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Abstract: Recent advances in computer vision and deep learning have shown that the fusion of depth information can 
signifi cantly enhance the performance of RGB-based damage detection and segmentation models. However, alongside the 
advantages, depth-sensing also presents many practical challenges. For instance, the depth sensors impose an additional 
payload burden on the robotic inspection platforms limiting the operation time and increasing the inspection cost. Additionally, 
some lidar-based depth sensors have poor outdoor performance due to sunlight contamination during the daytime. In this 
context, this study investigates the feasibility of abolishing depth-sensing at test time without compromising the segmentation 
performance. An autonomous damage segmentation framework is developed, based on recent advancements in vision-based 
multi-modal sensing such as modality hallucination (MH) and monocular depth estimation (MDE), which require depth data 
only during the model training. At the time of deployment, depth data becomes expendable as it can be simulated from the 
corresponding RGB frames. This makes it possible to reap the benefi ts of depth fusion without any depth perception per se. 
This study explored two diff erent depth encoding techniques and three diff erent fusion strategies in addition to a baseline 
RGB-based model. The proposed approach is validated on computer-generated RGB-D data of reinforced concrete buildings 
subjected to seismic damage. It was observed that the surrogate techniques can increase the segmentation IoU by up to 20.1% 
with a negligible increase in the computation cost. Overall, this study is believed to make a positive contribution to enhancing 
the resilience of critical civil infrastructure.
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1   Introduction

 1.1  Motivation

Recent research trends in structural health monitoring 
indicate that autonomous robotic platforms equipped with 
multimodal sensors and empowered by deep learning-
based onboard processing capability will accompany or 
even replace human inspectors to automate the future 
inspection processes (Mondal et al., 2020; Mondal and 
Jahanshahi, 2020, 2022; Yeum et al., 2019). However, 
despite considerable research eff orts and technological 
advances, the adoption of these automation-driven 
inspection solutions has not kept pace, mainly due to 

reliability issues. This pushback from the end-users 
has prompted the scientifi c community to enhance the 
accuracy and reliability of deep learning-based decision-
making systems (Gao and Mosalam, 2022), which led 
to enhanced algorithmic complexity and computational 
cost. Meanwhile, state-of-the-art research in other 
disciplines brought to light that the accuracy of deep 
learning-based models can also be increased by enriching 
the information content of the input data. In this regard, 
a number of studies have looked into the fusion of 
RGB and depth information, which outperformed the 
conventional RGB-based deep learning approaches. 
Mondal (2021) indicated that depth data provides 
valuable structural information which complements the 
color information provided by RGB data, leading to 
improved segmentation accuracy. Schwarz et al. (2018) 
demonstrated that the effi  ciency of CNN-based robotic 
scene understanding and manipulation can be enhanced 
by infusion of depth information. Hazirbas et al. (2016) 
proposed a fusion-based CNN architecture to show 
that the incorporation of depth fusion can substantially 
improve the segmentation accuracy of indoor scenes. 
Park et al. (2017) proposed a multi-level feature fusion 
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network to illustrate that a fusion of depth features 
increases the accuracy of indoor semantic segmentation. 
Cheng et al. (2017) leveraged a gated fusion of RGB-D 
features for enhanced semantic segmentation of indoor 
scenes. Xu et al. (2017) adopted a shared weights 
strategy and parameter-free correlation of modality-
correlated and modality-specifi c features for RGB-D 
object detection, leading to an overall improvement in 
the detection accuracy. Ophoff  et al. (2018) invoked a 
single-pass CNN architecture to fuse depth and visual 
sensor data for real-time pedestrian detection resulting 
in an improved accuracy. Notwithstanding, the structural 
health monitoring community has been a laggard 
on exploring this important research area. Lately, 
Alexander et al. (2022) fused RGB and thermal images 
for enhanced deep learning-based crack detection in 
civil infrastructure. Besides, Zhou and Song (2020) 
investigated the fusion of intensity and range images 
for CNN-based classifi cation of roadway cracks. Wang 
et al. (2022) developed a synthetic robotic system 
capable of automated visual surveillance of construction 
sites leveraging RGB-D fusion. A few other studies, 
on the other hand, resorted to RGB-D fusion for the 
transformation of crack width estimated by vision-based 
techniques from pixels to actual physical units (Kim, 
2021). However, many knowledge gaps still exist, which 
call for increased attention from the scientifi c community 
in coming times. This study aims to address one such 
important knowledge gaps by focusing on the fusion 
of RGB and depth information enabling deep learning-
based enhanced multimodal defect segmentation in 
reinforced concrete buildings.

Despite proven advantages of depth fusion, it is 
not to be forgotten that depth sensors are not yet as 
pervasive and ubiquitous as RGB cameras. Moreover, 
practical application of depth sensing during real robotic 
inspection has many challenges. The traditional lidar-
based depth sensors are generally large and weighty, 
and therefore not suitable to be integrated with mobile 
robotic platforms. The recent consumer-grade depth 
sensors, on the other hand, have the advantages of being 
lightweight and low-cost. However, many of these 
sensors exploit laser scanning techniques which are 
susceptible to interference by sunlight, leading to a poor 
outdoor performance. Besides, depth sensors may lead to 
an increased energy consumption reducing the operating 
life of unmanned aerial vehicles (UAVs), which rely 
on on-board batteries as primary energy sources. This 
reduces the effi  ciency of robotic inspection by increasing 
the inspection time and costs.

1.2  Contributions

In view of these practical constraints, it is regarded 
ideal to forego depth sensing at test time without 
foregoing the benefi ts of depth fusion. This study aims 
to achieve this research objective by leveraging two 
important advances in the area of multi-modal sensing, 
namely MH (Hoff man et al., 2016; Gunasekar et al., 
2020) and MDE (Bhoi, 2019; Zhao et al., 2020). A 
fully-convolutional encoder-decoder network is used 
as a baseline model to assess the performance of the 
surrogate techniques. The depth data is represented 
in this study in the form of absolute depth or surface 

(a) RGB                                             (b) RGB-D                                                (c) RGB-DMH

(d) RGB-DMDE

Fig. 1  Various depth fusion strategies are explored in this study. The encoded depth data is denoted by D. The trapezoids tapered 
                on the right and left represent encoders and decoders, respectively. The ‘+’ sign symbolizes a fusion of convolutional features. 
         RGB implies a pure RGB-based model. RGB-D indicates a feature level fusion of RGB and measured D data. RGB-DMH 
           signifi es the fusion of RGB features and D features hallucinated from RGB image. Finally, RGB-DMDE connotes the feature
            level fusion of RGB and D data estimated from the corresponding RGB frame through monocular depth estimation
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normal maps (Section 2.2). Additionally, four diff erent 
fusion strategies are investigated, as shown in Fig. 1. A 
pure RGB-based model is used as a representative of 
traditional CNN approaches (Fig. 1(a)). Next, a fusion-
based architecture (RGB-D) is invoked comprising a 
pair of encoders taking RGB and encoded depth (D) as 
input (Fig. 1(b)). The feature maps produced by the last 
decoder layers are fused and sent to a shared decoder to 
obtain the predicted damage labels. This fusion approach 
can be leveraged when depth sensing is enabled at test 
time. In addition to this, an MH-based fusion scheme 
(RGB-DMH) is explored, which enables simulation of 
mid-level convolutional D features from a single-frame 
RGB image (Fig. 1(c)). These hallucinated D features 
are fused with RGB features before being sent to a 
common decoder. More details about this fusion scheme 
are included in Section 3.1. Further, this study looked 
into a fusion strategy (RGB-DMDE) where the encoded 
depth (DMDE) data are simulated from the corresponding 
RGB frames exploiting deep learning techniques. DMDE 
is then fused with RGB data exactly in the same manner 
as in the case of RGB-D. Section 3.2 provides additional 
details about this fusion approach. It should be noted in 
this context that this study considered only feature-level 
fusion as it is demonstrated by previous studies (Mondal,  
2021) to be superior to image-level fusion. Altogether, 
the surrogate strategies (RGB-DMH and RGB-DMDE) 
lead to a situation where depth data are required only 
for model training. The need for depth sensing at test 
time is eliminated without considerably undermining 
the segmentation performance. The proposed depth 
fusion framework is validated on a computer-generated 
synthetic dataset containing three damage categories 
commonly observed in reinforced concrete buildings 
subjected to seismic excitations, namely spalling, 
exposed rebars, and severely buckled rebars. The textural 
similarities between diff erent damage categories made 
the traditional approach of relying solely on RGB data 
less rewarding, making the fusion of depth information 
all the more critical. Overall, the key contributions of 
this study can be summarized as follows:

• This study demonstrates that the accuracy of 
deep learning-based damage segmentation algorithms 
can be signifi cantly improved by the fusion of RGB and 
depth information.

• Two diff erent depth encoding techniques are 
explored for the representation of the depth data.

• It is shown that depth sensing is not 
indispensable at test time. A pair of surrogate techniques 
are investigated, which eliminate the need for depth 
sensing at test time without foregoing the benefi ts of 
depth fusion.

• The proposed framework is validated on 
computer-generated RGB-D data containing three 
diff erent damage categories commonly encountered 
in reinforced concrete buildings subjected to extreme 
loading.

2  Data preparation

2.1 Data generation using computer graphics 
          techniques

Unfortunately, there is no publicly available damage 
dataset that can provide depth data for scientifi c 
investigations on RGB-D fusion. As a workaround, 
this study leveraged a 3D animation and visual eff ects 
software called Houdini (Elkins, 2020) for the generation 
of photo-realistic RGB-D data. 3D reconstructions 
of real buildings provided by Matterport3D dataset 
(Chang et al., 2017) are used as baseline models (Fig. 
2(a)). A region of interest is manually demarcated 
and isolated from the remaining model for damage 
incorporation (Fig. 2(d)). The damage is induced by 
Boolean subtraction of a solid object (Fig. 2(e)) from the 
isolated wall section (Figs. 2(g)-2(h)). The solid object 
can be created simply by noise addition to a rudimentary 
geometric entity such as a sphere or an ellipsoid (Fig. 
2(b)). The isolated and damage part of the wall is then 
merged with the remaining structure to retrieve the 
entire building model (Fig. 2(k)). At the same time, a 
mesh of rebars is created and placed on the damaged 
part of the model (Fig. 2(f)). Finally, the steel rebars and 
the damaged concrete surface are textured (Figs. 2(c) 
and 2(j)) to produce an appearance of concrete spalling 
with exposed rebars (Fig. 2(l)). In some cases, the 
mesh of rebars is suitably deformed to mimic buckled 
reinforcement bars. Various modeling parameters such as 
rebar diameter and spacing are ensured to be consistent 
with the guidelines of ACI 318 (Standard, 2011). The 
data generation process was guided by the observation 
of real damages rendered by several past earthquakes, 
such as Nepal earthquake, Ecuador earthquake, etc. 
(Shah et al., 2015; NCREE, 2016; Sim et al., 2016). The 
generated dataset contained wide variations in terms of 
shape, size, location, and texture of damage. However, 
one of the limitations of this data generation technique 
is that it requires signifi cant human involvement. Future 
studies should endeavor to integrate the entire procedure 
into an open-source toolbox to increase the practicability 
and academic impact. Altogether, the generated dataset 
comprised 629 of such 3D scenes representing three 
diff erent damage categories such as spalling, exposed 
rebars, and severely buckled rebars (Fig. 3). It should 
be noted here that this study did not consider concrete 
cracks, even though it is the most common damage 
type observed in reinforced concrete structures. This is 
because the thickness of concrete cracks, in many cases, 
is too small to be captured by inexpensive consumer-
grade depth cameras, which are typically constrained 
by limited spatial resolution. Moreover, crack-induced 
depressions on concrete surfaces are generally not very 
signifi cant and, more often than not, get overshadowed 
by the measurement noise present in depth data. As a 
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 Fig. 2   3D photo-realistic damage data generation pipeline using computer graphics technique: (a) 3D reconstruction of real 
                  building, (b) solid ellipsoid, (c) texture map used to represent steel reinforcement bars, (d) isolated region of interest where
                      damage is to be induced, (e) solid ellipsoid deformed due to noise induction, (f) mesh of rebars, (g) intersection of the isolated 
            wall surface by the deformed ellipsoid, (h) material removal from the intersection zone, (i) texture applied to the rebar 
                 mesh, (j) texture map used to represent damaged concrete, (k) merger of the isolated wall section with the rest of structure, 
         and (l) application of the texture shown in (j) on the damaged part and placement of the rebar mesh, resulting in a 
              photo-realistic damaged building model

(a)

(b)

(c)
Fig. 3  Damage categories considered in this study: (a) spalling, (b) spalling with exposed rebars, (c) spalling with buckled rebars
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result, concrete cracks usually behave as 2D structures 
where depth sensing fails to provide any meaningful 
information. Preliminary investigations by the authors 
also validate this hypothesis. Each scene is rendered 
from multiple camera positions and orientations 
resulting in 1,789 sets of paired RGB-D images. To 
mimic real world depth sensing, the depth data generated 
by the computer graphics software are contaminated 
by adding a small amount of Gaussian noise, which is 
consistent with the noise level typically exhibited by 
the fi rst-generation Microsoft Kinect sensor (Zennaro et 
al. 2015). The dataset was automatically labelled by the 
computer graphics tool, which saved considerable time 
and human eff ort which are otherwise necessitated by 
manual annotation process. To test the generalization 
ability of the trained models, fi ve-fold cross-validation 
was conducted in this study. At each cross-validation 
round, 90% of the generated data were used for training, 
and the remaining 10% data were used for testing (Fig. 4). It 
was ensured that the training and test data sets at a given 
cross-validation round did not share diff erent views of 
the same damage scenario.

2.2  Depth data encoding

Previous studies have indicated that to get the best 
out of depth fusion, it is important to represent depth data 
in a proper way. In light of this, this study explored two 
diff erent depth encoding techniques, namely absolute 
depth-based encoding (ADE) and surface normal-
based encoding (SNE). In ADE, the depth at a point is 
represented by the absolute distance between the camera 
and the physical point projected on the principal axis of 
the camera. Figure 5(b) shows a typical depth map where 
the brighter pixels are relatively farther from the camera 
and the darker pixels are closer to the camera. On the 
other hand, in SNE, the depth at a point is represented by 
the surface normal vector at that point. Given the focal 
length of the camera and the depth map of a scene, the 

3D position of each point in the scene can be computed 
making use of a pinhole camera model. Following this, 
the surface normal vector at each point can be estimated 
by fi tting a local plane at respective 3D points with the 
help of other points in their immediate neighborhoods. 
The three components of the unit normal vector at 
each point are used to encode the depth information at 
respective locations. This leads to a surface normal map 
(Fig. 5(c)) comprising three channels corresponding to 
three components of the surface normal vectors. As the 
fi gure depicts, the points lying on a plane have a common 
surface normal vector and are therefore represented 
by the same color. In the damage region, however, the 
surface normal vectors are all over the place, and the 
uniformity in the texture is lost. This becomes a telltale 
sign of the presence of a damage in the scene.

3    Methodology

A fully-convolutional encoder-decoder network is 
used in this study as the baseline model (Fig. 6). The 
encoder extracts informative features from the input 
image and is adopted from the VGG-16 architecture 
(Simonyan and Zisserman, 2014). The decoder 
upsamples the features to the original input resolution. 
This ensures that the output segmentation mask has 
pixel-to-pixel correspondence with the input image. 
The surrogate techniques, which are introduced in the 
following sections, can be exploited when depth sensing 
is not viable at test time. The effi  ciency of these techniques 
are benchmarked against a pure RGB-based model (Fig. 
6(a)) and an RGB-D fusion network (Fig. 6(b)) that can 
be used when depth data are available at test time. This 
fusion network has two encoders dedicated to the RGB 
and D modalities. The feature maps from the last layers 
of the two encoders are fused before being passed on to 
the shared decoder layers.

3.1  Modality hallucination (MH)

MH is a surrogate technique that uses absolute depth 
or surface normal data (denoted by D in this study) at 
training time as side information to produce a more 
informed test-time RGB only network. In this technique, 
an access to paired RGB and D images is presumed 
at the training time. Apart from the usual RGB and D 
branches, a third encoder, known as the hallucination 
branch, is also introduced (Fig. 7(a)), which takes RGB 
images as input. A regression-based hallucination loss is 
introduced to facilitate an effi  cient information sharing 
between the two modalities, as shown in Eq. (1).

2
2|| ||  D HhallucinationL                       (1)

 where D  and H  are mid-level features from the D 
and hallucination branches, respectively. This loss is 

Fig. 4  Category-wise training and test data size for diff erent 
            cross-validation rounds
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minimized alongside a standard supervised loss over the 
class labels, ensuring that the mid-level convolutional 
features learned by the hallucination and D branches 
mirror each other. In consequence, the D branch 

becomes redundant at the end of the training process.  
This is because the same mid-level features, which 
were hitherto generated by the D branch, can now be 
hallucinated by the hallucination branch using RGB 

(a) RGB image

(b) Absolute depth map (c) Surface normal map

Fig. 5  Various depth encoding techniques: (a) RGB image of the scene, (b) absolute depth-based encoding (ADE), (c) surface 
             normal-based encoding (SNE)

 (a) RGB-based model

(b) RGB-D fusion network

Fig. 6   Network architectures that are used as benchmarks to evaluate the effi  cacy of the proposed surrogate techniques. D indicates 
            absolute depth and surface normal maps for ADE and SNE, respectively
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data as network input. Thus, at test time, the D branch 
can be discarded, and the mid-level activations from the 
hallucination branch can be fused to the RGB branch to 
emulate a multi-modal fusion (Fig. 7(b)). This gives rise 
to a more informed test-time RGB-based network which 
signifi cantly outperforms a standard benchmark model 
trained solely on RGB data, as illustrated in Section 4. 
This eliminates the need for depth sensing at test time 
without any appreciable loss of segmentation accuracy.

3.2    Monocular depth estimation (MDE)

The goal of MDE is to predict pixel-wise depth 
values corresponding to a given RGB image. Traditional 
depth estimation methods such as structure from motion 
(Özyeşil et al., 2017; Ullman, 1979; Wu et al., 2011; 
Schonberger and Frahm, 2016) and stereo matching (Cao 

et al., 2015; Zou and Li, 2010; Lazaros et al., 2008) rely 
on multiple views of a scene to generate a sparse depth 
map. However, many real-time inspection applications 
require depth map to be estimated from a single 
viewpoint. The recent developments in deep learning-
based computer vision techniques have shown great 
promise of enabling this challenging task by predicting 
a dense depth map from a single frame RGB image in 
an end-to-end manner. This study explored two diff erent 
approaches to this end based on convolutional neural 
network (CNN) and generative adversarial network 
(GAN). In the case of ADE, the reconstructed depth 
maps are paired with the corresponding RGB frames 
to be used as inputs for the fusion-based segmentation 
models. However, the SNE requires the depth images to 
be converted to surface normal maps before being fed to 
the fusion network.

(a) At training time

(b) At test time
Fig. 7   The schema of modality hallucination (MH). The network is trained to counterfeit intermediate D features from input RGB 
           image, which makes depth sensing redundant at test time. D indicates absolute depth and surface normal maps for ADE 
             and SNE, respectively



62                                              EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 22

3.2.1    CNN-based approach

A standard encoder-decoder-based CNN with 
skip connections (Fig. 8) is used to predict detailed 
high-resolution depth maps from single frame RGB 
images (Table 1). The encoder is borrowed from the 
DenseNet-169 architecture (Huang et al., 2017) pre-
trained on ImageNet dataset (Deng et al., 2009). The 
decoder, on the other hand, comprises a series of up-
sampling layers. The baseline architecture is adopted from 
Alhashim and Wonka (2018) with some modifi cations.  
In the original study, the resolution of the fi nal output 
depth maps was half the input resolution. However, the 
fusion strategies proposed in this study require that the 
input RGB and depth images have the same resolution. 
To address this specifi c need, this study appended an 
additional upsampling layer at the end of the network 
to ensure that the output resolution matches that of the 
input. The predicted depth values are regressed to ground 
truth depths by minimizing a composite loss function 
consisting of an L1 loss defi ned on the depth values, an 
L1 loss defi ned over the gradients of depth image, and a 

structural similarity loss (Alhashim and Wonka, 2018). 
The effi  ciency of this approach is discussed in Section 
4.1.

3.2.2  GAN-based approach

A number of studies (Groenendijk et al., 2020; 
Kwak and Lee, 2020; Lore et al., 2018; Kumar et al., 
2018; Tan et al., 2019), on the other hand, resorted to 
GAN for MDE. A GAN consists of a pair of neural 
networks known as the generator and the discriminator, 
which compete with each other. The generator is like 
a counterfeiter who tries to generate some fake depth 
images, and the discriminator is like the cop who tries 
to catch the counterfeiter. In the training phase, the 
generator becomes better and better at producing more 
realistic depth images until it can produce a perfect depth 
image, which fools the discriminator into believing that 
it is a real depth image. The same encoder-decoder 
network described in Section 3.2.1 is used in this study 
as a generator to produce artifi cial depth maps, which are 
then classifi ed by a discriminator as real or fake (Fig. 9).

Table 1   Network architecture for the CNN used in MDE. The encoder is adopted from the DenseNet-169 (Huang et al., 2017). The 
         upsampling layers incorporate bilinear upsampling. Each Conv(B) convolutional layer is followed by a leaky ReLU 
               activation

Layer Output Operation
Input 432×768×3 −

Conv(1) 216×384×64 DenseNet Conv1
Pool(1) 108×192×64 DenseNet Pool1
Pool(2) 54×96×128 DenseNet Pool2
Pool(3) 27×48×256 DenseNet Pool3
Conv(2) 13×24×1664 Convolution 1×1 of DenseNet Block4
Up(1) 27×48×1664 Upsample 2×2

Concat(1) 27×48×1920 Concatenate Pool3
Up(1)-Conv(A) 27×48×832 Convolution 3×3
Up(1)-Conv(B) 27×48×832 Convolution 3×3

Up(2) 54×96×832 Upsample 2×2
Concat(2) 54×96×960 Concatenate Pool2

Up(2)-Conv(A) 54×96×416 Convolution 3×3
Up(2)-Conv(B) 54×96×416 Convolution 3×3

Up(3) 108×192×416 Upsample 2×2
Concat(3) 108×192×480 Concatenate Pool1

Up(3)-Conv(A) 108×192×208 Convolution 3×3
Up(3)-Conv(B) 108×192×208 Convolution 3×3

Up(4) 216×384×208 Upsample 2×2
Concat(4) 216×384×272 Concatenate Conv1

Up(4)-Conv(A) 216×384×104 Convolution 3×3
Up(4)-Conv(B) 216×384×104 Convolution 3×3

Up(5) 432×768×104 Upsample 2×2
Conv3 432×768×1 Convolution 3×3



No. 1                     Tarutal Ghosh Mondal and Mohammad Reza Jahanshahi: Depth hallucination for multimodal damage segmentation                        63

The discriminator in this study, which facilitated this 
adversarial training, is adopted from the classical 
CycleGAN paper (Zhu et al., 2017). The performance of 
the GAN-based approach is described in the following 
section.

4     Results and discussions

This section discusses the results of the deep learning 
techniques presented in Section 3. First, the performance 
of the CNN and GAN-based MDE is evaluated. 
Subsequently, the effi  ciency of MH and MDE-based 
surrogate approaches is assessed, and the best strategy is 
identifi ed based on accuracy and processing speed.

4.1  Comparing the Performance of CNN and GAN-
        based MDE

This section presents the results of CNN- and GAN-
based MDE for depth estimation from a single RGB 
frame. Traditional deep learning algorithms require 
that the input data are suitably normalized before being 
fed into a deep learning model. Therefore, the ground 
truth and the estimated depth values were normalized 
between 0 and 1 in this study before computing the 
depth estimation accuracy. After this normalization, the 
estimated depth values were compared with the ground 
truth depths, and the average root mean square errors for 

fi ve-fold cross-validations were observed to be 0.0435 
and 0.0452 for the CNN- and GAN-based approaches, 
respectively. This indicates that adversarial training 
was not of any signifi cant help, and therefore was not 
considered for any subsequent analysis. A few examples 
of the depth maps generated by the CNN- and GAN-
based approaches are shown in Fig. 10 side by side with 
the corresponding RGB and ground truth depth images 
to demonstrate the effi  ciency of this technique.

4.2  Comparing the Performance of MH and MDE-
       based Surrogate Techniques

The main purpose of invoking MH and MDE was 
to create proxies for real depth sensing at test time. 
The effi  ciencies of these techniques were evaluated in 
terms of intersection over the union (IoU) between the 
predicted and target damage regions. The overall IoU, 
which is the mean of class-specifi c IoUs, are shown in 
Fig. 11. The small squares inside the rectangular boxes 
represent the mean overall IoU values produced by all 
cross-validation rounds. On the other hand, the horizontal 
lines inside the boxes represent the median values. The 
upper and lower sides of the rectangular boxes denote 
one standard deviation on either sides of the mean 
values. Last but not least, the whiskers protruding out of 
the boxes represent the minimum and maximum values. 
It is observed that, in the case of ADE, RGB-DMH and 

 Fig. 8  CNN-based monocular depth estimation

 Fig. 9  GAN-based monocular depth estimation
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Fig. 10  Examples of monocular depth estimation (MDE) using CNN and GAN-based approaches

RGB-DMDE have comparable accuracies, both being in 
the same ballpark with the RGB-D approach. In the case 
of SNE, however, RGB-DMH suff ered a 4% drop in IoU 
vis-à-vis the RGB-D approach. Nonetheless, this IoU is 
still streets ahead of that of a single-modality RGB-based 
model. Besides, RGB-DMH demonstrated a clear edge 
over RGB-DMDE for this encoding technique in terms of 
segmentation accuracy and robustness as measured by 
the standard deviation of IoU values (Table 2).

On the other hand, in terms of processing speed, 
it was observed (Fig. 12) that RGB-DMH off ers a 
major advantage for both ADE and SNE. It requires 
a processing time that is even lower than the RGB-D 
network and is at par with a pure RGB-based model 
on an NVIDIA Quadro RTX 8000 GPU. This can 
be attributed to the additional preconditioning (e.g., 
normalization of image tensor) of depth input that is 
necessitated by RGB-D but obviated by the RGB-DMH 
approach. It is particularly advantageous for SNE, where 

 Fig. 11   Accuracy of RGB-DMH and RGB-DMDE as compared to 
     RGB-D. D indicates absolute depth and surface 
              normal maps for ADE and SNE, respectively

Table 2   IoU mean and standard deviation values for diff erent fusion architectures. D indicates absolute depth and surface normal 
               maps for ADE and SNE, respectively

     RGB  ADE                         SNE

- RGB-D RGB-DMH RGB-DMDE RGB-D RGB-DMH RGB-DMDE

IoU Mean 0.690 0.880 0.874 0.873 0.932 0.891 0.876
IoU Std. Dev. 0.044 0.041 0.050 0.049 0.027 0.019 0.035
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Fig. 12 Processing time for RGB-DMH and RGB-DMDE as 
                compared to RGB-D. D indicates absolute depth and 
                  surface normal maps for ADE and SNE, respectively.

(a) ADE (b) SNE

Fig. 13   Class-wise accuracy of RGB-DMH as compared to RGB-D and RGB-based networks. D indicates absolute depth and surface 
              normal maps for ADE and SNE, respectively

considerable time (0.316 seconds/image on average) is 
expended in surface normal estimation from raw depth 
measurements. This step becomes inessential when 
MH is invoked.  On the downside, it requires a training 
time that is 2.6 and 1.3 times higher than the RGB and 
RGB-D networks, respectively. Nevertheless, it leads to 
a win-win situation on many counts as it increases the 
accuracy at no additional cost of test-time processing 
speed. However, the RGB-DMDE technique requires 
considerably higher processing time, more so in the 
case of SNE. This can be attributed to the multi-stage 
process involving depth prediction, surface normal 
estimation, and semantic segmentation. Therefore, in 
the overall analysis, it can be concluded that RGB-DMH 
has a comparative advantage over RGB-DMDE in terms of 
both accuracy and processing speed, particularly in the 
case of SNE.

 This study went a step further and looked into 
the class-specifi c IoU as depicted in Fig. 13. It was 

observed that RGB-DMH does not provide any signifi cant 
advantage for the segmentation of spalling. However, 
when it comes to exposed or buckled rebars, RGB-
DMH turns out to be a huge benefactor, irrespective of 
the encoding technique. It even exceeds the test-time 
performance of the RGB-D approach in case of these 
two damage categories by ably compensating for the 
lack of D data, as demonstrated qualitatively in Fig. 14. 
This can be attributed to the auxiliary unsupervised 
reconstruction loss, the minimization of which acts as a 
regularizer to enhance the generalization performance of 
the network (Le et al., 2018). Altogether, this implies that 
depth-sensing at test time is not indispensable. On the 
contrary, depth sensing can be surrogated at test time by 
employing state-of-the-art MH techniques. The authors 
believe that this is a signifi cant addition to the existing 
knowledge base and will go a long way to enhance the 
effi  ciency of robotic inspection in the time to come.

5   Conclusions

This study leveraged computer-generated visual 
inspection data to demonstrate that RGB-D fusion can be 
achieved without any test-time physical depth-sensing 
leading to a deep learning-based damage segmentation 
framework that is more accurate than the traditional 
RGB-based approaches. A couple of surrogate techniques 
based on MH and MDE are explored to concoct depth 
information at test time from the corresponding RGB 
frame. It was observed that RGB-DMH is more accurate 
than the RGB-DMDE approach. Not just that, it is even 
more accurate than the RGB-D approach in the case of 
relatively severe damage categories such as exposed 
and buckled rebars. In terms of processing speed also, 
it is faster than RGB-DMDE and even RGB-D, having a 
processing time comparable to a single-modality RGB-
based network. On the whole, this study is hoped to 



66                                              EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 22

blaze a new trail in multimodal inspection leading to 
more resilient civil infrastructure systems. Validation 
of the proposed approach with real RGB-D data from 
various structural systems is scope for future work.

Acknowledgement

This study was supported in part by a fund from 
Bentley Systems, Inc.

References

 ACI 318- 11 (2011), Building Code Requirements for 
Structural Concrete, American Concrete Institute, USA.
Alexander QG, Hoskere V, Narazaki Y, Maxwell A, 
Spencer BF (2022), “Fusion of Thermal and RGB Images 

for Automated Deep Learning Based Crack Detection 
in Civil Infrastructure,” AI in Civil Engineering, 1(1): 
1–10.
Alhashim I and Peter W (2018), “High Quality 
Monocular Depth Estimation  via Transfer Learning,” 
arXiv preprint arXiv:1812.11941.
Bhoi A (2019), “Monocular Depth Estimation: A 
Survey,” arXiv preprint arXiv:1901.09402. 
Cao ZL, Zhong-Hong Y and Hong W (2015), “Summary 
of Binocular Stereo Vision Matching Technology,”  
Journal of Chongqing University of Technology (Natural 
 Science), 29(2): 70–75.
Chang A, Dai A, Funkhouser T, Halber M, Niessner 
M, Savva M, Song S, Zeng A and Zhang Y (2017), 
“Matterport3D: Learning from RGB-D Data in Indoor 
Environ ments,” International Conference on 3D Vision 
(3DV).

 Fig. 14  Sample segmentation results. Magenta color denotes spalling, yellow color denotes exposed rebars, cyan color denotes 
               buckled rebars. D indicates absolute depth and surface normal maps for ADE and SNE, respectively

Test image

Ground truths

RGB

RGB-D
(ADE)

RGB-DMH
(ADE)

RGB-D
(SNE)

RGB-DMH
(SNE)



No. 1                     Tarutal Ghosh Mondal and Mohammad Reza Jahanshahi: Depth hallucination for multimodal damage segmentation                        67

Cheng Y, Cai R, Li Z, Zhao X and Huang K (2017), 
“Locality-Sensitive Deconvolution Networks with Gated 
Fusion for RGB-D Indoor Semantic Segmentation,” 
Proceedings of the IEEE Conference on  Computer 
Vision and Pattern Recognition, 3029–3037.
Deng J, Dong W, Socher R, Li LJ, Li K and Fei-Fei L 
(2009), “ImageNet: A Large-Scale Hierarchical Image 
Database,” 2009 IEEE  Conference on Computer Vision 
and Pattern Recognition, IEEE, 248–255.
Elkins EB (2020), “Simulating Destruction Eff ects in 
SideFX Houdini,” Undergraduate Honors Theses, Paper 
524. https://du.etsu.edu/honors/524
Gao Y and Khalid MM (2022), “Deep Learning Visual 
Interpretation of Struc tural Damage Images,” Journal of 
Building Engineering, p. 105144.
 Groenendijk R (2020), “On the Benefi t of Adversarial 
Training for Monocular Depth  Estimation,” Computer 
Vision and Image Understanding, 190, p. 102848.
Gunasekar K, Qiang Q and Yezhou Y (2020), “Low 
to High Dimensional Modality Hallucination Using 
Aggregated Fields of View,” IEEE Robotics and 
Automation Letters,  5(2): 1983–1990.
Hazirbas C, Ma L, Domokos C and Cremers D 
(2016), “FuseNet: Incorporating Depth into Semantic 
Segmentation via Fusion-Based CNN Architecture,”  
Asian Conference on Computer Vision. Springer,  213–
228.
Hoff man J, Saurabh G, and Trevor D (2016), “Learning 
with Side Information Through Modality Hallucination,” 
Proceedings of the IEEE Conference on Computer  Vision 
and Pattern Recognition, pp. 826–834.
Huang G, Liu Z, Van Der Maaten L and Weinberger KQ 
(2017), “Densely Connected Convolutional Networks,” 
Proceedings of  the IEEE Conference on Computer 
Vision and Pattern Recognition, 4700–4708.
Kim H, Lee S, Ahn E, Shin M and Sim SH (2021), 
“Crack Identifi cation Method for Concrete Structures 
Considering Angle of View Using RGB-D Camera-
Based Sensor Fusion,” Structural Health Monitoring, 
 20(2): 500–512.
Kumar ACS, Suchendra MB and Mukta P (2018), 
“Monocular Depth Prediction Using Generative 
Adversarial Networks,” Proceedings of the IEEE 
Conference  on Computer Vision and Pattern Recognition 
Workshops, 300–308. 
Kwak DH and Lee SH (2020), “A Novel Method for 
Estimating Monocular  Depth Using Cycle GAN and 
Segmentation,” Sensors, 20(9): 2567.
Lazaros N, Georgios CS and Antonios G (2008), 
“Review of Stereo Vision Algorithms: From Software to 
Hardware,” International Journal of  Optomechatronics, 
2(4): 435–462.
Le L, Andrew P and Martha W (2018), “Supervised 
Autoencoders: Improving Generalization Performance 
with Unsupervised Regularizers,” Advances in Neural 

Information Processing Systems, 31.
Lore KG, Reddy K, Giering M and Bernal EA (2018). 
“Generative Adversarial Networks for Depth Map 
Estimation from RGB Video,” Proceedings of the IEEE 
Conference on Computer Vision and Pattern  Recognition 
Workshops, 1177–1185.
Mondal TG (2021), “Development of Multimodal 
Fusion-Based Visual Data Analytics for Robotic 
Inspection and Condition As sessment,” PhD Thesis, 
Purdue University, USA.
Mondal TG and Jahanshahi MR (2020), “Autonomous 
Vision-Based Damage Chronology for Spatiotemporal 
Condition Assessment of Civil Infrastructure Using 
Unmanned Aerial Vehicle,” Smart Structures and 
Systems, An International Journal,  25(6): 733–749.
Mondal TG and Jahanshahi MR (2022), “Applications 
of Depth Sensing for Advanced Structural Condition 
Assessment in Smart Cities,” The Rise of  Smart Cities, 
Elsevier, 305–318.
Mondal TG, Jahanshahi MR, Wu RT and Wu ZY (2020), 
“Deep Learning-Based Multi-Class Damage Detection 
for Autonomous Post-Disaster Reconnaissance,” 
Structural Control and Health Monitoring, 27(4): e2507.
NCREE (2016), 2016 Taiwan Meinong Earthquake. 
https://datacenterhub.org/ deedsdv/publications/
view/534.
Ophoff  T, Kristof VB and Toon G (2018), “Improving 
Real-Time Pedestrian Detectors with RGB+ Depth 
Fusion,” 2018 15th IEEE International Con ference on 
Advanced Video and Signal Based Surveillance (AVSS), 
IEEE, 1–6.
Özyeşil O, Voroninski V, Basri R and Singer A (2017), 
“A Survey of Structure from Motion,” Acta Numerica, 
26: 305–364.
Park SJ, Ki-Sang H and Seungyong L (2017), “RDFNet: 
RGB-D Multi-Level Residual Feature Fusion for Indoor 
Semantic Segmentation,” Proceedings of the IEEE 
 International Conference on Computer Vision, 4980–
4989.    
Schonberger JL and Jan-Michael F (2016), “Structure-
from-Motion Revisited,” Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 
4104–4113.
Schwarz M (2018), “RGB-D Object Detection and 
Semantic Segmentation for Autonomous Manipulation 
in Clutter,” The International Journal of Robotics 
Research,  37(4-5): 437–451.
Shah P, Pujol S, Puranam A and Laughery L (2015), 
Database on Performance of Low-Rise Reinforced 
Concrete  Buildings in the 2015 Nepal Earthquake, 
https://datacenterhub.org/resources/238.
Sim C, Villalobos E, Smith JP, Rojas P, Pujol S, Puranam 
AY and Laughery L (2016), Performance of Low-rise 
Reinforced Concrete Buildings  in the 2016 Ecuador 
Earthquake, https://datacenterhub.org/resources/14160. 



68                                              EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 22

Simonyan K and Zisserman A (2014), “Very Deep 
Convolutional Networks for  Large-Scale Image 
Recognition,” arXiv preprint arXiv:1409.1556.
Tan DS, Yao CY, Ruiz Jr C and Hua KL (2019), “Single-
Image Depth Inference Using Generative Adver sarial 
Networks,” Sensors, 19(7): 1708.
Ullman S (1979), “The interpretation of structure from 
motion,” Proceedings of  the Royal Society of London, 
Series B. Biological Sciences, 203(1153): 405–426.
Wang Z, Zhang Y, Mosalam KM, Gao Y and Huang 
SL (2022), “Deep Semantic Segmentation for Visual 
Understanding on Construction Sites,” Computer-Aided 
Civil and Infrastructure Engineering, 37(2): 145–162.
Wu C (2011), “VisualSFM: A Visual Structure from 
Motion System,” http://www.cs.washington.edu/homes/
ccwu/vsfm.
Xu X, Li Y, Wu G and Luo J (2017), “Multi-Modal Deep 
Feature Learning for RGB-D Object Detec tion,” Pattern 
Recognition, 72: 300–313.
Yeum CM, Dyke SJ, Benes B, Hacker T, Ramirez J, 
Lund A and Pujol S (2019), “Postevent Reconnaissance 
Image Documentation Using Auto mated Classifi cation,” 
Journal of Performance of Constructed Facilities, 33(1): 
04018103.

Zennaro S, Munaro M, Milani S, Zanuttigh P, Bernardi 
A, Ghidoni S and Menegatti E (2015), “Performance 
Evaluation of the 1st and 2nd Generation Kinect for 
Multimedia Applications,” 2015 IEEE International 
Conference on Multimedia and  Expo (ICME), IEEE, 
1–6.
Zhao C, Sun Q, Zhang C, Tang Y and Qian F (2020), 
“Monocular Depth Estimation Based on Deep Learning: 
An  overview,” Science China Technological Sciences, 
1–16.
Zhou S and Song W (2020), “Deep Learning–Based 
Roadway Crack Classifi cation  with Heterogeneous 
Image Data Fusion,” Structural Health Monitoring, p. 
1475921720948434.
Zhu JY, Park T, Isola P and Efros AA (2017). “Unpaired 
Image-to-Image Translation Using Cycle-Consistent 
Adversarial Networks,” Proceedings of the IEEE 
International Conference on Computer Vision, 2223–
2232.
Zou L and Yan L (2010), “A Method of Stereo Vision 
Matching Based on OpenCV,” 2010 International 
Conference on Audio, Language and Image Processing, 
IEEE,  185–190.


