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Abstract: This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel 
in layered foundation soil with diff erent saturations. The soil is modeled as layered media, and the circular tunnel lining is 
modeled as an infi nite Flügge cylindrical shell. The separation of variables method is used to solve the motion equation of the 
shell, and the wave equation of the soil is solved using the Helmholtz decomposition theorem. A dynamic matrix refl ecting 
the wave vectors of soil layers is established using the transfer matrix method. Based on boundary conditions, the tunnel-soil 
model is coupled using the transformation method of plane wave functions and cylindrical wave functions. The proposed 
model is validated by comparison with existing tunnel models, and the eff ects of saturation and the layered properties of soil 
on the dynamic response of a layered tunnel-soil system is demonstrated via case studies.
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 1  Introduction

Underground railways play an important role 
in alleviating ground traffi  c congestion in densely 
populated cities. However, with an increase in the 
number of underground railway lines, issues related to 
train-induced environmental vibration and long-term 
tunnel settlement in soft soils have become a matter of 
great concern (Lai et al., 2005; Lopes et al., 2016; Di et 
al., 2020b). Train-induced vibration aff ects the everyday 
lives of nearby residents, the functioning of precision 
instruments, and the preservation of ancient buildings. 
It also causes tunnel structure damage and leads to 
increasing tunnel maintenance costs (Zhou et al., 2018; 
Di et al., 2021). Therefore, regarding environmental 
protection and the serviceability of railway tunnels, a 
reasonable understanding of the dynamics of the tunnel-
soil system is required.

Several tunnel models have been established to study 
train-induced vibrations from underground railways. 

Metrikine et al. (2000) proposed the Euler beam model, 
in which a tunnel is simplifi ed as a beam embedded 
in single-phase elastic soil medium. The foundation 
of this model was developed into a layered half-space 
soil foundation (Haak, 2000; Koziol et al., 2008). 
Based on the discrete wavenumber method, Forrest and 
Hunt (2006) established the pipe-in-pipe (PiP) model, 
simplifying the tunnel as an infi nite cylindrical shell 
embedded in a hollow circular cylinder soil foundation. 
 Subsequently, Hussein et al. (2007, 2014), Kuo et al. 
(2011), Clot et al. (2016), Zeng et al. (2014), Di et al. 
(2016, 2020b), and He et al. (2018) further developed 
the PiP model to consider track structure, the double-
deck tunnel, the double-line tunnel, soil saturation, and 
the layered characteristics of soil. He et al. (2019a, 
2019b) and Zhou et al. (2020) used the wave function 
method, considering the characteristics of the saturated 
layered half-space soil foundation, two parallel tunnels, 
tunnel segments,  vehicle dynamics, and rail roughness. 

 Using models based on numerical methods, 
Thiede and Natke (1991) and Gardien and Stuit (2003) 
established the two-dimensional (2D) method and 
three-dimensional (3D) fi nite element (FE) method, 
respectively. To improve the calculation effi  ciency of the 
FE methods, Xie and Sun (2003) and Bian et al. (2012) 
established the 2.5-dimensional (2.5D) FE method based 
on the invariance of tunnel axial direction size. Sheng et 
al. (2005) established the 2.5D  fi nite element-boundary 
element (FE-BE) model using Fourier transform and 
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the discrete wavenumber method,  which uses the 
Green function to express an infi nite fi eld and avoid 
the error of manually setting the boundary. He et al. 
(2017, 2018) further developed the 2.5D FE-BE model, 
considering the characteristics of the saturated layered 
foundation and quasi-rectangular tunnels. In addition, 
Yang and Hung (2001, 2010) proposed a 2.5D fi nite 
element-infi nite element model, Degrande et al. (2006) 
proposed a periodic FE-BE model for subway tunnel 
vibration using   Floquet transform, Nejati et al. (2012) 
proposed a fi nite diff erence model, and Zhu and Liang 
(2020) proposed a fi nite diff erence model  based on fi nite 
element-indirect boundary elements (FE-IBEs).

In addition to the analytical and numerical models, 
 Huang et al. (2015), Yang et al. (2020), and Darli et al. 
(2021) studied the dynamic response characteristics of 
a foundation-tunnel system, using a model test. Based 
on measured data of subway vibrations, Kuppelwiese  
and Ziegler (1996), Madshus et al. (1996), and Hood 
et al. (1996) proposed empirical models.  However, 
these models have the disadvantage of being only 
regionally applicable because they were proposed based 
on measured data from specifi c regional geological 
environments. To improve prediction accuracy by 
combining the advantages of the two types of models, 
Kouroussis et al. (2017) proposed the empirical-numerical 
coupled model for vibration prediction. 

However, the existing tunnel models simplifi ed 
the foundation as a single-phase medium or two-phase 
saturated porous medium, rarely considering soil as a 
three-phase unsaturated medium foundation. Gao et al. 
(2019) analyzed the dynamic response of ground surface 
railways on unsaturated foundations. Di et al. (2020a) 
and Guo et al. (2020) proposed analytical models to 
analyze the dynamic response of tunnels in unsaturated 
full-spaces or half-spaces, respectively. However, in 
practice, the soil foundation is layered, simultaneously 
coexisting as a single-phase medium, saturated porous 
medium, and unsaturated porous medium. Hence, 
the aforementioned models do not suffi  ciently take 
into account these soil properties in their approach to 
modeling.

In this study, an analytical model is proposed for 
evaluating the dynamic response of a tunnel embedded 
in layered foundation soil with diff erent saturations.  The 
circular tunnel lining is modeled as an infi nite Flügge 
cylindrical shell  (Forrest and Hunt, 2006), and the 
foundation soil is modeled as horizontally layered media. 
Based on the boundary conditions, the model is coupled 
in the frequency domain and wave number domain 
using the transfer matrix method and wave function 
transformation method. The eff ect of soil saturation on 
the dynamic response of the tunnel-layered soil system 
is analyzed. The advantage of this analytical model lies 
in its high computational effi  ciency and better simulation 
of realistic soil layers, in which single-phase, two-phase 
saturated, and three-phase unsaturated soils coexist.

2  Tunnel-layered soil model

2.1  Assumptions

The tunnel lining is modeled as an infi nite   Flügge 
thin-walled cylindrical shell composed of homogeneous, 
isotropic, and linear elastic materials. The soil is 
modeled as layered half-space or bedrock covered with 
N horizontal layers with diff erent saturations, as shown 
in Fig. 1.

L1, L2, …, LN+1 represent the soil layer number, 
and LNt represents the number of the soil layer (n = Nt) 
where the tunnel is situated; h1, h2, …, hn represent the 
thickness of soil layers; ht1 and ht2 represent the distances 
from the tunnel center to the upper and lower interface 
of soil layer LNt; sn represents the interface between soil 
layers Ln-1 and Ln.

For model simplifi cation, each soil layer is assigned 
its own coordinate system. x(1), x(2), …, x(N+1) represent 
coordinate values in the independent coordinate system 
of diff erent soil layers. The detailed coordinate system is 
defi ned as follows: (i) the soil layer (n < Nt) above the 
layer in which the tunnel is  situated adopts a Cartesian 
coordinate system, and the coordinate origin is the 
bottom of the soil layer; (ii) the soil layer (n > Nt) below 
the tunnel layer adopts   a Cartesian coordinate system, 
and the coordinate origin is the top of the soil layer; (iii) 
both cylindrical coordinates and Cartesian coordinates 
are used in the soil layer LNt, and their origin is the center 
of the tunnel.

To establish and solve the tunnel-soil model, the 
following assumptions are made for the boundaries:

(1) At the ground surface, stress dissipates to zero 
and the surface is pervious to water and air.

(2) The bottom boundary can be divided into two 
cases: i) the bottom boundary of the model is a half-
space,  and the displacement, stress,  and pore pressure 
are equal to zero at an infi nite distance; ii) the bottom 

Fig. 1  Layered half-space model and coordinate system
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boundary of the model is bedrock, the displacement at 
the interface between bedrock and the soil layer is zero, 
and the interface is impervious to water and air.

(3) The displacement, stress, pore pressure, and 
seepage at the interfaces of diff erent soil layers are 
continuous.

(4) Displacement and stress at the interface of the 
tunnel and soil are continuous, and the tunnel lining is 
impervious to water and air. 

2.2  Total wave fi eld of foundation soil

Before deriving the solution to the tunnel-layered 
soil model in the frequency and wavenumber domains, 
the Fourier transform of time t to frequency ω and the 
Fourier transform of direction z to wave number kz are 
defi ned. In the Cartesian coordinate system, the Fourier 
transform of direction y and wave number ky also is 
defi ned.
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where, the superscript ~ refers to the quantity in the 
frequency domain; the superscript ^ refers to the 
quantity in the z-direction wavenumber domain; the 
superscript — represents the quantity in the y-direction 
wavenumber domain.

To achieve a unifi ed total wave fi eld expression of 
the diff erent media, i.e., single-phase elastic medium, 
two-phase saturated porous medium, and three-phase 
unsaturated porous medium, the total wave fi eld 
expression of unsaturated soil is solved fi rst, after 
which the total wave fi eld of single-phase elastic soil or 
saturated soil can be obtained by parameter degradation.

The practical wave equation for unsaturated soil can 
be written in the form of ub-v-w (Guo et al., 2020):
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where the subscripts s, b, l, and g represent the variables 
of soil grain, soil framework, pore water, and air, 

respectively; the superscripts ′ and ′′ represent the fi rst 
and second derivative, respectively; ub represents the 
displacement vector of the soil framework; v represents 
the relative displacement vector of pore water and 
the solid framework, and w represents the relative 
displacement vector of air and the solid framework; 
and λ and μ represent the Lamé constants of the soil 
framework. The other variables are shown in Appendix A.

The seepage continuity equation and constitutive 
equations in unsaturated soil are as follows:

11 12 13

21 22 23

l b

g b

b b b
b b b

         
         

p u v w
p u v w               (3)

2

(1 )
ij ij ij ij

l g

e ap

p p p

    

 

  
   

                    
(4)

where p represents the pressure of the pore fl uid; ij  
represents the stress on the solid framework; e represents 
the volumetric strain; δij represents the Kronecker 
symbol; and εij repr  esents the displacement components; 
and γ represents the eff ective stress coeffi  cient.

Based on the principle of Helmholtz vector 
decomposition, the displacement components in Eq. (2) 
can be expressed as:
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where the subscripts SH, SV, and P represent the SH 
(shear) wave, SV (shear) wave, and P (compression) 
wave, respectively; and ψ, ϕ, and χ represent the 
potential functions of the soil framework, pore water, 
and air, respectively.

Considering the steady-state response, by substituting 
Eq. (5) into Eq. (2) and performing the Fourier transform 
in Eq. (1-1), the following equations for the frequency 
domain are obtained:
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where, the subscript “,” means that there are two identical 
systems of equations.

To ensure that the diff erential Eq. (6) has non-zero 
solutions, the coeffi  cient determinants of Eq. (6) must 
be equal to zero. Then, the Helmholtz equations can be 
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obtained:
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where kp1, kp2, and kp3 represent the three types of 
longitudinal wave numbers in unsaturated soil, and ks 
represents the transverse wave numbers in unsaturated 
soil.

After substituting Eq. (7) into Eq. (6), the potential 
functions can be expressed as:
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where the expressions of the μ variables are summarized, 
as listed in Appendix B.

After the tota l wave number of the foundation soil 
is solved by Eq. (7), the expression of potential function 
could be defi ned both in the Cartesian coordinate system 
and in the cylindrical coordinate system (Pao et al., 
1973).

As for the dis placement functions of unsaturated soil 
related to the Cartesian coordinate system, the Fourier 
transform in the z direction and the y direction are 
carried out to obtain the expression of the displacement 
component in the frequency domain and double wave 
number domain (z-direction and y-direction wave 
number domain), 
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where 
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in the Cartesian coordinate system, and the stress vector
T
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, excess pore water
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below the tunnel (n < Nt or n > Nt), each layer has two 
horizontal soil interfaces, and hence, there are two kinds 
of waves, i.e., up-going and down-going. The total wave 
fi eld expression can be given as Eq. (15-1). The soil layer 
of the tunnel (n = Nt) has two horizontal soil interfaces 
and a cylindrical interface; hence, there are three kinds 
of wave, i.e., up-going, down-going, and outgoing. The 
total wave fi eld expression can be given as Eq. (15-2).

( ) ( ) u( ) u( ) d( ) d( )

( ) ( ) ( ) ( ) d( ) d( )
t

( ) ( ) ( ) ( ) d( ) d( )
,  ,  

ˆ̂ˆ ( , , , )
ˆ̂ˆ ( , , , ) ,   
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 
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  

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 

 

 

̭

̭

̭

(15-1)
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(15-2)

where vectors 
To o o o o o

1 2 3 4 5=m m m m m mA A A A A A   ,
Td( ) d( ) d( ) d( ) d( ) d( )

1 2 3 4 5=n n n n n nA A A A A A   , 
Tu( ) u( ) u( ) u( ) u( ) u( )

1 2 3 4 5=n n n n n nA A A A A A    are the 
undetermined coeffi  cients of outgoing waves, down-
going waves, and up-going waves, respectively.

Using parameter degradation of the three-phase 
medium, the total wave fi eld expressions for the two-
phase and single-phase medium also can be obtained 
(Guo et al., 2020). In this calculatio  n, if the  unsaturated 
soil parameter Sr approaches Sw0, and the porosity n0 
approaches 0, then Eq. (15) degenerates to the total wave 
fi eld expression of a single-phase elastic medium soil. If 
the unsaturated soil parameters Sr and Se approach 1 and 
As approaches 0, then Eq. (15) degenerates to the total 
wave fi eld expression of two-phase saturated soil.

2.3  Cylindrical shell equations

The vibration characteristics of the tunnel lining 
are simulated using a vibration equation for Flügge 
cylindrical shells. When the radial direction load is 
appl ied at the  invert of the tunnel (as shown in Fig. 1), 
the matrix expression of the shell equilibrium equation 
in the frequency-wavenumber domain can be obtained 
(Forrest and Hunt, 2006):

ˆ ˆ
ˆ ˆ
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mz mz

m m

mrmr

U q

U q

qU

 

                   

H  
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.                         (16)

pressure               vector
T
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and air pressure vector 
T
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in the 

cylindrical coordinate system can be obtained as:
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where the expressions of A and E are summarized, as 
listed in Appendix C.

The many scattering surfaces in the model cause 
diff erent types of waves. For the soil layer above or 



668                                            EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                               Vol. 21

where Û  and q̂  represent the magnitude of 
displacement and stress in the frequency-wavenumber 
domain, respectively; m represents the single 
circumferential mode; and the other variables are 
summarized, as listed in Appendix D. It should be noted 
that when the load moves at a speed of v0, we assume 
z0 = z – v0t to make the quantities in the frequency 
domain time independent and thus obtain the steady-
state solution (Di et al., 2017).

2.4  Solution for particular boundary condi  tions

To solve the coupling of diff erent kinds of waves 
in the same boundary condition, transformation 
relationships between plane waves (up-going and down-
going) and cylindrical waves (outgoing and regular) are 
introduced (Boström et al., 1991):
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where the expressions of d u( , ),  ( , ),  mj y mj y jI k I k h   are 
summarized in Appendix E.

Based on Eqs. (17)–(18), the model is solved by 
coupling the boundary and interface conditions.

2.4.1  Ground surface

According to the boundary and interface assumption 
(1), the following equations can be obtained:
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Substituting Eq. (15-1) into Eq. (19), the relationship 
between d(1)A  and u(1)A  can then be written as:
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     (20)

2.4.2  Model bottom

According to the boundary and interface assumption 
(2), two cases of the bottom boundary of the model can 
be discussed. If the bottom boundary is a semi-infi nite 
space, the displacement, stress, and pore pressure 
dissipate to 0 at infi nite distance, resulting in:

u( 1) ( 1) ( 1)( , , , ) 0, 0N N N
y zA x k k x            (21)

If the bottom boundary is bedrock, the displacement 
at the interface between bedrock and the soil layer is 0; 
the interface is impervious to water and air, resulting in: 
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2.4.3  Interface between soil layers 

In this model, the interface between two adjacent 
soil layers can be divided into two types. 

(i) For the non-tunnel soil layers (n < Nt – 1 and n > Nt), 
there are only two horizontal interfaces (sn-1 and sn). 
According to assumptions (3), the continuity conditions 
of displacement, stress, pore pressure, and seepage 
should be satisfi ed at these interfaces, leading to the 
following equation: 
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where 
T
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Then, according to Eq. (23), the recursion Eq. (24) 
can be obtained by:
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The relationship of the coeffi  cient matrix between 
adja  cent soil layers can be established using the recursion 
Eq. (24). 

Combined with Eqs. (20)–(22) of the ground surface 
boundary and the bottom boundary, the relationship 
between the internal coeffi  cient matrices of the (Nt‒1)th 
layer and the (Nt+1)th layer can be obtained as:
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(ii) For the tunnel soil layer (n = Nt), there is a 
horizontal up interface (sn-1) and a down interface 
(sn). To realize the couplin  g of the model at these two 
soil interfaces, the total wave fi eld expression should 
be unifi ed in the Cartesian coordinate system. By 
substituting Eq. (17) for Eq. (15-2), the expression of the 
displacement, pore pressure, and stress components in 
the Cartesian coordinate system can be written as: 
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According to the assumptions (3), the displacement, 
stress, pore pressure, and seepage at the up horizontal 
interface of the Ntth soil layer are continuous; hence, the 
following equations can be obtained: 
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By substituting Eq. (25) for Eq. (27), the following 
equation can then be obtained:

u( ) d( ) o
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d u t mK A K A K A                 (28)

Similarly, for the down horizontal interface of the 
Ntth soil layer, the displacement, stress, pore pressure, 
and seepage are continuous, resulting in the following 
equations:
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By substituting Eq. (25) into Eq. (29), the following 
equation can then be obtained:

u( ) d( ) o
2 2 2+ 0Nt Nt

d u t mK A K A K A               (30)

2.4.4  Interface between tunnel and soil 

Because the tunnel and soil interface is a cylindrical 
surface, to realize the coupling of the model, the total 
wave fi eld expression should be unifi ed in a cylindrical 
coordinate system. 

Combining Eqs. (28) and (30), the transformation 
relationship between unknown coeffi  cients in Cartesian 
coordinates and cylindrical coordinates can be obtained:
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This can be written as:
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By substituting Eqs. (18) and (32) for Eq. (15-2), the 
expression of displacement, pore pressure, and stress 
components in a cylindrical system can be written as:
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According to the continuity conditions of 
displacement and stress in the soil and tunnel interface, 
as well as the governing equation for the shell in Eq. (16), 
the following equation can be obtained:
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where the origin of the negative signs in Eq. (34) is related 
to the diff erences between the systems of coordinates 
chosen for the tunnel and soil (Forrest and Hunt, 2006).

The condition of imperviousness to water and air can 
be written as:
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By substituting Eq. (33) for Eq. (35), the derivatives 
of Eq. (35)  can be calculated analytically. By combining 
Eq. (34) and Eq. (35), the unknown coeffi  cient

 
o
njA

  
can 

be obtained. After substituting o
njA  for Eq. (24) and 

Eq. (32), the unknown coeffi  cients d( ) u( ),  n nA A  can 
then be obtained. The dynamic response of the system 
in the frequency-wavenumber domain can be obtained 
by substituting o d( ) u( ),  ,  n n

njA A A  for Eq. (15). Finally, 
the dynamic response of the system in the time-space 
domain can be obtained by employing the double inverse 
Fourier transform.

The computation of a (semi)-analytical solution can 
be realized via numerical operation. The discrete Fourier 
transform (DFT) was calculated using a spacing step 
of  Δz = 1 m and a total number of points of Nz = 524. 
The mode number of 21, which can reach satisfactory 
convergence, is used (N=10). Calculating the same 
condition as Hussein et al. (2014), the computation 
t ime is approximately 1 s each for frequency (ω) and 
wave number (kz), whereas the computation time of the 
extended PiP model and the coupled FE–BE model for 
each frequency and wavenumber are approximately 5 s 
and 100 s, respectively, which indicates that the proposed 
model has high computational effi  ciency.

3  Numerical results and discussion

3.1  Validation of the proposed model

To validate the reliability of the proposed model, the 
dynamic responses of tunnel-soil coupling characteristics 
and the layered characteristics of foundation soil are 
compared with that of existing models (Hussein et al., 
2014; Guo et al., 2020). The schematic diagram of 
verifi cation is shown in Fig. 2. The units in all three 
directions (x, y, z) in Cartesian coordinates are in meters. 
The calculation parameters for the tunnel, pore water, 
and air are those given by Guo et al. (2020), which also 
are shown in Tables 1 and 2. The other soil calculation 
parameters for each validation model are derived using 
the parameter degradation method outlined in Section 2.3.

3.1.1  Degradation for unsaturated porous medium

As previously mentioned, the total wave fi eld 
expression for unsaturated porous soil can be reduced 
to single-phase and saturated porous soil by parameter 
degradation. Therefore, the existing unsaturated soil 
model is used to verify the reliability of the tunnel-soil 
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coupling of the proposed model. As shown in Fig. 2(a), 
the tunnel is embedded in an unsaturated half-space 
consisting of a three-phase medium, and the buried depth 
of the tunnel is 10 m. The calculation parameters for the 
soil are shown in Table 3. The response of the soil-tunnel 
system subjected to a harmonic point load acting on the 
tunnel invert was calculated using the proposed model. 
The displacement responses at observation points (10, 
0, 0) and (–3, 0, 0) were taken to compare them with the 
results calculated using an existing model (Guo et al., 
2020), as shown in Fig. 3. The results are consistent.

3.1.2 Degradation for single-phase elastic layered 
           foundation

To further validate the layered characteristics of the 
proposed model, it is compared with the existing 2.5D 
coupled FE-BE model with a single-phase elastic layered 
foundation (Hussein et al., 2014). The comparison 
results summarized in the following two cases were used 
to verify the model.

(i) A case study of layered half-space (see Fig. 2(b)): 
The tunnel was embedded in a layered half-space 
foundation, and the buried depth of the tunnel was 20 m. 
The calculation parameters of the layer foundation soil 
are shown in Table 4. The vertical displacement ux of 
the observation point at ground surface (20, 20, 0) was 
calculated using the proposed model to compare it to that 
of the exiting model when the thickness of the overlying 
soil is 5 m or 10 m, as shown in Fig. 4.

 (ii) A case study of a soil layer overlying on bedrock 
(see Fig. 2(c)). The tunnel was embedded in a soil layer 
overlying bedrock, and the buried depth of the tunnel 
was 20 m. The calculation parameters for the overlying 
soil layer are taken as those of the second layer, shown in 
Table 4. The vertical displacement ux of the observation 
point at the ground surface (20, 20, 0) was calculated and 
compared to that of the exiting model when the thickness 
of the overlying soil is 25 m or 30 m, as shown in Fig. 5.

From Fig. 4 and Fig. 5, it is evident that the results 
calculated by the proposed tunnel model in this study 
are consistent with those of the exiting tunnel models, 
verifying the reliability of the proposed model in these 
cases.

3.2  Application of the model: case studies

In saturated soft soil areas, the soil layers near 
the ground surface are often unsaturated for various 
reasons, such as transpiration and groundwater resource 
development. However, existing tunnel models 
consider this soil as either homogeneous saturated soil 
or unsaturated soil, which cannot reliably predict the 
dynamic response of a saturated foundation covered with 
an unsaturated soil layer. Therefore, in the following 
section, the proposed model is used to analyze the 
diff erences in the dynamic response of a homogeneous 

saturated foundation, homogeneous unsaturated 
foundation, and saturated foundation with overlying 
unsaturated soil. Five case studies are discussed with 
diff erent saturations of soil layers, as shown in Table 5. 
The depth of the tunnel (d) is 10 m and the thickness of 
the overlying soil layer (h1) is assumed to be 5 m. The 
calculation parameters in (Guo et al., 2020) also are used 
for case analysis, as presented in Tables 1–3. 

Figure 6 presents the magnitudes of vertical 
displacement, normal stress, and pore water pressure of 
the soil at the plane of x = 0 when the tunnel invert is 
subjected to a harmonic point with a 20 Hz load in three 
cases (Case 1, Case 2, and Case 4). First, we notice that 
the system dynamic responses of the saturated porous 

Table 1  Tunnel parameters

Parameters Value
Outer radius r1 (m)   3

Thickness h (m)   0.25
Young′s modulus Et  (GPa)   50

Poisson′s ratio υt   0.3
Density ρt (kg/m3)  2500

Hysteretic material damping βt   0.03

Table 2  Pore fl uid parameters

Medium Parameters Value

Pore air Kg (kPa) 100

ρg (kg/m3) 1.29

ηg (Pa∙s) 15×10-6

Pore water Kl (MPa) 2
ρl (kg/m3) 1000
ηl (Pa∙s) 1×10-3

Table 3  Parameter value of unsaturated soil

Medium Parameters Value
Solid grain Ks (GPa) 36

ρs (kg/m3) 2650
Soil framework Kb (MPa) 43.5

μs (MPa) 26.1
Sw0 0.05
γ Sr

Soil framework βs 0.04
κ 1×10-4

n0 0.27
[α1 α2 α3] [1×10-4 0.5 2]

Sr 0.9
φ 27°
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(a) (b) (c)

Fig. 2    Verifi cation cases: (a) homogeneous medium foundation; (b) two-layered half-space foundation; (c) a soil layer overlying bedrock

(a) (b)

Fig. 3   Comparison of displacement amplitudes of a harmonic point load acting on  the tunnel invert, as computed with the proposed 
        model and an existing model of a homogeneous unsaturated soil foundation: (a) ux at the point (-3, 0, 0); (b) ux at the 
            point (10, 0, 0)

(a) (b)

Fig. 4  Comparison of displacement amplitudes at the point (20, 20, 0) subjecte  d to a harmonic point load acting on the tunnel 
           invert, as computed with the proposed model and the existing 2.5D coupled FE-BE model of single-phase elastic layered 
             foundation: (a) h1 = 5 m; (b) h1 = 10 m

(a) (b)

Fig. 5  Comparison of displacement amplitudes at the point (20, 20, 0) subject  ed to a harmonic point load acting on the tunnel 
         invert, as computed with the proposed model and the existing 2.5D coupled FE-BE model of a tunnel situated in a soil 
             layer overlying bedrock: (a) hd = 25 m; (b) hd = 30 m
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Table 4  Soil parameters degenerated to single-phase medium

Layer number Medium Parameters Value Medium Parameters Value
1st layer Solid grain Ks (MPa) 51.6 Soil 

framework
γ 0.06

ρs (kg/m3) 1800 βs 0.04
Soil 

framework
Kb (MPa) 48 κ 1×102

μs (MPa) 18 n0 0.001

Sw0 0.05 [α1 α2 α3] [1×10-4 0.5 2]
Sr 0.08

2nd layer Solid grain Ks (MPa) 206.4 Soil 
framework

γ 0.06
ρs (kg/m3) 1800 βs 0.04

Soil 
framework

Kb (MPa) 192 κ 1×102

μs (MPa) 72 n0 0.001
Sw0 0.05 [α1 α2 α3] [1×10-4 0.5 2]
Sr 0.08

Fig. 6  Vertical displacement ux, normal stress σxx, and pore water pressure pl of the soil at the plane of x = 0 when the tunnel 
             invert is subjected to a unit stationary harmonic load with 20 Hz at (x, y, z) = (-2.75, 0, 0) in diff erent cases
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medium foundation (Case 1) and unsaturated porous 
medium foundation (Case 4) are diff erent. There are two 
main reasons for this observation: i) The dynamic shear 
m odulus of soil increases with decrease in saturation, 
which mainly aff ects dynamic response amplitude. ii) 
The wavelength of the elastic wave in soil increases with 
a decrease in saturation, which mainly aff ects dynamic 
response distribution. In addition, there is a clear 
diff erence in pore water pressure between these two 
cases because the bulk modulus of air is far lower than 
that of liquid; hence, with an increase in gas content, 
excess pore water pressure decreases rapidly. 

Figure 6 also shows that the dynamic response of 
a saturated foundation with overlying unsaturated soil 
(Case 2) is diff erent from that of a saturated porous 
medium foundation (Case 1) and an unsaturated 
porous medium foundation (Case 4). This is because 
of a new scattering surface that appears at the interface 
between the saturated and unsaturated medium due 

to their diff erent properties. This surface changes the 
propagation characteristics of elastic waves (refl ection, 
refraction) and the seepage conditions of the total 
foundation, thus making the dynamic response diff erent. 
Therefore, to better evaluate the dynamic response of the 
tunnel system, the layered characteristics and saturation 
of diff erent soil layers should be considered in the 
modeling.

To further analyze the infl uence of the existence of 
an overlying unsaturated layer on the dynamic response, 
the dynamic responses of three types of foundation soils 
are compared: homogeneous saturated foundation (Case 
1), homogeneous unsaturated foundation (Cases 4 and 
5), and saturated foundation with overlying unsaturated 
soil (Cases 2 and 3). Two observation points on the 
ground surface ((10, 0, 0), (10, 20, 0)), one observation 
point in the soil (–3, 20, 0), and one observation point at 
the tunnel bottom (–3, 0, 0) were selected for analysis. 

Figure 7 presents the magnitudes of vertical 

Fig. 7   Vertical displacement ux varies with load frequency when the tunnel invert is subjected to a unit stationary harmonic load 
          at (x, y, z) = (-2.75, 0, 0): (a) observation point at (10, 0, 0); (b) observation point at (10, 20, 0); (c) observation point at 
             (-3, 0, 0); (d) observation point at (-3, 20, 0)

(a) (b)

(c) (d)

Table 5  Saturation of foundation soil layers in diff erent cases

Schematic diagram Cases 1st soil layer 2nd soil layer
Case 1 Sr = 1 Sr = 1
Case 2 Sr = 0.9 Sr = 1
Case 3 Sr = 0.7 Sr = 1
Case 4 Sr = 0.9 Sr = 0.9
Case 5 Sr = 0.7 Sr = 0.7



No. 3     Di Honggui et al.: An analytical model for evaluating the dynamic response of a tunnel embedded in layered foundation soil      675

displacement versus frequency of the four observation 
points when the tunnel invert is subjected to a harmonic 
point. Figures 7(a), 7(b), and 7(d) show that the dynamic 
displacement responses of the same types of foundation 
(Cases 2‒5) are similar, as the number of scattering 
surfaces is the same and the characteristics of wave 
propagation are similar. As for the saturated foundation 
with overlying unsaturated soil (Cases 2 and 3), a new 
scattering surface appears at the interface between the 
saturated and unsaturated medium, causing a dynamic 
response diff erent from that of the homogeneous 
saturated foundation (Case 1) or the homogeneous 
unsaturated foundation (Cases 4 and 5) under diff erent 
load excitation frequencies. 

Figure 7(c) also shows that the dynamic displacement 
responses of the tunnel bottom in Cases 1‒3 are similar, 
as are the responses in Cases 4 and 5, which means that 
this response is mainly aff ected by the characteristics of 
the soil layer in which the tunnel is situated. 

Figure 8 presents the magnitude of normal stress 
and pore water pressure  versus load frequency at two 
observation points ((–3, 0, 0), (–3, 20, 0)) when the 
tunnel invert is subjected to a harmonic point. Figures 8(a) 
and 8(b) show that the magnitudes of vertical stress 
and pore water pressure of the soil at the tunnel bottom 
are mainly aff ected by the characteristics of the soil in 
which the tunnel is situated, which is rarely aff ected by 
the existence of overlying unsaturated soil. However, as 
shown in Figs. 8(c) and 8(d), regarding the observation 

in the soil foundation (–3, 20, 0), there are noticeable 
diff erences between the three types of foundation, 
meaning that soil saturation and the existence of a new 
scattering surface at the interface between the diff erent 
media aff ect the responses of normal stress and pore 
water pressure in soil foundation.

We also analyzed the infl uence of the thickness of the 
overlying unsaturated layer on the dynamic response of 
the tunnel-layered soil system. The thickness in Case 2 
was changed for comparative analysis, whereas t he buried 
depth of the tunnel remained the same to render the source-
receiver distances unchanged. Figure 9 presents the vertical 
displacement response under diff erent thicknesses of the 
overlying layer. As shown in Figs. 9(a), 9(b), and 9(d), 
the magnitudes of vertical displacement under diff erent 
thicknesses are markedly diff erent, as the overlying 
layer aff ects the location of the new scattering surface, 
in turn aff ecting the vertical displacement. Conversely, 
Fig. 9(c) indicates that the vertical displacement of the 
tunnel bottom does not change with the thickness of the 
overlying layer, which demonstrates that the vertical 
displacement of the tunnel bottom is rarely aff ected by 
the overlying layer.

Figure 10 presents the magnitudes of vertical stress 
and pore water pressure under diff erent thicknesses of 
the overlying layer, indicating that they are diff erent at 
the soil foundation, whereas those at the tunnel bottom 
are not aff ected.

Fig. 8   Dynamic normal stress and pore water pressure response varies with load frequency when the tunnel invert is subjected to 
        a unit stationary harmonic load at (x, y, z) = (-2.75, 0, 0): (a/b) observation point at (-3, 0, 0); (c/d) observation point 
            at (-3, 20, 0)

(a) (b)

(c) (d)
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Fig. 10  Dynamic normal stress and pore water pressure response varies with load frequency when the tunnel invert is subjected to 
                a unit stationary harmonic load at (x, y, z) = (-2.75, 0, 0) under diff erent thicknesses of the overlying layer: (a/b) observation 
              point at (-3, 0, 0); (c/d) observation point at (-3, 20, 0)

(a) (b)

(c) (d)

Fig. 9   Vertical displacement ux varies with load frequency when the tunnel invert is subjected to a unit stationary harmonic load 
               at (x, y, z) = (-2.75, 0, 0) under diff erent thicknesses of the overlying layer: (a) observation point at (10, 0, 0); (b) observation
             point at (10, 20, 0); (c) observation point at (-3, 0, 0); (d) observation point at (-3, 20, 0) 

(a) (b)

(c) (d)
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4  Conclusions

(1) An analytical model was proposed to investigate 
the dynamic respons  e o f a tunnel embedded in layered 
media. The proposed model was validated by comparing 
it to existing tunnel models. This analytical model has 
high computational effi  ciency and can better simulate 
realistic soil conditions, such as the coexistence of 
single-phase soil, two-phase saturated soil, and three-
phase unsaturated soil.

(2) The saturation of soil layers has a great eff ect 
on the dynamic response of a tunnel layered soil 
system. New scattering surfaces appear at the interfaces 
between layers, consisting of diff erent media (a single-
phase medium, a saturated porous medium, or an 
unsaturated porous medium), changing the propagation 
characteristics of elastic waves, such as refl ection and 
refraction, as well as the seepage conditions of the 
foundation. Therefore, it is necessary to consider the 
layered characteristics and saturations of the soil in the 
evaluation of the dynamic response of a tunnel layered 
soil system.

(3) For an underground railway tunnel embedded in 
a saturated foundation covered by an unsaturated soil 
layer, both the existence of the overlying unsaturated 
layer and the thickness of this layer have a great eff ect 
on the magnitudes of the dynamic displacements of 
the soil at the ground surface. However, the thickness 
of the overlying unsaturated soil and the variations in 
saturation rarely aff ect the dynamic response of the soil 
at the tunnel bottom, which is mainly aff ected by the 
characteristic of the soil in which the tunnel is situated. 
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Appendix A

Defi nition of parameters in the wave equation.
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where γ represents the eff ective stress coeffi  cient; K represents  the compression modulus; n0 and Sr represent soil porosity 
and saturation, respectively; η represents the viscosity coeffi  cient; krl and krg represent the permeability coeffi  cients of 
pore water and air, respectively; κ represents the intrinsic permeability coeffi  cient of soil; Sw0 represents irreducible 
saturation α1, α2, and α3 represent fi tting parameters of the VG model curve; υs represents Poisson′s ratio of soil; and φ 
and μs represent the internal friction angle and dynamic shear modulus of saturated soil, respectively.

No. 3     Di Honggui et al.: An analytical model for evaluating the dynamic response of a tunnel embedded in layered foundation soil      679



Appendix B

The expressions of D, C, B and μ are as follows:
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Appendix C

The expressions of A and E are as follows:
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Appendix D

The expressions of matrixes H are as follows: 
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where r1, h, E, ν, and ρt represent the radius, thickness, Young modulus, Poisson′s ratio and density of the shell, 
respectively; and q represents the net stresses of the central surface of the lining shell. 

Appendix E

The expressions of I are as follows:
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