  In the classic application of reliability methods, 
the failure probability of the system is computed by 
defi ning the limit state function on demand and capacity. 
To extend the application of reliability methods to risk 
assessment, the limit state function is defi ned regarding 
the consequences of an earthquake, such as direct 
economic loss based on Haukaas′s study (Haukaas,  
2008). The objective of adopting the limit states is to 
calculate the exceedance probability of losses from a 
specifi c threshold. For instance, the limit state function 
for computing the EP of the direct loss of two structures 
that was considered in the application of this study, i.e., 
surge arrester (SA) and current transformer (CT), from a 
specifi c threshold, l0, is as follows:  

0 SA CT( ) ( ( ) ( ))g l l l  x x x                 ( 1)

where lSA and lCT , respectively, denote the direct loss of 
SA and CT, and x is a vector containing random variables 
representing uncertainties. The reliability method 
computes the probability that the limit state function is 
equal to or less than zero by numerically calculating the 
following multiple integral:
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in which fx(x) is the joint probability distribution 
function of random variables. The number of integral 
operators is the same as the number of random variables 
in the x vector. The integration is performed in a region 
where g(x) ≤ 0. The calculation of the integral leads 
to a single point on the distribution of economic loss, 
i.e., the loss curve. Repeating this procedure for various 
thresholds, l0, in the limit state function yields the loss 
curve. Among various reliability methods developed 
to solve the multifold integral in Eq. (2), Monte Carlo 
sampling is applied in this study. This method uses the 
below expression to calculate the multiple integral: 
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where ѱ is a binary function taking the value of 1 when 
the limit state function is less than zero, and zero when 
the limit state function is greater than zero. In each 
sample of Monte Carlo sampling, a realization of random 
variables is produced according to their joint probability 
distribution and the ѱ function is computed. Performing 
sampling using K samples leads to the specifi cation of 

desired probability, as follows: 
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where ѱk denotes the value of the ѱ function for the 
sample of k, and K is the total number of samples.

The scenario sampling method proposed by Mahsuli 
and Haukaas (2013b) is adopted in this study for risk 
analysis of substation equipment. This method is a 
derivation of Monte Carlo sampling, making multi-
hazard risk analysis possible. It also enables taking 
into account time-dependent phenomena such as 
degradation in risk analysis or discounting economic 
losses to the present value. In this approach, scenarios 
with an arbitrary length of time, for instance, 50 years, 
are assumed, and the considered system is subjected to 
hazards that occurred during the scenario. For instance, 
the limit state function accumulated loss over a 50-year 
period and is computed at the end of each scenario. 
Simulating too many scenarios yields the desired 
probability of exceedance.  

Conducting seismic risk analysis using scenario 
sampling requires a chain of probabilistic models from 
the earthquake occurrence model to the loss model. 
Figure 2 illustrates the probabilistic models employed 
in this study, and Table 1 lists the characteristics of the 
input and output parameters of each model. Each box in 
Figure 2 represents a probabilistic model. The symbols 
entering the model from the top of the box are random 
variables or constant values, and those entering the 
model from the left side are the responses of upstream 
models. A detailed explanation of each model will be 
presented in the following section. These models are 
utilized here to explain the procedure of the analysis. By 
starting from the left side, the occurrence model of each 
seismic source specifi es the occurrence of earthquakes, 
together with the time of occurrence during the span of 
the scenario. The magnitude and location models specify 
the magnitude and rupture location of the earthquake. 
Next, these values are entered into the artifi cial record 
generation model to produce an artifi cial ground motion 
in accordance with the magnitude and distance of the 
epicenter from the site. Then, the numerical model 
of the system is subjected to input excitation, and the 
maximum of responses is estimated. The structural 
responses are treated as input to the loss model, 
which computes the ensuing loss damage. That loss is 
subsequently discounted to the present value by using 
a discounting model. The result of this procedure is the 
discounted economic loss for one earthquake occurrence 
in the span of a scenario. The procedure is repeated 
for other earthquake events in the scenario, and the 
losses are summed for all events. The accumulated loss 
value enters the limit state function in Eq. (1). Finally, 
simulating enough scenarios results in the EP of the sum 
of losses from a threshold, i.e., l0. An overview of the 
explained methodology is demonstrated in the fl owchart 
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shown in Fig. 1. In this fi gure, all random variables are 
summed in vector x. The response of each model denoted 
by rn.  The accuracy of this approach in calculating the 
desired probability depends on the number of simulated 
scenarios. A criterion for evaluating this accuracy is the 
coeffi  cient of variation of the computed probability per 
(Mahsuli and Haukaas, 2013b):

1 1( )
1

pCoV p
K p


 


                     

(5)

 Note that the scenario sampling method requires 
high computational eff ort. On the other hand, the 
possibility of considering time-dependent phenomena 
such as the accumulation of loss during the event time 
and discounting costs to the present value are advantages 
of this method. Furthermore, the whole loss curve can 
be determined by a single scenario sampling analysis, 
while other reliability methods, such as the fi rst-order 
reliability method (FORM), necessitate individual 
analysis for calculating each point on the loss curve.

As mentioned, the scenario sampling procedure 

Table 1  Overview of parameters of probabilistic models shown in Fig. 2

Symbol Description Parameter type Characteristics
Distribution parameter for source i magnitude Random variable LN(μ,σ) 

Cej Replacement cost of equipment j Random variable LN(μ,σ) 

d Artifi cial ground motion duration Constant 25 s

D Vector of the outer dimension of insulators Random variable U(a, b)

Dp Density of porcelain material Random variable LN(μ, σ) 

di Source i depth Model response 

F Fault type Constant

Fy Yield strength of support structure elements Random variable LN(μ, σ) 

Lai Source i rupture location latitude Model response 

Ls Vector of substation coordinates Location 35°18’50.72”N, 51°38’8.61”E

lj Equipment j repair cost Model response 

lT Total direct economic loss Model response 

Loi Source i rupture location longitude Model response 

M Vector of concentrated mass of equipment Random variable LN(μ, σ) 

mi Source i earthquake magnitude Model response 

Source i maximum magnitude Random variable LN(μ, σ) 

Source i minimum magnitude constant 4.8

PGA Peak ground acceleration Model response 

r Eff ective interest rate N(0.03, 0.003)

t Time parameter Time

Ts Time span Constant 50 years

Vector of acceleration time history Model response 

Vs Shear wave velocity at the substation site Random variable U(760, 1500)

σmax Maximum stress at the bottom of the insulator Model response 

σu Ultimate strength of porcelain Random variable LN(μ, σ) 

Δt Acceleration history time step Constant 0.02 s

ԑcj Equipment j repair cost error Random variable N(1, 0.1)

ԑGM Vector of six regression errors of ground motion model Random variable

ԑai Source i latitude geometric uncertainty Random variable L(0, 0.02)

ԑoi Source i longitude geometric uncertainty Random variable L(0, 0.02)

θmi Source i magnitude uncertainty Random variable N(0, 1)

θoi Source i location uncertainty Random variable U(0, 1)

λi Earthquake occurrence rate of source i Random variable LN(μ, σ) 
ω White-noise vector Random variable N(0, 1) for each element of vector

ib

max
iM
min
iM

gu
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yields accumulated loss, to which each seismic 
source contributes according to its occurrence rate. 
The procedure can also be used to calculate the loss 
of equipment associated with the occurrence of an 
earthquake with a specifi c magnitude or return period 

(RP). That is, the occurrence of an earthquake event is 
independent of its source's rate; hence, an earthquake 
with a specifi c scenario, e.g., M=7, occurs in each sample. 
In particular, the occurrence model is omitted from the 
chain of models shown in Fig. 2, and the magnitude 

Fig. 1  Overview of the analysis methodology
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Fig.  2  The chain of the probabilistic models employed in the seismic risk analysis of substation equipment
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model is substituted by a constant value, for instance, 
M=7. This procedure also makes it possible to consider 
earthquakes with a specifi c return period, e.g., 2,475 
years. For this purpose, the peak ground acceleration 
(PGA) of the intensity model for each sample is scaled 
to the PGA corresponding to the specifi c return period 
in the hazard curve of the site. The application of this 
procedure for various earthquake scenarios is demonstrated 
in Section 4.1. 

3  Probab ilistic models 

As the preceding section explains, seismic risk 
analysis of substation equipment using the proposed 
method requires a library of probabilistic models. 
Those models should follow a set of rules to be 
usable in the reliability-based approach (Mahsuli and 
Haukaas, 2013a): (1) random variables, as input to the 
model, represent uncertainty; (2) for each individual 
realization of random variables, the model produces a 
unique, measurable physical output. The general form 
of probabilistic models is explained in the following 
sections. Additionally, the individual inputs that each 
model requires for the seismic risk analysis of substation 
equipment are provided. Note that the occurrence, 
magnitude, location, and intensity models are adopted 
from the literature and adjusted to be appropriate for 
application in this study.  

3.1  Occurrence model

The well-known point process of Poisson is adopted 
to model the occurrence of the earthquake in time. This 
model takes the rate of the seismic source as input and 
produces the occurrence time of an earthquake within 
the considered time period, for instance, 50 years. The 
characteristics of the two seismic sources surrounding 
the considered substation are listed in Table 2 per 
Mahsuli et al. (2018). The parameters of this table are 
explained in subsequent sections. 

3.2  Location model

The location model specifi es the rupture location 
along the length of the seismic source. In some studies, 
such as Kiureghian and Ang (1977), the probability 
distribution function is proposed for the distance 
between the site and the rupture location. Even though 
these functions can be used in reliability-based risk 
analysis as random variables, the close distance between 

the equipment located in a substation and the correlation 
of intensities each piece of equipment undergoes makes 
the employment of these functions diffi  cult. Hence, the 
location model developed by Mahsuli and Haukaas 
(2013a) is utilized here. This model takes random 
variables introduced in Table 1 as input and generates 
the rupture location as output. In this model, linear 
seismic sources are modeled by specifying the longitude 
and latitude of multiple segments of the source. The 
uncertainty in the rupture location is represented by four 
random variables. The fi rst two quantify uncertainty 
in the longitude and latitude of the source′s corners. 
Each realization of these random variables leads to the 
coordinate of the segments′ corners. The third random 
variable, distributed uniformly, quantifi es the uncertainty 
of the rupture location along the length of the fault. 
Finally, the fourth random variable models the depth of 
the rupture. The two fi rst random variables were absent 
in the primary model, as proposed by Mojtaba Mahsuli 
et al. (2018). The rupture is always located on the length 
of the fault in the primary model, while the introduction 
of new random variables yields to ruptures around the 
fault, which is more realistic. By specifying the rupture 
location, the distance between each arbitrary site to 
the rupture location can be easily evaluated. Figure 3 
indicates the geometry of the two line sources utilized in 
the location model of the procedure′s application. 

3.3  Magnitude model

The magnitude model generates the moment 
magnitude, m, for each seismic source. Most of the 
existing studies in the literature (for instance, McGuire 
(2004)) propose the probability distribution of magnitude. 

F ig. 3  Geometry of the seismic sources and location of the 
              substation.  Map data from Google

 Table 2  Characteristics of the two seismicity sources surrounding the substation

  λ (per year)

 Mean SD  Mean SD  Mean SD

Eyvanakey 1.64 0.07 7.98 0.23 0.034 0.008

Kahrizak 1.64 0.07  7.98 0.23  0.011 0.003

Source name
b′ Mmax



No. 2         Amir Ghahremani Baghmisheh et al.: Detailed seismic risk analysis of electrical substation equipment using a reliability based approach        501

The one adopted here is based on the work of Mahsuli et 
al. (2018), in which one of the magnitude models in the 
literature was modifi ed using the probability preserving 
equation, so that it would be appropriate for reliability 
analysis. The relationship of this model reads:

max min min1 ln 1 ( ) (1 exp( ( )))mm b M M M
b

             (6 )

In this equation, b′ is a parameter that depends on 
the relative occurrence rate of diff erent magnitudes. Mmin 

and Mmax are respectively the lower and upper bound of 
the magnitude that the seismic source can generate. θm 
is a variable with standard normal distribution, which 
transfers the probability distribution of the magnitude 
to the above-mentioned equation. Since b′ and Mmax 
incorporate uncertainties, random variables are adopted 
to represent them. Table 2 lists the mean and standard 
deviation of these parameters for each seismic source. 
Mahsuli et al. (2018) found that neglecting the uncertainty 
of these parameters and using average values results in 
a considerable error at the tail of magnitude distribution. 
Thus, the uncertainty of these parameters is taken into 
account. Once realizations of each random variable, i.e., 
b′, Mmax, and θm, are generated for each sample, Eq. (6) 
estimates the magnitude.   

3.4  Ground motion intensity model

Numerous attenuation relationships exist in the 
literature that estimate the intensity at the site location 
using magnitude and the distance between the site 
and the rupture location. To fulfi ll the objective of 
this study, namely, a detailed seismic risk analysis of 
substation equipment, the intensity at the substation 
location is not suffi  cient. There is a need to establish the 
time history record of ground motions. Therefore, the 
appropriate intensity model should be able to produce 
time history records. Although natural ground motions 
can be employed in the proposed approach, fi nding a 
large set of natural ground motions consistent with the 
properties of the site is almost impossible. Furthermore, 
even using an extensive suite of natural ground motions 
cannot incorporate the complete uncertainty of ground 
excitation (Aghababaei and Mahsuli, 2018). Hence, a 
model producing the artifi cial record is employed herein. 
This model produces frequent and nonfrequent ground 
motions as defi ned in Paolo Castaldo and Amendola 
(2021), Kitayama and Constantinou (2019), according 
to the inputs for magnitude and distance from upstream 
models. The model was fi rst introduced by Rezaeian 
and Der Kiureghian (2012) and implemented in the Rt 
(Mahsuli and Haukaas, 2012), a software designed for 
reliability analysis by Aghababaei and Mahsuli (2018). 
The non-stationarities involved in the temporal and 
spectral characteristics of ground motions are considered 
in this model. 

An acceleration process, x(t), is specifi ed in the core 

of the adopted model as the response of a linear fi lter to a 
white noise process, as expressed in the following: 
 

 g
1( ) ( , ) , ( )  ( )d
( )

t

h

x t q t h t
t

    
 

    
       

(7)

in which q(t, αg) denotes the time-modulating function 
wherein the duration, shape, and intensity of the motion 
are controlled by the αg factor; σh

2(t) denotes the integral 
processes′ variance; h [t-τ, λ(τ)] denotes fi lter′s impulse 
response function in which λ(τ) collects time-varying 
parameters; and ω denotes the white noise process. The 
temporal characteristics of the process are described by 
q(t, αg), and the spectral characteristics of the process are 
described by h [t-τ, λ(τ)]. The components of two vectors, 
i.e., αg and λ(τ), are dependent upon six characteristics 
of ground motions The αg vector consists of three 
components that depend on the time at the middle of 
strong motion, tmid, the eff ective duration of excitation, 
D5-95, and the Arias intensity, Ia, The λ(τ) vector consists 
of two functions that are dependent on the damping of 
the fi lter, ξf″, the rate of variation of fi lter frequency in 
time, ω′, and the frequency of the fi lter at the middle of 
strong motion, ωmid. Finally, a high pass fi lter passes x(t) 
to ensure the residual displacement and velocity of the 
ground motion are zero.          

Regression models developed by Rezaeian and 
Der Kiureghian (2012) produce the aforementioned 
parameters by considering the moment magnitude, the 
distance between the site and rupture location, the speed 
of the shear wave at a depth of 30 m, and the mechanism 
of rupture as input. In the present study, the two fi rst 
parameters are produced by the upstream magnitude and 
location models; the last two parameters are specifi ed 
in accordance with the characteristics of the site and 
faults. It should be noted that the regression models 
were calibrated in Rezaeian and Der Kiureghian (2012) 
according to a large set of previous earthquakes data. 
The 6×6 covariance matrix of models′ errors, denoted 
by εGM in Table 1, were produced through calibration. 
The errors of regression models are presented herein by 
random variables. These errors explicitly account for the 
epistemic uncertainty involved in ground motion. On the 
other hand, the white noise utilized in the model takes 
into account aleatory uncertainty in ground motion. 
Further details on the artifi cial record model can be 
found in Rezaeian and Der Kiureghian (2012).  

In the application of the proposed method, the 
artifi cial record model is utilized to generate the 
input excitation for each seismic source. The reverse 
mechanism is assumed for seismic sources. According 
to the soil type of the site, type B per ASCE7/SEI 16 
(2017), the speed of the shear wave, is modeled by using 
a uniformly distributed random variable with lower and 
upper bounds of 760 and 1500 m/s2. 

3.5  Structural response model 

The structural response model is a fi nite element 
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model that receives the required inputs from upstream 
models and produces the structural response utilized in 
the ensuing damage or loss models. Owing to the fact that 
the reliability analysis generates measurable physical 
parameters as input for the structural response model, 
any fi nite element code or software is applicable here. 
As a case in point, the fi nite element model of a system 
of interconnected electrical equipment is developed 
in OpenSees software (McKenna et al., 2000) as the 
structural response model. The system consists of a high-
voltage surge arrester and a current transformer, two 
components that are common in electrical substations. 
These pieces of equipment are connected to each 
other through a rigid bus bar. Figure 4 shows the 
confi guration of the surge arrester-current transformer 
(SACT) system. The central part of the equipment 
consists of slender porcelain columns, which increase 
the seismic vulnerability of the equipment. Steel or cast 
iron fl anges connect porcelain columns. The previous 
experimental studies (Alessandri et al., 2015; Takhirov 
et al., 2004) on the porcelain column-fl ange systems 
demonstrate a linear elastic behavior for this system. 
The bus bars connecting the two pieces of equipment are 
composed of a fl exible connector, known as a bus slider 
(BS), which introduces nonlinearity to the SACT system. 
Due to the linear behavior of stand-alone equipment, 
modal analysis is used to verify the numerical model of 
the equipment. On the other hand, cyclic tests on the BS 
are employed to verify the response of this component.  

Now attention turns to developing fi nite element 
models. The complex geometry of porcelain columns 
and fl anges makes diffi  cult the calculation of fl exural 
stiff ness of these components. Thus, regression models 
proposed by Li et al. (2017), which are calibrated through 
the use of 12 experimental tests, are employed. These 
models provide the geometry details of porcelain column 

and fl ange connectors as input and calculate the fl exural 
stiff ness of columns and joints. By using calculated 
stiff ness, columns and joints are modeled by elastic beam-
column elements and zero length springs, respectively. 
The steel supporting structure of equipment is modeled 
by using nonlinear DispBeamColumn elements. The 
nonstructural components at the top of equipment, i.e., 
the oil reservoir and ring, are treated as concentrated 
mass. Key structural parameters of equipment and their 
supporting structures are respectively listed in Table 3 
and Table 4. 

Modal analysis is carried out on the individual 
equipment to verify the stand-alone model for the 
equipment. The fi rst natural frequency of the surge 
arrester, tested by Li et al. (2017), is calculated as 2.2 Hz 
through the simulation carried out in this study. This is in 
good agreement with the fi rst natural frequency of 2.0 Hz 
obtained in the experiment. The fi rst natural frequency of 
the current transformer without the supporting structure 
is estimated as 3.79 Hz, which is consistent with the 
frequency of 3.80 Hz provided by the manufacturer. 

The bus bar and bus slider of the conductor are 
modeled by the elastic beamcolumn elements and a 
nonlinear axial spring, respectively. To characterize 
nonlinear behavior of BS, the cyclic test conducted on 
the BS by Filiatrault (2000) is utilized. The parameters 
of steel01 material are adjusted to reproduce the test 
results. Figure 5 compares the hysteresis curves of 
the simulation with those obtained in the test. The 
comparison reveals that the simulation captures the 
hysteretic cycles observed in the experiment with 
reasonable accuracy. Note that geometric nonlinearity 
and material nonlinearity of the connector and the 
supporting structure are the sources of nonlinearity in 
the considered system. However, dynamic analyses 
show that supporting structures do not experience 
nonlinear behavior before failure of porcelain. Figure 
6 depicts a schematic view of the developed numerical 
model for the interconnected system. Note that since the 
connection between the equipment is explicitly modeled 
in the numerical model, the benefi cial or detrimental 
eff ects on seismic response are automatically considered 
in the results. In most cases, since the conductor has not 
reached its maximum deformation capacity, its eff ect on 
the seismic response was benefi cial. This is mainly due 
to energy dissipated in the conductor.   

According to the existing literature (such as Bayari 
et al. (2022) or Gino et al. (2021)), the response of 
nonlinear numerical model is always aff ected by 
epistemic uncertainty. In order to account for the 
modeling uncertainty, parameters associated with 
the geometry, material, and mass of the model are 
represented by random variables in this study. The 
distribution of random variables is specifi ed using 
mean values of the deterministic model and assuming 
a coeffi  cient of variation. The lognormal distribution 
models′ uncertainties are associated with material and 
mass properties, while the uniform distribution models 

Fig. 4 Schematic view of the surge arrester-current 
                transformer system
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are those associated with geometric properties. The 
second-moment parameters of each random variable 
are respectively summarized in Table 5 and Table 6 
for lognormal and uniform distribution. Note that the 
distribution of random variables should be determined 
in accordance with tests conducted on the material in a 
real-world application of the procedure. Since this study 
aims to demonstrate the application of the proposed 
procedure, assumptions for the distribution of random 
variables are justifi ed. 

In order to incorporate the fi nite element model in 
the reliability analysis, the connection is made between 
the fi nite element software, OpenSees, and the reliability 
analysis software, Rt. Realizations of random variables at 
each step of the reliability analysis yield a new numerical 
model for the system. Thereafter, the numerical model 
is subjected to artifi cial ground motion. Thus, time 
history analysis is conducted at each step of reliability 
analysis to produce structural responses. According to 
IEEE 693 (2005) recommendations, a 2% damping ratio 
associated with the fi rst and second modes is considered 
in analyses. The mass and stiff ness proportional factors 
of Rayleigh′s method are considered to be 0.467 and 
0.00085, respectively. As convergence criteria, the 
norm displacement increment with a maximum of 100 
iterations and 1.0×10-8 tolerance is employed. The 
distribution of key response parameters is presented in 
Section 4. These responses are treated as input for the 
repair model described in the following section.         

 3.6  Repair cost model

This section describes the repair cost model that 
calculates the monetary loss of induced damage.  
According to reconnaissance reports of previous 
earthquakes (Jaigirdar, 2005; Khalvati and Hosseini, 
2009; Takada et al., 2004), most damage is incurred 
in the porcelain part of the substation equipment. 
Formation of cracks, leaking of oil, and crushing of 
porcelain are among the damage observed in previous 
earthquakes. Similar to previous studies (Baghmisheh 

and Estekanchi, 2019; Mohammadpour, 2017; Zareei 
et al., 2017), two damage states, “moderate” and 
“extensive”, are considered here. The moderate damage 
state is associated with forming fi ne cracks on the outer 
surface of the porcelain, and the extensive damage state 
is related to the formation of large cracks, which leads 

Table  3  Key parameters of equipment

Equipment Position of 
porcelain unit

Flange joint stiff ness 
(N.m/rad)

Height 
(m)

Outer 
diameter (m)

Inner 
diameter (m)

Weight 
(N)

Surge arrester Top 13.55×106 1.88 0.37 0.353 2530.98

Bottom 13.55×106 1.88 0.37 0.353 2530.98

Current transformer Top1 24.19 (11.04)× 106 3.46 0.48 0.442 8103.75
           1 Flange stiff ness at the top of units (fl ange stiff ness at the bottom of units).

 Table 4  Key parameters of supporting structures

Equipment item Column section Beam section Brace section Height Young′s modulus

Surge arrester C400×10 ---- ---- 2.85 m 2×105 MPa

Current transformer L80×80×8 L100×100×10 L50×50×5 3.14 m 2×105 MPa

Fig. 5  Comparison between hysteresis cycles observed in the 
       test by Filiatrault (2000) and those obtained in the
             simulation
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Fig.  6  Schematic view of the numerical model 

X
Y



504                                               EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 22

to the leak of oil and loss of electrical functionality. 
The response thresholds corresponding to moderate and 
extensive damage states are considered as 25% and 50% 
of porcelain ultimate strength, per the recommendation 
of IEEE 693 (2005). These thresholds also were 
suggested in previous studies, such as (Baghmisheh and 
Estekanchi, 2019; Mohammadpour, 2017; Zareei et al., 
2017), in which the seismic fragility of equipment was 
examined. Note that since fragility curves result in an 
intensity measure or a structural response and produce 
the probability of exceedance, they cannot directly be 
used. However, fragility models can be employed to 
estimate the damage ratio corresponding to each intensity 
measure or structural response. Since the damage ratio is 
a physical quantity, it can be utilized in this procedure. 
A more detailed explanation of using fragility models in 
reliability analysis is provided in Mahsuli and Haukaas 
(2013a). To quantify the monetary loss associated 
with each damage state, a simple repair cost model is 
developed. It is assumed that a stress response lower 
than the moderate damage state threshold causes no 
economic loss. On the other hand, when the stress 
response exceeds the extensive damage state threshold, 
the equipment needs to be replaced, which means repair 
cost is equal to the replacement cost of the damaged 
equipment. The stress value falls between these two 
thresholds. The damage ratio, that is, the ratio of repair 
cost to replacement cost, is expressed by a sine function 
as follows:

max

u

0.7sin( ( 0.5)) 0.3
0.5

j



    

             
(8)

where ηj is the damage ratio for equipment j; σu is the 
ultimate strength of porcelain; and σmax,j is the maximum 
stress response at the bottom section of the porcelain 
column. The bottom section of the columns, where the 
induced fl exural moment reaches maximum, has been 
recognized in past studies as a critical section of the 
porcelain columns (see Alessandri et al., 2015; Zareei 
et al., 2017)). Hence, the maximum stress response at 
the bottom of the porcelain column is utilized in the 
repair cost model. By computing the damage ratio, the 
repair cost can be obtained through the following simple 
expression:

e cj j jl C                                 (9)

in which, lj, is the repair cost of equipment j, Cej is the 
replacement cost of the equipment j, and εcj is the error 
aspect of the repair cost model. The error is modeled by 
a random variable with normal distribution whose mean 
and standard deviation are zero and 0.1, respectively. 
According to the equipment catalog, the replacement cost 
of SA and CT are $1.0 and $3.3 thousand. By assuming 
that there are nine items of each type of equipment in the 
considered high-voltage substation, the total value of the 
equipment in the substation is equal to $38.7 thousand. 
Note that the considered repair cost model is a simple one 
to demonstrate the algorithm proposed for performing 
detailed risk analysis on substation equipment. To obtain 
more realistic results, a more complicated repair cost 
model should be developed in the future which would 
preferably be calibrated with data taken from previous 
earthquakes. 

As explained in Section 2, scenario sampling 
requires the accumulation of cost over a period of time, 
for instance, 50 years. Since the value of the loss at 
diff erent times varies, the discounting model is employed 
to transfer the future value of loss to the current value. 
Thus, this model depends on the time of earthquake 
occurrence in the simulated sample. The expression of 
this model appears below:

p f exp( )l l r t                            (10)

where lp and lf are the current and future value of the 
loss, r is the rate of eff ective annual profi t, and t is the 
time parameter. In this study, the rate of eff ective annual 
profi t is modeled by a normally distributed random 
variable with a mean of 3% and a coeffi  cient of variation 
of 10%. 

It is noteworthy that the proposed procedure is 
not limited to this simple repair cost model. Other 
complicated models are applicable in the proposed 
procedure as long as they satisfy probabilistic models′ 
regulations, as described in Section 3. Note that the 

 Table  5  Second-moment parameters of random variables with lognormal distribution

Random variable Mean Standard deviation COV(%) Distribution
Steel yield strength (Pa) 2.35×108 2.35×107 10.0 LN(9.27,0.01)

Porcelain elasticity modulus (Pa) 9.40×1010 1.29×1010 13.7 LN(25.26,0.137)
Porcelain ultimate strength (Pa) 5.05×107 1.03×107 20.3 LN(17.72,0.20)

Porcelain density (kg/m3) 2415.55 189.06 7.8 LN(7.79,0.08)
Mass at top of surge arrester (kg) 258.00 25.80 10.0 LN(5.55,0.01)

Mass at top of current transformer (kg) 953.92 95.39 10.0 LN(6.86,0.01)

 Table 6  Second-moment parameters of random variables 
              with uniform distribution

Insulators′ outer diameter (m)

Porcelain unit Lower bound Upper bound
Surge arrester 0.320 0.420

Current transformer 0.430 0.530
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proposed detailed seismic risk analysis framework 
makes possible consideration of various seismic losses 
associated with equipment damage and power outages, 
such as losses due to the interruption of business or 
an emergency response. These undirected losses are 
applicable in the comprehensive risk analysis of a 
whole substation. Since a single system of equipment is 
examined in the case study of the proposed framework, 
only the direct loss of equipment is taken into account.     

4  App lication

This section investigates the application of the 
proposed detailed reliability-based risk analysis to 
estimate substation equipment losses.  The risk analyses 
considered under various earthquake scenarios are 
conducted in accordance with the proposed procedure 
described in Section 2 to compute the loss associated 
with each scenario. Models introduced in Section 3 
are employed to perform risk analysis. The results of 
analyses are presented in the form of the exceedance 
probability of loss. Subsequently, various risk measures 
are defi ned to summarize and compare loss results.

4.1  Ear thquake scenarios 

Computing accumulated loss in the life cycle of the 
structures, which is a common scenario found in risk 
assessment studies, is considered here. Furthermore, 
occurrences of earthquakes with a specifi c magnitude or 
return period are also utilized as earthquake scenarios 
to demonstrate the applicability of the procedure. The 
reason for selecting these scenarios is that they are 
sometimes more convenient in terms of communicating 
risk to non-engineering decisionmakers. For instance, 
the expected losses resulting from an earthquake with 
a magnitude of seven is more comprehensible for non-
technical persons. The following sections introduce 
scenarios and present their risk analysis results.  

4.1.1  Scenarios with a specifi c magnitude 

Three scenarios with a specifi c magnitude, 
including M=5, 6, and 7, entitled hereafter Scenario 1, 

2, and 3, respectively, are considered herein. Recall that 
performing risk analysis for scenarios with a specifi c 
magnitude requires substituting the magnitude model in 
the chain of probabilistic models with a constant value. 
That is, for each sample of a simulation, an earthquake 
with a specifi c magnitude occurs in one of the seismic 
sources. Responses of subsequent models are then 
calculated, which fi nally results in a loss curve. As a 
byproduct of the procedure, the probability distribution 
of engineering demand parameters can also be obtained. 
Figure 7 depicts the complementary cumulative 
distribution function of key structural responses, i.e., 
the maximum relative displacement between equipment 
and the maximum stress on porcelain, along with the 
coeffi  cient of variation of the calculated probabilities 
resulting from 20000 samples under the scenario M=7.  
As previously observed, the distribution of maximum 
stresses for CT is slightly larger than that for SA.  

Figure 8 illustrates the EP of loss, i.e., the loss curve, 
for earthquake scenarios with magnitudes 5, 6, and 7. The 
vertical axis of this fi gure is presented in the logarithmic 
scale to better show the tail of the distribution. The loss 
values in the horizontal axis are normalized to the total 
value of the equipment in the substation, i.e., $38.7 
thousand. These curves are produced for each individual 
piece of equipment and its system. As expected, the 
larger the magnitude of the scenario, the greater the loss. 
The distance between loss curves of various magnitudes 
is high at lower loss values. However, by proceeding 
along the x-axis toward larger loss values, this diff erence 
diminishes. 

The results of risk analysis for each scenario are 
obtained by simulating 20,000 samples. According 
to Eq. (5), the minimum required samples are 19,600 
samples in order to estimate the probability of exceedance 
greater than 0.02, with the coeffi  cient of variation below 
5%. To provide a sense of the accuracy of these results, 
the loss curve of the SA-CT system shown in Fig. 8(c) 
under scenario 3, i.e., an earthquake with magnitude 7, 
is scrutinized. The probability of exceeding $3 thousand 
under this scenario is 12.2%, while the probability of 
exceeding $4.5 thousand is 2.6%. The coeffi  cients of 
variation of the computed probabilities are 1.9% and 

Fig. 7  Complementary cumulative distribution function of maximum: (a) tip relative displacement response between equipment, 
            and (b) the stress response at the bottom of porcelain
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4.3%, respectively. This reveals the accuracy of the 
computed probabilities. 

4.1.2  Scenarios with a specifi c return period 

Three scenarios with a specifi c return period, 
including RP=72, 475, and 2,475 years, hereafter referred 
to as scenarios 4, 5, and 6, are considered. Performing 
risk analysis for these scenarios requires specifi cation of 
earthquake intensity corresponding to each return period. 
To this end, the hazard curve proposed by Gholipour 
et al. (2008) for a site in Tehran is employed. Figure 9 
shows this curve along with PGA values corresponding 
to 72, 475, and 2,475 years as return periods. To perform 
risk analysis for a scenario with a specifi c return period, 
the maximum acceleration of artifi cial ground motions 
is scaled to the PGA value obtained from the hazard 
curve. Figure 10 compares the resulting loss curves for 
the three return periods. Similar to Fig. 8, loss values 
are normalized to the total value of SAs and CTs in the 
substation. The loss curves of the scenario with 2,475 
years RP are, as expected, above those of the other 
scenarios. As seen, there is a considerable diff erence 
between loss curves of 72 years RP and those of the 
other scenarios, whereas this diff erence is slight between 
475 and 2,475 years RP. This can be attributed to the 
fact that earthquakes with 475 years RP induce severe 
damage, which yields nearly similar loss curves for 475 
and 2,475 years RP. 

4.1.3  Total loss in the life cycle 

The total loss in the life cycle of structures, i.e., 50 
years, is considered as Scenario 7. Figure 11 illustrates the 
exceedance probability of the accumulated loss in a 50-

year period, normalized to the total value of equipment 
in the substation, i.e., $38.7 thousand. To preform risk 
analysis under this scenario, all of the probabilistic 
models displayed in Fig. 2 are employed. Risk analysis 
is conducted using scenario sampling, as explained in 
Section 2. Note that each seismic source contributes to 
the resulting loss curve in accordance with its occurrence 
rate in this scenario. As expected, it is observed that the 
total loss of the SA-CT system is greater than those of 
individual equipment. This fi gure reveals that the current 
transformer makes a larger contribution to the total loss 
than does the surge arrester. Thus, high prioritization 
should be allocated to retrofi t the CT in the considered 
system. This is one of the crucial insights that can be 
obtained using the proposed approach.  

4.2  Risk measures 

To make risk-based design and retrofi t decisions, 
using the whole loss curve may not be practical. Thus, 

F ig. 9  The hazard curve for a site in Tehran

  Fig. 8    Loss curves of scenarios with specifi c moment magnitude for (a) surge arrester, (b) current transformer, and (c) SA-CT system
(a) (b) (c)

 Fig. 10    Loss curves of scenarios with specifi c return periods for (a) a surge arrester, (b) a current transformer, and (c) a SA-CT system
(a) (b) (c)
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a risk measure should be extracted from the loss curve. 
For this purpose, several risk measures are discussed 
herein. According to the attitude of the stakeholder, i.e., 
risk-neutral or risk-averse, one of these measures may be 
utilized to render a risk-based decision.   

The expected cost is a common risk measure that 
stakeholders have employed to reach a design decision. 
By considering c as the realization of the random variable 
representing cost, the fC(c) denotes the probability 
distribution function of cost, and GC(c) denotes the 
complementary cumulative distribution function, i.e., 
the loss curve. The area under the curve is the expected 
cost, calculated using the following integral:

0 0 0

d ( )
( )d d ( )d

d
C

c C C
G c

c f c c c c G c c
c


  

       
(11)

The probability that cost exceeds a specifi c 
threshold, co, can be treated as another risk measure. 
This probability can be calculated by limit state function 
g=c‒co, or it can be extracted from the loss curve, i.e., 
pc=G(co). Selecting a specifi c value for co implies that 
the decisionmaker is concerned with the exceedance 
probability of that amount of loss. The level of risk 
aversion for this measure depends on the value selected 
for co. The reverse of the above-mentioned risk measure, 
i.e., the cost value at a selected exceedance probability, 
po, is another considered risk measure. This measure can 
be calculated by the inverse function of the EP curve, 
qc=G-1(po). The qc hereafter is called the value-at-risk. A 

F ig. 11  Accumulated loss curves of equipment for a 50-year 
               period

reasonable choice for po is 1%, which is the suggested 
risk level for 50 years in ASCE 7/SEI 16 (2017). These 
measures diff er in their eff ectiveness in communicating 
risk. The expected cost, μc, and the exceedance 
probability of cost pc, are more understandable measures 
for non-engineering decisionmakers than the value-
at-risk qc. Thus, the expected cost and the exceedance 
probability of cost may be used to communicate risk for 
risk-neutral and risk-averse clients, respectively. On the 
contrary, the value-at-risk may be used to communicate 
risk to a technical audience. 

The introduced risk measures are calculated and 
represented in Fig. 12 for three scenarios, including the 
occurrence of an earthquake with M=7 (Scenario 3), 
the occurrence of an earthquake with RP=2,475 years 

(a) (b)

(c) (d)
 Fig. 12  Comparing the risk of three scenarios in terms of (a) expected cost, (b) the cost at a 1% probability of exceedance, (c) an 
              exceedance probability of $1000, and (d) an exceedance probability of $4000 as the risk measure
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(Scenario 6), and the occurrence of an earthquake in 
accordance with the rate of each seismic source over a 
50-year period (Scenario 7). The higher the bar in this 
fi gure, the higher the risk associated with that scenario 
or equipment. As seen in terms of all risk measures, 
the CT equipment has a higher risk factor and priority 
for the retrofi t than does the SA. In three of four risk 
measures, the risk associated with Scenario 6 is the 
greatest, and Scenario 7 the least. This is mainly because 
a major earthquake with 2,475 RP, which corresponds 
to large loss values, occurs in each sample of risk 
analysis under Scenario 6. However, the earthquake 
occurs in accordance with the rate of seismic source and 
magnitude model under Scenario 7, which may be a low- 
or moderate-level earthquake.  

5  Conclusions

This paper proposes a reliability-based risk analysis 
procedure to evaluate the seismic loss of substation 
equipment by considering substantial uncertainties. 
In contrast to previous risk analysis approaches for 
substation equipment that calculate the expected cost by 
summing construction costs and the product of failure 
probability to repair costs, this study considers total 
cost as a random variable whose probability distribution 
depends upon many probabilistic models and random 
variables. This makes it possible to explicitly consider 
uncertainties involved in the calculation of loss. Despite 
existing risk assessment approaches for infrastructure 
components at the regional level that provide a 
rough estimate of loss, this approach employs more 
refi ned models, thereby increasing the precision of 
loss estimation. This procedure takes into account 
uncertainties involved in hazard, response, and loss by 
utilizing random variables and probabilistic models. 
Reliability analysis is conducted on the chain of 
probabilistic models to evaluate the limit state function 
that is defi ned regarding loss. The analysis results in the 
exceedance probability of loss, i.e., a loss curve.   

The application of the proposed framework is 
demonstrated in the loss estimation of interconnected 
electrical equipment located at a substation in Tehran 
under the eff ects of several earthquake scenarios. To this 
end, the deterministic fi nite element model of equipment 
is developed and verifi ed. This model is treated as a 
probabilistic fi nite element model by considering random 
variables for uncertainties associated with the material, 
mass, and geometric properties of the equipment. 
Next, models for the occurrence, location, magnitude, 
and intensity of an earthquake are adopted from the 
literature and used herein. These models, in conjunction 
with a proposed simple repair cost model, construct a 
chain of the probabilistic models that are subjected to 
the Monte Carlo sampling analysis to estimate the EP 
of loss. The accuracy of the procedure is demonstrated 
by using the coeffi  cient of variations of the computed 
probabilities, which is less than 4.5% for large loss 

values. Furthermore, four risk measures extracted from 
the loss curve are discussed. These measures, which 
summarize results of risk analysis, can be utilized by 
decisionmakers to prioritize equipment for rehabilitation 
or to optimize their designs. In the case study here, it is 
found that the current transformer imposes more total 
loss than the surge arrester in terms of all risk measures, 
thus creating a higher priority for a retrofi t. Note 
that the proposed framework is not limited to power 
infrastructure components and it can be employed to 
quantify the risk for other infrastructure components.   
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