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Triaxial elastoplastic damage constitutive model of unreinforced clay 
brick masonry wall
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Abstract: Due to diff erences in the properties of composition materials and construction techniques, unreinforced masonry 
is characterized by low strength, anisotropy, nonuniformity, and low ductility. In order to accurately simulate the mechanical 
behavior of unreinforced brick masonry walls under static and dynamic loads, a new elastoplastic damage constitutive 
model was proposed and the corresponding subroutine was developed based on the concrete material constitutive model. 
In the proposed constitutive model, the Rankine strength theory and the Drucker-Prager strength theory were used to defi ne 
the tensile and compressive yield surface function of materials, respectively. Moreover, the stress updating algorithm was 
modifi ed to consider the tensile plastic permanent deformation of masonry materials. To verify the accuracy of the proposed 
constitutive model, numerical simulations of the brick masonry under monotonic and cyclic uniaxial tension and compression 
loads were carried out. Comparisons among the numerical and theoretical and experimental results show that the proposed 
model can properly refl ect the masonry material mechanical properties. Furthermore, the numerical models of four pieces 
of masonry walls with diff erent mortar strengths were established. Low cyclic loadings were applied and the results show 
that the proposed constitutive model can properly simulate the wall shear failure characteristics, and the force-displacement 
hysteretic curves obtained by numerical simulation are in good agreement with the tests. Overall, the proposed elastic-plastic 
damage constitutive model can simulate the nonlinear behavior of unreinforced brick masonry walls very well, and can be 
used to predict the structural response of masonry walls.
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 1  Introduction

Brick masonry structures have a long history due 
to cost-effi  ciency, easily accessible raw materials, and 
simple construction operation. They are widely used in 
residential, medical, and educational buildings. Statistics 
show that 40% to 50% of the world′s buildings are brick 
masonry structures. A study on seismic damage showed 
that the damage potential of masonry structures is 
particularly prominent when compared to others. Thus, 

the seismic safety of masonry structures has become a 
common concern in the civil engineering fi eld (Sun and 
Zhang, 2018). Since the 1960s, structural tests have been 
an important part of research on the aseismic theory 
of masonry structures (Sachin et al., 2020; Ge et al., 
2021). Scholars have conducted relevant experimental 
studies on these structures from diff erent perspectives. 
However, the development of fi nite element analysis 
theory of masonry structures has been relatively slow. 
This is due to the complex material composition of 
masonry structure, which makes it diffi  cult to accurately 
establish a reasonable analysis model.

In recent decades, scholars have carried out a lot of 
exploration and research work on masonry structures 
with diff erent fi nite element calculation methods in 
pursuit of the unifi ed goal of calculation accuracy and 
calculation effi  ciency. According to the diff erent analysis 
scales ( Lourenço, 2009; Roca  et al., 2010; Addessi et 
al., 2014), these calculation methods can be divided 
into fi ve strategies: micromechanical, mesoscale, multi-
scale, discrete element and macro-mechanical method. 
The micromechanical method models the mortar and 
block of the wall in detail and selects the appropriate 
material model, and the interaction between the mortar 
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and block is simulated through the face to face contact. 
This contact is considered as a potential fracture and 
slip surface that can simulate the nonlinear behavior of 
the masonry, including all possible failure mechanisms. 
The micromechanical method has fi ne mesh division 
and accurate calculation results, but it needs large-scale 
calculation resources, so it is mainly applicable to the 
analysis of masonry units, and is rarely used in the 
analysis of complete structures. (Agüera et al., 2016). 
The Mesoscale mechanical method is also called the 
micro interface element method. This method is an 
improvement to the micromechanical method; in this 
method, a block can be assumed as an elastic unit or 
rigid body, mortar is assumed to be a zero thickness 
interfacial contact unit, and all nonlinear behavior of the 
model (including tensile, shear and slip and compressive 
failure) are defi ned in the interface unit. This method can 
eff ectively save computing workload, and has been used 
by many scholars. (Lotfi  and Shing, 1997; Lourenco 
and Rots, 1997; Oliveira  and Lourenco, 2004; Sacco 
and Toti, 2010; Macorini and Izzuddin, 2011; Aref and 
Dolatshahi, 2013).

Multiscale modeling can be regarded as an 
intermediate method between macro modeling and micro 
modeling (Massart et al., 2010; Bellis and Addessi, 2011; 
Addessi and Sacco, 2012; Petracca, 2016). This method 
splits the component in length scale and establishes weak 
coupling. The microstructural features are inserted into 
a so-called equivalent volume unit (RVE), which is then 
used as a typical sample of the microstructure to obtain 
the homogeneous response of the macroscopic strain 
fi eld to simulate the equivalent homogeneous medium. 
The model splits the structural problem into two scales: 
an equivalent homogeneous medium is studied on macro 
level, where the constitutive response at each material 
point is derived by homogenizing the stress fields 
computed in a properly selected representative volume 
element at the microscale; this last contains the detailed 
description of the masonry components geometry, 
arrangement and constitutive behavior and is analyzed 
at the microlevel. This method is used to solve linear 
and nonlinear problems with complex microstructure. 
In recent years, the discrete element method has been 
widely used as a new method in seismic assessment 
of masonry structures. In this method, the masonry 
materials are regarded as a collection of block units, 
which are held together by the interaction of the contact 
surfaces between the blocks, which is equivalent to the 
bonding eff ect of the masonry mortar, and the blocks can 
be a rigid body and an elastic body. This method has high 
computational effi  ciency and is widely used in seismic 
assessment and structural safety analysis (Schlegel and 
Rautenstrauch, 2004; Lemos, 2007; Bretas et al., 2014; 
Galvez et al., 2018; Sarhosis and Lemos, 2018).

In order to reduce the calculated amount and save 
computing time, a large number of scholars established a 
macro-mechanical model (Addessi et al., 2002; Berto et 
al., 2002; Karapitta et al., 2011; Abo-El-Ezz et al., 2013; 

Toti et al., 2015). In this method, the masonry structure 
is regarded as equivalent homogeneous anisotropic 
materials, and the mortar and block composition 
materials are no longer distinguished. Although it is 
diffi  cult to establish the homogeneous constitutive 
model of masonry structures due to the diff erences in 
composition materials and construction technology, the 
macro-mechanical model is widely used to analyze the 
real complex structure, because it achieves a reasonable 
balance between calculation accuracy and calculation 
effi  ciency. 

When the macro-mechanical method is applied to 
the analysis of masonry structures, it is mainly used for 
the seismic analysis of the whole structure. Few scholars 
have applied this method to simulate the masonry wall 
components, because it is a challenge for the macro-
mechanical method to reproduce the wall failure 
characteristics and the bearing capacity degradation 
mechanism. In this research, the macro-mechanical 
method is used to study the cyclic response of masonry 
wall components under the action of quasi-static force. 
The masonry elasto-plastic damage material model 
subroutine is developed under the LS-DYNA platform. 

The numerical simulation methods used in other 
materials (such as concrete, rock, and composite 
materials) are not applicable in the static and dynamic 
analyses of masonry structures due to their special 
anisotropic properties. Therefore, the research and 
development of the constitutive model of anisotropic 
materials for masonry have seen signifi cant progress. 
Yue et al. (2012) modifi ed the yield function of the 
concrete plastic damage model using the typical yield 
function model for the masonry material. The modifi ed 
model is used for nonlinear calculation of the pushover 
test of an external brick-reinforced concrete frame. 
The applicability of the modifi ed yield surface plastic 
damage model in the simulation of energy consumption 
and damage mode of a masonry structure is also verifi ed 
using this model. Yang et al. (2013) introduced the 
corresponding model for the damage unit according to 
the masonry damage mechanism. Based on the results of 
the whole stress-strain curve test, the stochastic modeling 
principle and optimization algorithm are determined to 
evaluate the random fi eld and material parameters. The 
results of the stress strain relationship and analytical 
tests are compared to verify the validity of the damage 
unit model. However, it is not clear whether the model is 
applied to the study of masonry tension or shear research. 
Fu and Qian (2018) applied the stress tensor method of 
linear transformation to develop a constitutive model 
for masonry materials. On the basis of two damage 
variables for tension and compression, a new variable is 
introduced that describes the slip failure of mortar seam 
TYPE II. This provides accurate real-time information 
about the distribution state of damage structure and 
weak parts of the structure. Thus, the validity of the 
constitutive model in the repair of structural design and 
usability was verifi ed. 
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Berto et al. (2002) proposed an orthotropic damage 
model for brittle masonry under plane load, and further 
defi ned four independent internal damage parameters, 
namely, axial tension, axial compression, stiff ness 
recovery at fracture closure, and inelastic behavior 
at diff erent coordinate axes. The damage fi eld of the 
material is defi ned by four equivalent stress values. 
The regression path from the eff ective stress to the 
damage stress is given by the product of the damage 
parameter and fourth-order damage eff ect tensor of the 
eff ective stress state. Pelà et al. (2011) used two stress 
transformation tensors related to the tensile stress and 
compressive stress states to establish the orthogonal 
anisotropic behavior and corresponding relation with 
the auxiliary model. Two scalar variables are used to 
monitor local damage under tension and compression in 
a plane stress mapping space. The model may simulate 
the anisotropic damage and consider unilateral eff ect, 
and thus provides a theoretical basis for building a 
continuous damage model of orthotropic materials 
under plane stress conditions. Most of the elastoplastic 
damage constitutive models proposed in the previous 
studies are complicated in numerical processing, low 
in computational effi  ciency, and poor in stability, which 
hinder their application in engineering practice.

Compared with the masonry structural constitutive 
model theory, the constitutive model theory of a concrete 
structure is relatively mature. There are many studies 
on the strength failure criterion of concrete, elasto-
plastic constitutive theory, and mechanics of fracture 
damage yielded convincing results. To study the shear 
performance and failure mode of brick masonry walls 
under low cyclic reciprocating loads, this study modifi ed 
and enriched the elastic-plastic damage formula proposed 
by Faria and Oliver et al. (Cervera et al.,1996; Faria et 
al., 1998, 2000, 2004), and developed an elastic-plastic 
damage constitutive model that can take into account the 
anisotropy characteristics of brick masonry materials. 
Considering the diff erent properties of masonry in tensile 
and compressive conditions, the yield functions of tensile 
and compressive conditions are defi ned using Rankine 
strength theory and DP strength theory, respectively. 
Two diff erent scalar damage variables are introduced 
into the stress-strain relationship to describe the damage 

process of tensile and compressive strain states. In this 
study, the plastic strain evolution equation is established 
in the eff ective stress space and the empirical expression 
is used to calculate the plastic strain. In addition, the 
Heaviside function was used to consider the unilateral 
eff ect of masonry materials under cyclic loading, and 
the stress update algorithm process was necessarily 
modifi ed to enable the constitutive model to consider 
the tensile plastic permanent deformation of masonry 
materials, which is presented in Section 2.

In Section 3, to verify the correctness of the proposed 
constitutive model, the numerical simulation of the brick 
masonry under monotonic and cyclic uniaxial tension 
and compression loads is described. Section 4 presents 
a series of numerical simulations that were carried out 
on four masonry wall specimens with diff erent mortar 
strength under the action of low cyclic reciprocating 
loads to verify the applicability of the model in response 
to the structure of the wall specimens. Finally, concluding 
remarks are given in Section 5.

2  Basic theory of elastoplastic damage model

2.1  Fundamentals of continuous damage mechanics

During the manufacturing process of engineering 
materials, various micro-defects (micro-cracks and 
micro-voids) occur inside the materials. The use of these 
engineering structures causes the micro-defects to further 
expand or develop, resulting in the gradual deterioration 
of mechanical properties of the materials (Shang et al., 
2020; Liu et al., 2020; Gong et al., 2021; Li and Tong, 
2021). The internal defects of the material are called 
“damages”. The expansion of internal defects under the 
action of external forces is called damage evolution, 
which is an irreversible and energy-consuming process. 
The brick masonry material produces irreversible 
deformation and exhibits ductile behavior under lateral 
pressure. The plasticity theory clearly refl ects these 
properties, but the plasticity model does not indicate the 
decline in stiff ness of the masonry materials. The damage 
theory describes the development of internal defects in 
materials, where the model based on the theory refl ects 

 (a) Elastoplastic material                     (b) Elastic damage material               (c) Elastoplastic damage material
Fig. 1  Strength and stiff ness anistropy
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the decrease in stiff ness. However, it cannot replace the 
plasticity theory to explain the irreversible deformation 
of materials. Based on the combination of plasticity and 
damage theories, the constitutive model for the elasto-
plastic damage of masonry is derived from stiff ness 
degradation and plastic deformation. Figure 1 depicts 
the anisotropic characteristics of strength and stiff ness 
of various materials.

Ac cording to the theory of continuous damage 
mechanics (as shown in Fig. 2),  the damage variable d  is 
used to describe the process of formation, development, 
and fi nal failure of micro defects.

S Sd
S


                                 (1)

When isotropic damage is considered, it is assumed 
that the microdefects are uniformly distributed in all 
directions. Here,   is the nominal stress (Cauchy stress) 
on the initial section S . Due to the existence of damage, 
the actual stress on the undamaged section S  is

 1 d
 


                               (2)

where the damage variable  0,  1d  , 0 represents that 
the material is intact and 1 represents the total damage of 
the material, and   refers to the eff ective stress.

It is assumed that the material in the undamaged area 
obeys the general stress-strain relationship. Even though 
the damage in the material is only related to the elastic 
deformation, it also aff ects the plastic deformation of the 
material. The total strain tensor is the sum of the elastic 
strain tensor and plastic strain tensor in the nonlinear 
development of the material under stress

e p                                   (3)

where ε is the total strain tensor; εe is the corresponding 
elastic strain tensor; and εp is the corresponding plastic 
strain tensor.

According to the strain equivalence principle of 
eff ective stress,   is expressed as

   p p
0, : D                            

(4)

where 0D  is the elastic constitutive matrix of the 
undamaged material. Thus, the Cauchy stress is 
expressed as

 p
01 1 :d d    D      

                 
(5)

The above equation is the stress-strain relationship 
with damage variables termed as the damage constitutive 
relationship.

2.2  Eff ective stress split and Helmholtz free energy 
        potential

The masonry materials exhibit strength anisotropy 
and stiff ness (unilateral eff ect) under the action of 
tensile and compressive stress, which is similar to the 
characteristics of concrete. Therefore, this study adopts 
the spectral split method of Faria and Oliver for eff ective 
stress to refl ect these characteristics. It is assumed that 
the tensile stress causes tensile damage, and compressive 
stress causes compression damage. In complex loading, 
the damage is a combination of tensile and compression 
damage.

T
i i i

i

   P P  
                        

(6)

                                   (7)

where   and   represent the tension and compression 
components of eff ective stress, respectively, .
is the Macaulay parentheses for the calculation of 

  / 2x x x  , and iP  is the unit column vector in 
the principal direction of the eff ective force.

Material damage is an irreversible thermodynamic 
process, which is a purely mechanical isothermal process 
upon the exclusion of heat dissipation. The Helmholtz 
free energy potential   of the material for strain tensor 
ε, and damage variable d  state function (Lemaitre, 
2000) is expressed as:

0( ,  ) (1 ) ( )d d                      (8)

where 0 )(   is the initial Helmholtz free energy 
potential of the damaged material, which is also the 
equal strain energy W, given by

Fig. 2  Principle of eff ective stress and strain equivalence
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2

W   E C          
       

(9)

Based on the positive and negative components of 
eff ective stress tensor, the initial Helmholtz free energy 
potential of the material is split into 0  , and 0  , which 
is expressed as the sum in the following equation.

   0 0 0 0                             (10)

In order to describe the damage evolution, which 
is an irreversible thermodynamics process of energy 
dissipation, the tensile damage variable d   and 
compression damage variable d   are introduced to 
describe materials Helmholtz free energy potential 
degradation under the eff ect of force    and  .

As the initial Helmholtz free energy potential 0   
and 0   are nonnegative values, the damage variable can 
be described as below:

 0 ,  1d d                          
(11)

Then, the total Helmholtz free energy potential of 
the material can be expressed as:

       0 0

( ,  , ( ,  ( ,  

1 1 0

) ) )d d d d

d d

  

 

     

   

  

   

    

  

        

(12)

2.3  Damage variables and their evolution criteria

By the introduction of the tensile damage variable d   
and compression damage variable d  , the evolution law 
of the two damage variables is given to form a complete 
elastic-plastic damage stress-strain relationship. In this 
study, the damage evolution criteria were established 
based on the energy release rate of the damage (Li 
and Wu, 2005; Wu et al., 2006). The damage energy 
release rate controls the damage evolution alone. The 
nature of the damage is not aff ected by the equivalent 
transformation. This study adopted the equivalent 
expression given by Faria and Oliver et al. (1998).

The damage energy release rates under tension (Y  ) 
and compression (Y  ) are defi ned as follows:

T 1
0( ) ( )Y

d d
  

   
 

 
    

 
D  

       
(13a)

 oct oct3  Y K
d d
   




 

 
     

       
(13b)

where oct  is the octahedral normal stress, oct  is the 
octahedral shear stress, and K  is the material constant.

0

0

1
2

1 2
R

K
R


 


                         (14)

where 0R  is the ratio of the concrete biaxial isobaric 
strength to the uniaxial compressive strength.

Based on the defi nition of equivalent stress and the 
technique inspired by Simo and Ju (1987, 1989), two 
independent damage potential functions, G  and G  are 
introduced to determine the damage state of the material. 
G  is used for stretching, and G  for compression:

      0n nG Y r g Y g r        ，         (15a)

      0n nG Y r g Y g r        ，         (15b)

 , 0 nG Y r   
 

and  , 0nG Y r     is used to 
determine the damaged surface, Y   at a certain moment 
of n  represents the damage energy release rates of 
the material, the variables nr

  and nr
  represent the 

maximum damage energy release rate obtained before 
time n , and is termed as the historical maximum damage 
energy release rate or current damage energy release 
rate threshold. These parameters control the size of the 
expanded damage surface and are expressed as

  0 0
max 0n n

r max r Y

  


 

，
，                      (16)

The material enters a nonlinear state as the damage 
energy release rate Y   exceeds the threshold of the 
initial damage energy release rate 0r

 . Further damage 
is observed in the material as the damage energy release 
rate Y   exceeds the historical maximum damage energy 
release rate nr

 . The initial damage thresholds of tension 
and compression are the characteristic properties of the 
material. For any time n , 0nr r  . The initial damage 
thresholds of tension and compression are defi ned as

t
0

f
r

E
 

                              
(17)

0
0 0

0

2
3 1 2

R
r f

R
 


                          (18)

where ft and 0f  are the initial yield strength under 
tension and pressure, respectively, and E  is the elastic 
modulus of masonry.

The evolution of the damage variables is obtained by 
the introduction of orthogonal fl ow criteria, which are 
expressed as follows. 
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d gd
Y




 






  

                         
(19)

d
nr                                (20)

where the damage evolution factor d   is a non-negative 
scalar subjected to the loading and unloading rule, and 
expressed according to the Kuhn-Tucker condition:

0d        0G       0d G   

The material is in the stage of damage unloading 
or neutral variable loading for 0G  , 0d   , and 

0d    with no further development of damage. When 
the fracture is under load, 0G  , and 0d   , which 
are obtained by the damage consistency condition 

0G  .
Based on the characteristics of the damage variables 

d  , the potential function  g r   must meet the 
following requirements:

 0 1g r  
      0 0g r  

       0g r  

According to the uniaxial tension and compression 
tests, the basic forms of d   were established. The 
empirical relationship proposed by Oliver et al. (1990) 
and Faria et al. (1998) was used to refl ect the changing 
relationship between the damage variables d   and 
damage energy release rates nr

  :

0
0

0

1 exp 1 ,  n
n

n

r r
d A r r

r r

 
   

 

  
     

           
(21)

 0
0

0

1 1 exp 1 ,  n
n

n

r r
d A A B r r

r r

 
     

 

  
       

   
(22)

where A  is the model parameter for the evolution 
equation of tensile damage, and A  and B  are the 
model parameters for the compression damage evolution 
equation, respectively. 

The fracture energy concept is introduced to the 
parameter to avoid the grid sensitivity of the calculated 
results, which is defi ned as

1

f
2

c t

0.5 0G EA
l f



  
   
                      

(23)

where Gf is the tensile fracture energy of masonry, lc 
is the characteristic length of cracks associated with 

meshing, and 3
cl V , and V  is the entity unit volume 

in the 3 V  term.
Thus, the combined formula for tensile and 

compressive damages proposed by Faria and Oliver et 
al. is

1 1d d                            (24)

2.4  Material yield conditions and loading-unloading 
       criteria

In view of the diff erent yield characteristics, diff erent 
yield surface forms were adopted herein to consider 
the tensile and compressive characteristics of masonry 
materials.

The maximum tensile stress theory proposed by 
Rankine in 1858 was adopted as the tensile criterion for 
the material model. The criterion failed as the maximum 
tensile stress approached the tensile strength in either 
principal stress directions, which is expressed as follows:

  1 t 0ijF f                         
(25)

where 1  is the maximum tensile stress in the direction 
of the principal stress, and ft is the tensile strength of the 
material.

The compression criterion for the material model 
was developed using the Drucker-Prager theory (1952), 
the Von Mises theory of circular partial plane envelope, 
and the Mohr-Coulomb theory of linear meridian 
combination for the formation of the failure envelope. 
The yield surface form in the equivalent stress space is:

   1 2 1 2, 0ijF f I J I J k     
         

(26)

where   and k  are material constants, 1I  is the fi rst 
invariant stress tensor, and 2J  is the partial invariant 

Fig. 3  Yield surface in plane stress space
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stress tensor with octahedral normal stress and shear 
stress ( oct  and oct ) for linear substitution. This is 
further expressed as:

  oct oct 0= = 0ijF K    
          

(27)

where 0
0 0

0

2
3 1 2

R
f

R
 


, and K and 0f  are the constant 

for compression of the material, and initial yield strength, 
respectively.

The shape of the above yield surface function in 
plane stress space is shown in Fig. 3.

As shown in Fig. 4, the material  is in an elastic state 
for the condition of   0ijF  . When    0ijF  , 
the corresponding loading, neutral variable load, and 
unloading are expressed as : 

Loading: Pd 0,  d 0ij ij
ij

F  



 


Neutral variable load: Pd 0,  d 0ij ij
ij

F  



 


Unloading: Pd 0,  d 0ij ij
ij

F  



 


2.5  Solution of plastic strain

In this study, the plastic strain evolution  equation 
was es tablished under the eff ective  stress space. The 
complexity in processing the softening segment is 
avoided by directly applying the plastic mechanical 
method for nonlinear analysis due to its calculation 
effi  ciency (Lee and Fenves, 2001). The empirical 
expression was used to calculate the plastic strain (Faria 
et al., 1998, 2004; Valliappan et al., 1999; Hatzigeorgio 
et al., 2001).

 P 1
0

:
:

:
EH d   D


    
  

               
(28)

For 
:

1

  

, the expression is given by:

 P 1
0: :EH d   D1 1     

            
(29)

where   is the material parameter that controls the 
plastic strain with values, 0  , E  is the elastic 
modulus of the material,  .H  is the Heaviside 
function, .  represent the Macaulay parentheses, :     
is always a non-negative dissipative value, and 1

0
D  is 

the eff ective fl exibility tensor. The formula simplifi es 
the calculation of plastic strain. It has the following 
characteristic features:

1) The establishment method of the plastic model 
in this study greatly improves the calculation effi  ciency 
and numerical stability of the model.

2) Equation (29) is diff erent from the original plastic 
strain expression, which simultaneously considers the 
plastic tensile and compressive strain. The compression 
and tension damage develops under conditions of 0d   ,

  0H d   . When P 0 , the plastic strain develops, 

otherwise P 0 .
The numerical algorithm of the elastic-plastic 

constitutive model is performed to determine the elastic 
trial stress given by Eq. (30).

trial
1 0 :n n   D                        (30)

Substituting the derivative of Eq. (4) into Eq. (29) 
results in the expression for eff ective stress increment 
given by:

 
  
 

P
0

1
0 0

0

  : :

  : :

EH d

EH d





 



 

 

 

D

D D

D

1 1

1 1











 



   

  

    

  

  

      

(31)

The eff ective stress tensor at 1nt 

 
1 0

1
1 1

1 1

:

:
:

n n

n
n n

n n

EH d



 
 

 

   



D



    


  
  

            

(32)

An equivalent linear transformation is performed on 
Eq. (32)

trial
1 1n n                                (33)

where    is the plastic fl ow factor.Fig. 4  Diagram of loading/unloading
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Therefore, the eff ective stress completes an 
incremental step update.

  trial
1

1trial
1

1 :
n

n
n

EH d







  1





         

(34)

2.6  Stress update algorithm of the damage model

To summarize the above theory, the fl ow chart of 
stress updating algorithm for the elastoplastic damage 
constitutive relationship of masonry materials (see Fig. 5) 
is as follows:

Step 0n  :
(i) Set the initial conditions 0 nr r  , 0nr r  , 

0nd   , 0nd   .
Step 1n  :
(ii) According to Eq.  (30), compute the elastic trial 

stress trial
1 0 :n n   D     .

(iii) According to Eqs. (6) and (7), split trial
1 n  into 

 trial
1n



  and  trial
1n



 , evaluate  ijF    using Eqs. (25) 

and (27). Is   0ijF    (or   0ijF   )?
If neither condition is satisfi ed, the plasticity is not 

entered, do not evaluate d  , d  , and P . trial
1 1n n    , 

go to the damage correction step (vi).
Otherwise, step (iv) is executed.

(iv) Compute trial
1n  and trial

1

trial trial
1 1/

n
n n


 1


   . Is 

trial
1

: 0
n

 1


 ? 

Yes: Plastic evolution may occur, admitting
 1 1nH d 

  . Compute   and trial
1ˆ n     with Eqs. (34) 

and (33), step (v) is execut ed.
No: No plastic evolution occurred. trial

1 1n n    , go to 
the damage correction step (vi).

(v) Split ̂  into ˆ   and ˆ  . Compute the damage 
energy release rates  ˆY    and  ˆY    with Eq. (13). 
Is   ˆ nY r    (or   ˆ nY r   )?

Yes: Once either condition is satisfi ed, damage 
evolution occurred, 1 ˆn    , go to the damage 
correction step (vi).

No: No damage evolution occurred, trial
1 1n n     , go 

to the damage correction step (vi).
(vi) Split 1n , into 1n


  and 1n


 .

(vii) Compute 1nY 
  and 1nY 

  according to Eq. (13).

(viii) If 1n nY r 
   or 1n nY r 

  , update damage 

thresholds:  1 1,  n n nr max r Y  
   or  1 1,  n n nr max r Y  

  , 
update damage variables  1 1n nd G r 

   and 
 1 1n nd G r 

   according to Eqs. (21) and (22).
Otherwise, step (ix) is executed.
(ix) Finally, compute the Cauchy stress tensor

   1 1 1 1 1 EXIT1 1n n n n nd d   
           

Under the LS-DYNA platform, a subroutine for 
the elasto-plastic damage model of masonry materials 
is programmed a ccording to the above stress update 
algorithm. Numerical verifi cation and structural response 
analysis under the pseudo-static load of masonry walls 
are carried out using the programmed subroutine.

Fig. 5  Basic fl ow of numerical calculation of elastic-plastic 
             damage constitutive model
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3  Preliminary verifi cation of the model under 
    simple stress

3.1 Uniaxial compression and tension monotonic 
        loading

To verify the correctness of the constitutive model, 
a uniaxial tensile and compressive model of masonry 
materials was established using the masonry  tes t data (Yi 
and Li, 2006) for numerical verifi cation. Solid element 
is adopted to build the model. The size of the specimen 
is 365 mm length × 240 mm width × 746 mm height. 
The elastic modulus of the material is 2704 MPa. The 
Poisson′s ratio is 0.2. The uniaxial compressive yield 
strength fc is 1.30 MPa and the uniaxial tensile yield 
strength ft is 0.224 MPa.

To further verify the validity of the constitutive 
model, the curves obtained by numerical simulation 
herein were compared with the experimental results 
and theoretical formula curves proposed by Zheng et al. 
(2011) and Yang et al. (2013). The theoretical formula 
curve in Fig. 6, which is the masonry tensile constitutive 
curve proposed by Zheng, is based on the tensile stress-
strain curve of concrete and has been improved. The 
theoretical formula takes the rising section as a linear 
line. The falling section takes that of the concrete tension 

curve after parameter correction. It can be seen from 
Fig. 3 that the tensile stress-strain curve acquired from 
the model proposed in this study is in good agreement 
with the theoretical curve, except for the shape of the 
falling section curve.

Figure 7 shows the compressive stress-strain curve 
comparison. The theoretical formula curve in this fi gure 
is the stochastic stress-strain relationship of compression 
put forward by Yang based on the stochastic modeling 
principle and optimization algorithm to determine 
random fi eld parameters and material parameters. 
Compared with the test curve (Yi and Li, 2006), the 
theoretical curve is in good agreement at the rising 
section, but decreases much faster than the test results at 
the falling section. Meanwhile, the curve acquired from 
the model proposed herein shows better agreement with 
the test results at the falling section.

3.2 Uniaxial compression and tension cyclic loading

The whole-process curve of the numerical model 
determined by the method in this study under cyclic 

Fig. 8    (a) Numerical model is repeatedly loaded;  (b) Faria model 
           is repeatedly loaded
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Fig. 6  Uniaxial tensile stress-strain curve

Fig. 7  Uniaxial compression stress-strain curve
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tensile and compressive loads is shown in Fig. 8(a). 
Meanwh ile, the corresponding curve of the F  aria model 
is g iven in Fig. 8(b). Compared with the Faria model 
(1998), the model proposed herein can simultaneously 
consider plastic permanent deformation in both 
compressive and tensile stages. 

The loading sequence for the model is as follows: 
one loading and unloading under tension (OABO1), one 
loading and unloading processes under compression 
(O1CDE), two loading and unloading processes under 
tension (EFGE1), and two loading and unloading 
processes under compression (E1D1H). The structural 
reaction in the loading process is described as follows:

(1) Path OABO1. In section OA, the undamaged 
material showed linear elastic property, and after reaching 
the tensile threshold (point B), the material showed 
softening property (A-B). The comparison between OA 
and BO1 clearly shows that the irreversible damage leads 
to the reduction of material elastic stiff ness. In addition, 
the initial loading point O and unloading point O1 do not 
coincide, indicating that the proposed constitutive model 
can consider the tensile permanent deformation.

(2) Path O1CDE. When the material is subjected 
to compressive loading after the tensile damage, the 
stiff ness returns to the initial stiff ness (O1C//OA, 
unilateral eff ect). Before reaching the compressive 
damage threshold, the material remains in an elastic 
state. After reaching the compressive damage threshold, 
the material shows nonlinear hardening and softening 
phenomenon.

(3) Path EFGE1. During the secondary tensile loading, 
the elastic stiff ness of the material due to irreversible 
damage under compression is further reduced. Under 
the same tensile loading, the loading starting point E and 
unloading point E1 do not coincide.

(4) Path E1D1H. In the process of secondary 
compressive loading, due to the closure of the tensile 
cracks, the compression stiff ness and strength are 
restored (E1D1//ED), but the damage threshold can only 
be restored to the level after the damage of the fi rst 
compression loading.

Comparing Fig. 8(a) with Fig. 8(b), it can be seen 
that the introduction of tensile damage criterion into the 
modifi ed model of plastic fl ow in this study can not only 
account for the compression permanent deformati on but 
also the tensile permanent deformation, so as to obtain 
the shear calculation and analysis ability of masonry 
structure walls.

4  Nonlinear static reaction of masonry walls

4.1  Specimen design

The applicability of the numerical model was verifi ed 
using some specimens described in the literature (Tang 
et al., 2017) for numerical simulation. All the specimens 
have the same dimensions of 1645 mm × 1061 mm × 
240 mm with an aspect ratio of 0.66, as shown in Fig. 9. 
The test specimens were set between the base concrete 
beam and top-loading beam that are cast in-situ with 
C30 concrete. In the numerical simulation, the top beam 
was set to facilitate load application in the model. The 
bottom of the wall was restrained. The bottom beam was 
assumed to be the fi xed boundary, as shown in Fig. 10. In 
this study, four pieces of wall specimens with diff erent 
masonry mortar grades under the same pressure eff ect 
were selected for numerical simulation. The parameters 
are shown in Table 1.

   

Fig. 9  Geometry dimension of the test specimen  

Table 1   Specimen parameters

Number t (mm) Mortar Blocks σv (MPa)

EW-0.4-0-0.3 240 M0.4 MU10 0.3

EW-1.0-0-0.3 240 M1.0 MU10 0.3

EW-2.5-0-0.3 240 M2.5 MU10 0.3

EW-5.0-0-0.3 240 M5.0 MU10 0.3
Note: t is wall thickness; σv is the vertical pressure at the wall top.

Fig. 10  Specimen in numerical simulation
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4.2  Establishment of the numerical model

In this study, a numerical model was established 
to examine the large deformation behavior of brick 
masonry walls using the explicit integration algorithm. 
The universal fi nite element software LS-DYNA was 
used to analyze the bearing and deformation capacities 
of the masonry walls. Solid elements were used to 
build the numerical model and simulate the brick wall. 
The wall facade is divided into 26 × 17 meshes, and it 
is divided into four meshes at the thickness direction. 
The size of each unit is 62 mm × 62.5 mm × 60 mm. 

The loading beam and brick wall are connected parallel 
to each other, The rotation of the loading beam is 
constrained. The rotation and displacement degrees of 
the wall bottom have also been constrained. The loading 
beam is fi rst subjected to a vertical stress of 0.3 MPa 
and the stress remained constant in the test. A cyclic 
horizontal displacement load is then applied to the 
loading beam. The horizontal cyclic load is applied by 
the displacement control method. To keep consistent 
with the experiment, the maximum displacement at 
each stage of the displacement load is set equal to the 
maximum displacement obtained from the experiment at 

Table 2  Con stitutive model parameters of brick block materials

Rd  (kg/m3) E0 (GPa)   PR R0
f0t (MPa) f0c(MPa) β GF (J) Ac Bc  At

EW-0.4 2000 0.80 0.2 1.0 0.056 –0.910 0.89 240 1.1 0.60 0.01

EW-1.0 2000 1.50 0.2 1.0 0.060 –1.157 0.89 240 1.1 0.60 0.01

EW-2.5 2000 1.95 0.2 1.0 0.090 –1.300 0.89 360 1.1 0.60 0.01

EW-5.0 2000 2.40 0.2 1.0 0.130 –1.500 0.89 360 1.1 0.60 0.01

(a) EW-0.4-0-0.3-test                                                                     (b) EW-0.4-0-0.3 -simulation                                          

                                 (e) EW-2.5-0-0.3-test                                                                         (f) EW-2.5-0-0.3-simulation

Fig. 11  Failure pattern in lab test and numerical simulation
 (g) EW-5.0-0-0.3-test                                                                      (h) EW-5.0-0-0.3-simulation  

  (c) EW-1.0-0-0.3-test                 (d) EW-1.0-0-0.3-simulation         
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the corresponding load stage.
In the modeling of brick wall materials, the mortar and 

brick blocks were not distinguished and were assumed 
as homogeneous materials. A total of 11 parameters of 
the constitutive model were determined, including the 
density Rd, elastic modulus 0E , Poisson′s ratio PR, ratio 
of biaxial compression strength to uniaxial compression 
strength 0R , tensile yield strength f0t, compressive yield 
strength f0c, plastic fl ow constant  , fracture energy GF, 
model parameters for compressive damage evolution 
equation Ac and Bc, and model parameter for tensile 
damage evolution equation At. The element is set to fail 
when the maximum tensile stress of the element exceeds 
f0t, or the maximum compressive strain exceeds 0.0023. 
Table 2 shows the parameters of the four pieces of wall 
specimens.

 4.3 Analysis of the numerical simulation results

The failure morphology and load-displacement 
hysteretic curve results of masonry wall specimens were 
compared with the test results, as shown in Figs. 11 
and 12. The original wall test and numerical simulation 
showed shear failure characteristics. The failure patterns 

are in good agreement with each other.
In Fig. 11, the numerical simulation results are the 

max-principal tensile strain distribution cloud map and 
failure element distribution. The analysis results show 
that all the four walls show shear brittle failure, but the 
diff erence is the distribution of shear cracks. For the 
specimen with mortar strength of 0.4 MPa, under the 
action of horizontal reciprocating load, the wall forms 
four max-principa l tensile strain distribution bands at 
the corner, and the angle between the main tensile strain 
bands and the horizontal line is about 55 degrees. The 
four max-principal tensile strain distribution bands do 
not converge in the middle of the wall. When approaching 
the third positive displacement load (+3 mm), the right 
lower end corner element reaches the ultimate tensile 
strain and fails. When approaching the third negative 
displacement (‒3 mm), the left lower end corner element 
begins to fail, and then more units begin to fail. During 
the fi fth reciprocating displacement loading, the wall 
also forms a crack zone in the upper corner. After that, 
the bearing capacity of the wall shows a sharp decline, 
and then fi nally fails. The fracture development process 
and fracture distribution pattern of this specimen are 
almost the same as the experimental results, as shown in 

(a) EW -0.4-0-0.3 contrast fi gure                                                                            (b) EW-1.0-0-0.3 contrast fi gure

(c) EW-2.5-0-0.3 contrast fi gure                                                                                  (d) EW-5.0-0-0.3 contrast fi gure

Fig. 12  Comparison of load-displacement hysteretic curves
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Figs.11(a) and 11(b).
For the specimen with mortar strength of 1.0 MPa, 

the angle between the main tensile strain bands and 
the horizontal line of the wall is about 45 degrees. The 
four distribution bands of main tensile strain show an 
intersection in the middle of the wall, but do not form 
a diagonal connection. Diagonally through cracks 
are formed in the test, which are diff erent from the 
numerical simulation specimens in the shape of crack 
distribution, as shown in Figs. 11(c) and 11(d). For 
the specimen with mortar strength 2.5 MPa, when the 
second positive displacement load reaches 1.6 mm, the 
corner on the right side of the upper end unit fi rst began 
to fail, followed by the left side of the upper unit and 
the right side of the lower unit and the left side of the 
upper unit and the right side of the lower unit, which are 
approximately diagonal cracks. The test and numerical 
results are shown in Figs. 11(e) and 11(f) for contrast.

For the specimen with mortar strength of 5.0 MPa, 
under the action of reciprocating loads, several main 
tensile strain distribution bands are formed on the wall, 
and the angle between the tensile strain bands and the 
horizontal line is about 45 degrees. In the middle of the 
wall, it shows x-shaped intersection phenomenon, which 
is parallel to the angular tensile strain band, but does 
not extend to the diagonal. When the wall is damaged, 
an oblique crack is formed from the upper left side to 
the lower right side, and at the same time, the lower left 
side and the upper right side both show an oblique crack 
of 45 degrees. The numerical simulation test specimen 
fracture development process and fracture distribution 
pattern are almost exactly the same as the experimental 
results, except that the numerical simulation shows 
angular crushing phenomenon while the experiment 
does not, as shown in Figs.11(g) and 11(h).

The comparison of load-displacement hysteretic 
curves of each wall in Fig. 12 show that under the action 
of reciprocating load, the positive ultimate bearing 
capacity is greater than the reversed ultimate bearing 
capacity, the main reason for this phenomenon is that 
the negative ultimate bearing capacity is reduced due to 
the internal damage of the wall caused by the positive 
loading. For specimens with mortar strength of 0.4 MPa 
and 1.0 MPa, when the horizontal displacement at the 
top of the wall is less than 1 mm, the hysteretic loop 
shape is relatively narrow, and the material is in the state 
of linear elasticity. The displacement at the top of the 
wall is 2‒3 mm, reaching the ultimate bearing capacity. 
The mortar strength of the specimen is 1.0 MPa, the 
test wall failure is a diagonally through crack and the 
numerical wall failure is a “> <” crack. Considering the 
size of the crack, the energy consumed by the diagonally 
through crack is generally larger than that of the “> <” 
crack. This helps explain why the hysteresis curve of the 
numerical simulation is not as full as the test curve. As 
for the reason why the test wall shows the diagonally 
through crack, instead of the “> <” crack, the authors 
are not very certain but the material and construction 

uncertainties might partly account for deviation.
For the specimen with mortar strength of 2.5 MPa, 

when the top displacement of the wall reaches 1.4 mm, 
the bearing capacity of the member decreases rapidly 
and then shows a stable state, the main reason for this 
phenomenon is that the load displacement increases 
too much and the material shows strong brittleness. 
For specimens with mortar strength of 5.0 MPa, the 
wall reaches the ultimate bearing capacity when the top 
displacement is close to 3 mm, and then shows reduced 
bearing capacity and stiff ness degradation. Specimen 
comparisons show that, as the masonry mortar strength 
increases, the ultimate bearing capacity of the walls 
increases gradually. The walls with low strength mortar 
(mortar strength of 0.4 MPa and 1.0 MPa) have low 
ultimate bearing capacity and the reciprocating load 
stiff ness degradation rate is slow. For specimens with 
higher mortar strength (mortar strength of 2.5 MPa and 
5.0 MPa), the corresponding ultimate bearing capacity is 
higher and the stiff ness degradation rate is faster.

The comparison results in Fig. 12 show that the 
hysteretic curve of the numerical model has great 
similarity with the test data in initial elastic stiff ness, 
ultimate bearing capacity, stiff ness degradation 
characteristics and hysteretic curve shape. The 
applicability and reliability of the constitutive model are 
verifi ed.

5  Conclusio ns

This study aims to better simulate the nonlinear 
characteristics of masonry materials. The concrete 
damage model proposed by Faria and Oliver is used as 
a reference and further improved. The tensile plastic 
permanent deformation could be now considered. 
To validate the eff ectiveness of the proposed model, 
numerical simulations of the brick masonry under 
monotonic and cyclic uniaxial tensile and compressive 
loads were carried out. Simulation of four pieces of 
masonry walls with diff erent mortar strengths under low 
cycle reciprocating loadings were conducted.

In this study, the plastic evolution equation was 
established in the eff ective stress space. The equations 
of tensile and compressive yield surfaces of the eff ective 
stress were defi ned by Rankine theory and Drucker-
Prager theory, respectively. Meanwhile, the plastic 
deformation was considered by the method of empirical 
expression to avoid the complex processing of the 
softening section. Based on the theory of irreversible 
thermodynamics, the eff ective stress tensor was split into 
two components, and the damage state of the material 
and mechanical eff ect of the structure containing the 
damage was described using the tensile and compressive 
damage variables. The elastic Helmholtz free energy 
was defi ned. Also, the damage criterion was established 
based on the elastic-plastic damage energy release rate. 
The evolution law of damage variables was obtained 
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using the orthogonal law. A double scalar elastic-plastic 
damage model was established based on the basic 
principles of thermodynamics. The model presented 
herein takes into account the strength and stiff ness 
degradation, unilateral eff ect and hysteresis mechanism, 
and is implemented by a user-defi ned material model 
subroutine in LS-DYNA.

The constitutive model proposed in this study is 
used to calculate the masonry uniaxial tensile responses. 
The calculated stress-strain curve obtained refl ects the 
uniaxial tensile failure characteristics of masonry. Before 
reaching the ultimate tensile strength, the stress-strain 
curve of masonry shows a complete linear elastic state, 
after reaching the peak strength, the stress-strain curve 
shows a rapid downward trend, when the tensile strain 
reaches 10 times the peak strength corresponding strain, 
the material tensile strength is almost completely lost. 
Compared with the test data, the compression stress-
strain curve, obtained using the proposed model, shows 
good consistency at the rising phase. Meanwhile, the 
simulation results decrease slower but in a more stable 
way. The two curves intersect at the point ε/εm=3.8, 
after that, the strength of the material declines rapidly. 
Compared with the random damage constitutive model 
proposed by Yang (theoretical formula in Fig. 4), the 
residual strength of masonry materials in the descending 
section is overestimated by the model in this study. 
However, this does not aff ect the application of the 
model in the study of seismic performance of masonry 
structure, because most masonry walls are shear type 
failure, and few are compression type failure.

Furthermore, the numerical results of uniaxial 
compression and tensile cyclic loading show that the 
proposed model can consider the plastic permanent 
deformation under tensile and compressive loads, 
and can well refl ect the hardening, softening, stiff ness 
degradation characteristics of masonry materials, and 
the unilateral eff ect of cyclic loading. 

Finally, four masonry walls with diff erent mortar 
strength are tested and analyzed. The results show 
that the model has successfully reproduced the main 
characteristics of the wall failure in the pseudo-static 
test. Under the action of horizontal reciprocating load, 
all four pieces of walls show shear type failure while 
they showed diff erences at the angle and distribution of 
the shear fractures. By comparing the load-displacement 
curves obtained by numerical simulation with the test 
results, it is found that the model presented herein has 
satisfactory matching eff ects in terms of initial elastic 
stiff ness, ultimate bearing capacity, stiff ness degradation 
mechanism and hysteretic curve shape.

The proposed model requires few input parameters, 
simple calibration, and high computational effi  ciency. 
The above numerical analysis results show that it is a 
suitable and reliable tool to reproduce test results and 
predict the response of masonry walls under pseudo-static 
loads. When the proposed model is used to simulate the 
shear resistance of the wall, the element strain increases 

with the increase of the horizontal displacement, and 
large deformation analysis can only be carried out with 
the help of element failure; otherwise, the element will 
produce abnormal strain and it is diffi  cult to carry out 
subsequent analysis.
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