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Abstract: In the present study, modifi ed Ibarra, Medina and Krawinkler moment-rotation parameters are used for 
modeling the uncertainties in concrete moment frame structures. Correlations of model parameters in a component and 
between two structural components were considered to analyze these uncertainties. In the fi rst step, the structural collapse 
responses were obtained by producing 281 samples for the uncertainties using the Latin hypercube sampling (LHS) method, 
considering the probability distribution of the uncertainties and performing incremental dynamic analyses. In the second step, 
281 new samples were produced for the uncertainties by the central composite design (CCD) method without considering 
the probability distribution of the uncertainties and calculating the structural collapse responses. Then, using the response 
surface method (RSM) and artifi cial neural network (ANN) for the two simulation modes, structural collapse responses were 
predicted. The results indicated that the collapse responses at levels of 0 to 100% obtained from the two simulations have a 
high correlation coeffi  cient of 98%. This suggests that random variables can be simulated without considering the probability 
distribution of uncertainties, by performing uncertainty analysis to determine structural collapse responses.
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1  Introduction

Sideway collapse, which is defi ned as a lateral 
instability of a structure due to strong ground motions, 
has been considered by researchers in recent years (Liel 
et al., 2009; Zareian and Krawinkler, 2007; Zareian et 
al., 2010). In this regard, identifying diff erent uncertainty 
resources to predict collapse capacity and accurately 
describe the seismic performance of structures is of great 
importance (Ugurhan et al., 2014). Two main uncertainty 
resources aff ect the collapse probability of structures; 
i.e., aleatory uncertainties resulting from the inherent 
nature of phenomena and epistemic uncertainties due to 
the lack of knowledge and inaccurate analytical models. 
In determining structural collapse probabilities, intensive 
motion features such as ground motion duration, 
earthquake frequency content, and earthquake intensity 
parameters are considered as aleatory uncertainties 
(record to record), while the assumptions made in the 
structural analysis are treated as epistemic uncertainties. 
Epistemic uncertainties can be reduced by developing 

scientifi c relations, collecting more data, and using a 
proper analytical model (Der Kiureghian and Ditlevsen, 
2009). Due to the relatively limited knowledge of 
model parameters and collapse-related behavior, 
modeling uncertainties have received much attention 
in simulating the structural collapse response. They are 
needed to idealize nonlinear deformation demands and 
various sources of degradation both at the component 
and structure levels. Concentrated plastic hinge models 
are the best candidate for modeling stru ctural collapse 
responses. Parameters employed to defi ne concentrated 
plastic hinge models are typically calibrated by empirical 
relationships, which are a major source of uncertainties 
for structural collapse response simulation (Ugurhan et 
al., 2014).

The incremental dynamic analysis (IDA) is 
introduced to consider the intrinsic variability eff ects 
of an earthquake in the seismic response analyses of 
structures. In this method, an earthquake record is 
scaled to cover a wide range of seismic intensities to 
consider uncertainties in seismic intensity prediction. 
Furthermore, to consider existing uncertainties in the 
frequency contents and spectral shapes of earthquakes, 
a considerable number of earthquake records are 
employed. This method is considered to predict the 
capacities of structures in the FEMA-350 Code (FEMA, 
2000). 

Simulation methods such as the Monte Carlo 
and the Latin hypercube sampling (LHS) are used 
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to incorporate these uncertainties. A large number 
of simulations are required to cover the probability 
distribution of uncertainties, which is a time-consuming 
practice. To reduce computational eff orts, the response 
surface method (RSM) is proposed in combination with 
simulation methods. In addition to RSM, alternative 
methods can be employed to consider uncertainties in 
prediction models, including artifi cial neural network 
(ANN) and neuro-fuzzy network (Beheshti-Aval et al., 
2015).

Vamvatsikos and Cornell (2004), Zareian and 
Krawinkler (2007) studied IDA-based methods to 
evaluate structural collapse. Ibarra and Krawinkler 
(2005) proposed a method to evaluate the global 
collapse of structures based on the relative intensity 
measure and engineering demand parameter. They 
defi ned global collapse as the inability of a structural 
system to resist gravity loads in the presence of seismic 
eff ects. The relative intensity increases until the system 
response becomes unstable; that is, the relative intensity-
engineering demand parameter curve becomes fl at. 
They named the largest relative intensity as the collapse 
capacity. Haselton et al. (2008) tested reinforced concrete 
columns to calibrate and determine the proper measures 
of the tri-linear model parameters proposed by Ibarra 
et al. (2005). Then, they proposed a set of empirical 
relationships for each parameter by conducting statistical 
studies and multivariate regression analysis. Lignos and 
Krawinkler (2010) proposed a database for modeling 
steel components based on the tri-linear model of Ibarra 
et al. (2005). Li (1996) demonstrated that any form of 
functions and its derivatives can be estimated using 
ANN, while the use of ANN creates lower prediction 
errors than RSM. Gomes and Miguel (2004) compared 
RSM and ANN in evaluating the reliability of a structure 
that had an implicit limit state function. They indicated 
that the use of these two methods to estimate the limit 
state function decreases the reliability of the evaluation 
when compared to the Monte Carlo method. 

Bucher and Most (2008) compared response function 
methods and indicated that selecting the response 
function would be diff erent depending on the problem. 
According to the examples of this study, response 
surface methods based on polynomial functions, radial 
basis functions (RBFs), and ANN have the ability to 
accurately consider failure conditions. Buratti et al. 
(2010) employed a parabolic model to estimate the 
structural response of a reinforced concrete moment 
frame considering uncertainties in structural features 
and ground motion parameters when an earthquake 
happens. They drew fragility curves according to the 
evaluated parabolic model. Park and Towashiraporn 
(2014) applied RMS for the probability evaluation 
and seismic vulnerability of steel bridges. They fi tted 
the limit state function in the form of a second-order 
polynomial function by considering the uncertainties 
involved and not considering the interaction terms, 
calculating the probability of exceeding the damage 

states based on the fi tted response surface functions. 
Khojastehfar et al. (2014) employed ANN and RSM 
in combination with the Monte Carlo method to develop 
collapse fragility curves by considering uncertainties 
in a steel moment frame. They showed that it is more 
accurate to determine the mean measures and standard 
deviations of the fragility curves by the ANN-based 
Monte Carlo simulation approach than by the RSM-
based Monte Carlo method. Borekci et al. (2014) 
studied the collapse potential of SDOF systems caused 
by dynamic instability with stiff ness and strength 
degradation. They introduced an equation to estimate 
the collapse period of SDOF systems as a function 
of the strength reduction factor, ductility level, and 
post-capping stiff ness ratio. Investigating structural 
reliability requires a long computation time. In this 
regard, Gholizadeh and Mohammadi (2016) employed a 
wavelet back-propagation (WBP) neural network (NN) 
to predict the required deterministic and probabilistic 
structural nonlinear seismic responses at performance 
levels. Karimi and Şensoy (2016) used metaheuristic 
algorithms to evaluate the collapse responses of steel 
moment frames by considering diff erent uncertainty 
sources. They adopted the IDA method to incorporate 
record-to-record uncertainties. The model uncertainties 
were applied by backbone curves and hysteresis loops. 
Also, cognitive uncertainties were provided at three 
levels of material quality. The analytical questions of 
the RSM were derived from the IDA results obtained 
using the Cuckoo algorithm, which predicts the means 
and standard deviations of collapse fragility curves. The 
Takagi-Sugeno-Kang model was employed to represent 
the material quality. Finally, collapse fragility curves with 
the uncertainties were obtained by various material quality 
values derived from the fuzzy Takagi-Sugeno-Kang 
model. The results indicated that better risk management 
strategies in countries with weak material quality control 
create cognitive uncertainties in fragility curves and the 
mean annual frequency. Zhang et al. (2017) introduced a 
novel approach, i.e., time-dependent reliability analysis 
with response surface (TRARS), to estimate the time-
dependent reliability for nondeterministic structures 
under stochastic loads. They treated random variables 
and the maximum responses of uncertain structures as 
the input and output parameters, respectively. They also 
proposed a novel iterative procedure by introducing the 
response surface (RS) model. Moreover, they used a 
Butcher strategy to produce initial sample points while 
employing the gradient projection technique to produce 
new sample points to update the RS model in each 
iteration. Then, the time-dependent reliability indices 
and probabilities of failure were obtained using the fi rst-
order reliability method over a certain design lifetime. 
Karimi and Beheshti Aval (2018) applied adaptive neuro 
fuzzy inference system (ANFIS) models based on grid 
partition (GP), subtractive clustering (SC), and fuzzy 
C-means (FCM) to analyze uncertainties and predict 
seismic fragility curves of a steel moment frame. They 
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indicated that ANFIS-FCM predicts fragility curves more 
accurately than GP and SC methods. Gholizadeh and 
Aligholizadeh (2019) proposed a meta-model to reduce 
the computation burden of the Monte Carlo method in 
the optimization setting. The computation burden of a 
reliability-based optimal seismic design (RBOSD) is 
very high due to the huge number of nonlinear pushover 
analyses. To cope with this problem, they used a simple 
multilayer perceptron (MLP) model as an NN model 
to predict the necessary deterministic and probabilistic 
seismic responses during optimization. A meta-model 
composed of WPB was introduced for evaluating seismic 
responses. According to the FEMA-P695 Code (FEMA, 
2009), the total system collapse uncertainties (βTOT) are 
calculated by combining diff erent uncertainty sources, 
including record-to-record (βRTR), design requirements 
(βDR), test data (βTD), and modeling (βMDL). Fattahi 
and Gholizadeh (2019), Hassanzadeh and Gholizadeh 
(2019) employed such uncertainties to determine the 
collapse margin ratio (CMR) for optimal structures, 
graphing the optimal structures′ fragility curves. Palanci 
(2019) introduced a risk assessment model for one-story 
precast industrial structures by fuzzy logic. Karimi and 
Şensoy (2020) adopted the optimized fuzzy method 
FCM-PSO to determine collapse fragility curves by 
considering the uncertainties. They revealed that this 
method is advantageous with regard to both accuracy 
and execution time in estimating the mean and standard 
deviation of fragility curves. In this study, the input, 
output, and relations of the fuzzy-based risk assessment 
model were determined by the reference buildings. The 
supervised learning method was used to determine the 
membership function of fuzzy sets and found that fuzzy 
logic is a promising technique for seismic assessment of 
structures and can be used as an eff ective instrument in 
rapid performance screening of the structures.

In the present study, two diff erent methods 
of producing random samples and simulation with 
and without considering the probability distribution 
parameters of the uncertainties are employed to 
investigate the eff ects of uncertainties on structural 
collapse responses. The LHS method was used to 
generate samples with considering the probability 
distribution of the uncertainties, while the central 
composite design (CCD) was adopted to produce 
samples without considering the probability distribution 
of the uncertainties. Moreover, a combination of the 
above-mentioned simulation methods, RSM, and ANN 
was employed to predict risk and collapse fragility 
curves.

2   Model estimation and prediction methods 

2.1  Artifi cial neural network (ANN)

Artifi cial neural network (ANN) is a method used 
to estimate functions and predict diff erent systems. 
Such networks yield acceptable results when there are 

nonlinear relationships between the input and output of 
a system. Any network is made up of an input layer, an 
output layer, and one or more hidden layers. There are 
a number of neurons inside each of the layers that are 
connected by weighted connections (Fig. 1). During the 
network training, the weighs are continuously adjusted 
to minimize errors. To transfer the outputs of each layer 
to the next layers, purline, tansing, tangent hyperbolic 
and sigmoid functions are typically used. 

An ANN structure is the multi-layer perceptron 
(MLP). An MLP can be trained using nonlinear functions 
such that it can estimate and predict any measurable 
function. Using a set of real input and output data, ANNs 
employ training algorithms to form hidden connections 
between input and output data through weight coeffi  cients, 
biases, and the applied functions of each layer′s outputs. 
A portion of data (70%, for example) is typically used to 
train the network and the remaining portion is employed 
in data validation and network prediction tests.Various 
training algorithms have been employed to train ANNs, 
one of the most important of which being error back 
propagation algorithm (Anderson, 1995). 

2.2   Response surface method (RSM)

In this study, the CCD is used to design the 
model. CCD includes a full factorial design or two-
stage fractional factorial design with axial and central 
points. Using such designs, the curve of a system can 
be estimated. The design is performed based on three 
levels of factorial points, axial points, and central points, 
(Fig. 2).

The number of experiments in CCD is calculated as 
Eq. (1)

c2 (2 1)k pN k n                        (1)

where N is the number of experiments, k is the number 
of variables, p is a fraction of full factorial design, and 
nc is the number of replications. The three terms in 
Eq. (1) denote factorial points, star points (including 
axial and central points), and the number of replications, 
respectively. Figure 3 shows CCD for three factors.

Input layer Hidden layer Output layer

Fig. 1  Structure of a multi-layered perceptron (MLP)
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CCD provides a quadratic equation as Eq. (2)
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where β0,  βi,  βii  and  βij  are the constant, linear, quadratic, 
and interaction coeffi  cients of the factors, respectively.  xi  
and  xj  are independent coded variables. Equation (2) is a 
polynomial regression model. The unknown polynomial 
coeffi  cients are calculated by minimizing the sum of 
squares of residuals (i.e., the diff erence between the 
observed values and estimated function values) (Myers 
et al., 2009).

3  Structural dynamic analysis

3.1   Dynamic analysis of structure

Incremental dynamic analysis (IDA) is a method 
to determine the fragility curves of structures′ limit 
states under diff erent seismic intensities. To perform 
IDA, proper parameters must be selected to refl ect the 
intensity measure (IM) and demand measure (DM). 
A proper IM selection leads to lower dispersion in the 
structure′s response to various earthquakes and thus 
more accurate estimation of the responses′ statistical 
measures. In the present study, IM was considered to 
be the spectral acceleration in the fundamental period 
of the structure (Sa(T1)). DM is a parameter selected to 
make the best structural response refl ection, which was 
considered to be the maximum inter-story drift in this 
study; i.e., maximum among the fl oors and during the 
total earthquake time. For IDA analysis, earthquake 
records were selected and each record was scaled to a 

small measure of IM that produced linear behavior in 
the structure′s model, under which time history analysis 
became nonlinear. The process of scaling IM continues 
on a proper algorithm until the structural collapse limit 
is obtained. For the incremental trend of IDA, it is 
required to select IM values using a proper algorithm 
to optimize the number of analysis points such that the 
minimum number of points in the initial linear areas and 
the maximum number of points in the collapse-prone 
areas are selected to achieve suffi  cient accuracy. As a 
result, the distances between consecutive IMs for each 
earthquake record can be determined in proportion to its 
collapse level. The algorithm used in this study for IDA 
was adapted from the Hunt-Fill algorithm (Vamvatsikos 
and Cornell, 2002). 

After completing each IDA stage, the IM variations 
were plotted versus the DM of the record. 

3.2   Structural collapse criteria

From an engineering perspective, collapse occurs 
when the lateral drifts of one or more fl oors becomes 
larger than the other fl oors such that the structural 
system is no longer able to resist the gravity loads due 
to the secondary moment induced by the building′s 
weight (P-Delta eff ect). Thus, according to FEMA-350 
Code (FEMA, 2000), IDA can be employed to estimate 
the structural collapse capacity. According to the code′s 
recommendation, the collapse point is considered to be 
equal to the occurrence of one of the following:

- Numerical non-convergence in the structural 
analysis algorithm;

- A slope of 20% of the initial elastic slope in the 
IDA curve; and

- Maximum inter-story drift exceeding 0.1.
It was observed in many cases that the determination 

of structural collapse based on the non-convergence 
criterion or the minimum slope contradicts real 
observations and engineering experience in terms of 
θmax created in the structure. To handle this problem, 
structural collapse is simultaneously controlled by two 
criteria of minimum slope and 0.1 ≤ θmax.

According to the earthquake intensity method, 
collapse limit state refers to an intensity of earthquake 
that collapses the structure. In other words, IMcap or 
IMcollapse represents the last point of seismic intensity 
on the IDA curve under which the structure does not 
collapse. After IMcap, the IDA curve slope falls below 
20% of the elastic slope or the inter-story drift exceeds 0.1. 

For each IDA curve, there is a point with a seismic 
intensity corresponding to collapse that is denoted by 
IMcollaps. The possible curve of fi tting the mentioned 
points on several IDA curves represent collapse fragility 
curves, which are defi ned as Eq. (3) (Tothong and 
Cornell, 2007):
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Fig. 2   Factorial, central, and axial points in CCD

Fractional
factorial

Full
factorial

Star Replication Central 
composite

Fig. 3  CCD for three factors
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Eqs. (4) and (5), respectively.

caplnIM cap,
1

1 ln
n

i
i

im
n 

 
                      

(4)

cap

cap

2
cap, lnIM

1
lnIM

(ln )

1

n

i
i

im

n







 


              
(5)

where imcap,i  is the IMcap value of record i, and n is the 
number of records.

3.3  Probabilistic seismic demand analysis (PSDA)

Probabilistic seismic demand analysis (PSDA) is a 
good method to calculate the mean annual frequency 
(MAF) of exceedance of various given values. 

PSDA integrates the site-specifi c seismic hazard 
curve (e.g., spectral acceleration hazard curve) calculated 
by probabilistic seismic hazard analysis (PSHA) with 
the nonlinear dynamic analysis results of the structure 
collected using a set of accelerograms. 

The mean annual frequency (MAF) of exceedance of 
a given limit state, i.e., λLS, is calculated as Eq. (6)

LS DMLS DM ( ) d ( )G y y  
                  

(6)

where DMd ( )y  is the seismic demand hazard diff erential 
with respect to DM and LS DM ( )G y

 
is the probability of 

exceeding the limit state (LS) provided that DM is y 
(Baker and Cornell, 2006; Tothong and Cornell, 2007).

4   Modeling

4.1   Structural model

A four-fl oor structure with a concrete moment frame 
system was employed in this study. Figure 4 depicts the 
structure′s plan. The structure is symmetric in plan and 
elevation. Thus, nonlinear analyses can be performed 
on the structure on one of the lateral resisting frames, 
applying the P-Delta eff ects of the entire structure to the 
selected moment frame. The structural system selected 
to resist against the lateral loads is the perimeter moment 
frame. The lateral resisting systems in the x-direction 
of the plan are frames 1 and 5. The drifts of the entire 
structure in this direction are withstood by these two 
perimeter frames. Therefore, the other internal frames 
of the structure (known as the space frames or gravity 
frames) are only under the gravity loads. For the 
perimeter frames that resist lateral loads of the structure, 
the gravity loads that are directly withstood by the 
perimeter frames are diff erent from the loads induced 

by the P-Delta eff ects. To consider the P-Delta eff ects, 
a pinned-end rigid column without lateral stiff ness, 
known as the leaning column, is employed. The column 
is connected to the main structure by rigid beams (Fig. 5). 
To obtain the most accurate results in calculating 
structural collapse, the nonlinear concentrated plastic 
hinge model was used. Moreover, OpenSees software 
was employed for modeling and the nonlinear dynamic 
analyses. The pushover curve of a four-story frame with 
ID 1008 proposed by Haselton et al. (2008) was used to 
verify the model. Figure 6 shows the pushover curve of 
the modeled structure and the frame with ID 1008.

A total of 22 pairs of the far-fault records (a total 
of 44 records) proposed by FEMA-P695 (FEMA, 2009) 
were used for the IDA. 

Fig. 4  Plan of the structure

Fig. 5   Two-dimensional analytical moment frame model
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4.2  Moment-rotation parameters of concentrated 
         plastic hinge model

In this study, the concentrated plasticity model was 
employed for the beam and column components. The 
concentrated plastic hinge in the reinforced concrete 
structures was modeled using the tri-linear curve 
developed by Ibarra et al. (2005) (Fig. 7). The model 
involves the elastic area, post-yielding, and pre-capping 
area with positive slopes (Ks) and the post-capping 
area with a negative slope (Kc) and residual strength. 
The elastic area is defi ned by elastic stiff ness (Ke) and 
yield moment (My). The post-yield and pre-capping area 
are defi ned by the plastic rotation capacity ( p

cap ) and 
maximum moment or moment at the capping point (Mc). 
Moreover, the post-capping area is defi ned by the post-
capping rotation capacity (θpc). Cycling stiff ness and 
strength deterioration are calculated based on the energy 
dissipation capacity (λ). The plastic hinge parameters 
were calibrated by Haselton et al. (2008), for concrete 
components. The plastic hinge model is illustrated in 
Fig. 6 with the tri-linear curve. 

4.3   IDA surves of structure

Incremental dynamic analysis (IDA) curves of the 
structure along with their 16th, 50th, and 84th percentiles 
are shown in Fig. 8.

4.4   Mean annual frequency of collapse limit state

The mean annual frequency (MAF) of the collapse 
limit state is calculated by extending Eq. (7) as

IM C IM
LS IM 0

d(IM IM) dIM
dIM

F



 




              
(7)

where IMd
dIM
  is the seismic hazard gradient and 

F(IMC|IM) is the cumulative probability function of 
the limit states. To calculate λLS, it is required to draw 
F(IMC|IM) for the collapse limit states, i.e., the fragility 
curve of the structure. Then, the above integration can be 
easily calculated using the numerical values of the site′s 
seismic hazard curve. 

4.5   Seismic hazard curve

To calculate the seismic hazard gradient, the seismic 
hazard analysis of the site is required. Analyzing 
the seismic hazard for a site yields a uniform hazard 
spectrum with the return period of 475 years and 2,475 
years. Then, the spectral accelerations of the return 
period of 475 and 2,475 years can be obtained for the 
site according to the fundamental period of the structure. 
The annual frequency of exceedance of the seismic 
intensity (i.e., the spectral acceleration in this study) is 
typically estimated by a linear relation in the logarithmic 
space as Eq. (8)

0 ( ) k
Sa ak S                              (8)

where λSa is the reverse earthquake return period and Sa 
is the spectral acceleration corresponding to the uniform 
hazard spectrum at the return periods of 475 and 2,475 
years. Moreover, k is the seismic hazard curve slope at 
the intended capacity and k0 is the shape coeffi  cient of the 
seismic hazard curve. To evaluate the seismic demand 
probability of the model, a site that was only aff ected by 
a point source and having the following properties was 
selected:

- Earthquake return period is 200 years;
- Magnitude of the event is 7.2;
- Nearest distance from the fault is 11 km;
- Vs30 is 360 m/s for the site′s soil;
- Reverse type fault; and
- First mode period of the structure is 0.96.
The uniform hazard spectrum of the site at the return 

period of 475 years and 2,475 years is shown in Fig. 9.
Once the uniform hazard spectrum and fragility 

curves of the structure are obtained, the mean annual 
frequency of limit states can be calculated using Eq. (7). 
The mean annual frequencies of the collapse limit states 
are provided in Table 1.
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Fig. 8   IDA curves of the structure

    Table 1   Seismic hazard parameters and mean annual 
                    frequency of collapse limit states

k0 k MAF (×10-4)
0.000241 2.127 1.75
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Fig. 7   Tri-linear backbone curve of the plastic hinge model
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5   Uncertainty analysis

5.1   Uncertainties

The concentrated plasticity model parameters 
introduced in Section 4.2 are considered as epistemic 
uncertainties. The mean values of the parameters are 
calculated using the equations proposed by Haselton 
et al. (2008). The parameters and their logarithmic 
standard deviations are as follows (Haselton et al., 2008; 
Haselton and Deierlein, 2008):

(1) Eff ective initial stiff ness, which is defi ned by the 

secant stiff ness to 40% of yield force stf 40

g

EI
EI

 
  
 

, with a 

logarithmic standard deviation of 0.42 (σLN = 0.42);
(2) Bending (fl exural) strength (My), which is 

calculated using the relation proposed by Panagiotakos 
and Fardis (2001), with a logarithmic standard deviation 
of 0.3 (σLN = 0.3);

(3) Plastic rotation capacity ( cap,pl ) with a 
logarithmic standard deviation of 0.63 (σLN = 0.63);

(4) Post-capping rotation capacity ( pc ) with a 
logarithmic standard deviation of 0.86 (σLN = 0.86);

(5) Post-yield hardening stiff ness or the ratio of the 
maximum moment and yield moment capacity (Mc/My) 
with a logarithmic standard deviation of 0.12 (σLN = 
0.12); and 

(6) Energy dissipation capacity for cyclic stiff ness 
and strength deterioration (λ) with a logarithmic standard 
deviation of 0.64 (σLN = 0.64).

Six rotation-moment parameters of the concentrated 
plastic hinges were considered as epistemic uncertainties 
for the beam and column components – i.e., a total of 12 
epistemic uncertainties (six for the beam and six for the 
column). 

To evaluate the correlation of the model parameters 
in a component and between two structural components, 
the database built by Haselton et al. (2008) was 
employed. The correlation coeffi  cients provided 
in Table 2 (Ugurhan et al., 2014) were used to defi ne 
correlations between the parameters of a structural 
component and correlation between the parameters of 
two structural components.

To incorporate the existing uncertainties in predicting 
the seismic intensity, an earthquake record is scaled such 
that it covers a wide range of intensities. Moreover, an 
acceptable number of earthquake records are used to 
consider the uncertainties in the frequency content and 
spectrum shape of earthquakes. 

5.2 Sampling, simulation and satistical data 
         production methods 

Once the uncertainties of the beam and column 
components are known, independent and dependent 
random variables are produced to analyze the 
uncertainties using statistical measures, including mean, 
standard deviation, and uncertainties′ correlation. 

Consider a multivariate random vector 
 1 2, , , KX X X X  with normal distribution, 

mean vector μX, and covariance vector CX. Here, 
 ,X XN X C , in which T

1 2( , , , )X K         
is a 1K   column vector (superscript T denotes the 
transpose of the matrix) and CX is a K K  vector. 
The covariance matrix is a symmetric matrix in which 

 ,  and Co ,,  vJK KJ JK J KJ K X X     .
A method to produce multivariate normal random 

variables is the square root algorithm. It functions by 
the orthogonal transformation using a covariance matrix  
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Fig. 9  Uniform hazard spectrum of the site at hazard level of 
            475 and 2,475 years

Table 2  Correlationsbetween parameters of a component and two structural components
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CX  or correlation matrix RX. The square root algorithm 
decomposes the covariance and correlation matrices into  

  X  C LL  and X R LL , where L′ is the transpose of 
L, where L and L  are the lower triangular matrices 
corresponding to the correlation matrix and covariance 
matrix, respectively.

In addition to symmetry, if RX and CX are positive 
fi nite matrices, the Cholesky decomposition is an 
eff ective approach to fi nd L and L . Using L or L , the 
vector of multivariate normal random variables can be 
represented as Eq. (9)

X  X LZ                            (9)

where Z′ is a 1K   column vector of independent 
random variables with the mean of 0 and the standard 
deviation of 1 (the normal criterion variable).

Any typical matrix A can be decomposed into 
A LU , where L is a lower triangular matrix and 

U is an upper triangular matrix. If A is a symmetric 
positivefi nite matrix, the relation can be represented as 

A LL' , where U L  (Tung and Yen, 2005).
According to Eq. (9) and the Cholesky decomposition 

method, dependent multivariate random variables are 
produced in the following steps:

1. Produce a lower triangular matrix of the correlation 
matrix or covariance matrix using the Cholesky method;

2. Produce independent random variables with a 
mean of 0 and a standard deviation of 1;

3. Use Eq. (9) to produce dependent random 
variables; and

4. Repeat steps 1 to 3 to generate the intended 
number of variables.

It is required to produce and simulate a suffi  cient 
number of samples for uncertainties to predict collapse 
fragility curves by considering epistemic uncertainties 
using RSM and ANN for the 12 introduced uncertainties 
(six belonging to the plastic hinge parameters of beams 
and six to the plastic hinge parameters of columns). 

In this study, using the CCD method at a factorial 
level of 1/16, 281 samples were produced and simulated 
for the 12 epistemic uncertainties. The CCD samples were 
independent with a uniform distribution, the mean of 0, 
and the standard deviation of 1. To compare the results 
obtained from the CCD samples, 281 new independent 
samples were produced for the 12 uncertainties using 
the LHS method with considering the probability 
distribution of the uncertainties. The LHS independent 
samples also had a mean of 0 and a standard deviation 
of 1. 

Let  1 2 3 6, , , ,x x x x x  and  7 8 9 12, , , ,x x x x x  
be the uncertainties of beam i and column j, 
respectively. Then,  1 2 3 12, , , ,x x x x x  is a set 
of dependent variables with the mean vector of 

 1 2 3 12 , , ,…,x x x x x      , standard deviation vector 
of  1 2 3 12ln ln ln ln ln, , , ,x x x x x      , and covariance 
matrix of  Cov ,JK J Kx x  .

Z1 is a 281 × 12 matrix of the LHS independent 
normal variables produced with considering uncertainties 
probability distribution. Z2 is a 281 × 12 matrix of 
the CCD samples generated without considering 
uncertainties probability distribution. Hence, Eq. (11) 
is applied to produce dependent multivariate random 
variables as Eq. (10)

ln , 1,  2  k X kY k  LZ                  (10)

where L  is the lower triangular matrix corresponding 
to the covariance matrix obtained using the Cholesky 
decomposition. 

To extend Eq. (10) to other beams and columns, the 
normalized matrix of the dependent random variables is 
generated using Eq. (11)

ln

( ) ln( )
( )

( 1,  2;  1: 281;  1:12)

j

j

k ij x
k ij

x

Y
X

k i j




  





              

(11)

Therefore, matrices X1 and X2 with the dimensions 
of 281 × 12 are composed of normalized dependent 
variables with the mean of 0 and the standard deviation 
of 1. Matrix X1 consists of 281 LHS simulations and 
matrix X2 includes 281 CCD simulations.

The uncertainties were normalized to reduce the 
dimensions of the problem, which reduced the number 
of the uncertainties to 12. Otherwise, there would 
have been six uncertainties for each beam or column, 
leading to a huge number of the total uncertainties by 
multiplying it by the number of the beams and columns 
of the structure.

6  Model outputs

6.1  Results of IDA analysis for diff erent simulations

Matrices X1 and X2 were built using the normalized 
dependent variables to determine the input variables 
to perform nonlinear dynamic analyses on the 12 
uncertainties of the structure (Eq. (11)). Then, to obtain 
the structural collapse responses, IDA was performed 
on each uncertainties simulation according to matrices  
X1 and X2 using the 44 introduced records and Hunt-Fill 
algorithm. Therefore, the mean collapse capacity (μSa 
or μlnSa), collapse standard deviation (σlnSa), and mean 
annual frequency (MAF) of collapse were obtained for 
each simulation. 

Figure 10 represents the methodology of the present 
study to predict structural collapse responses by the RSM 
and ANN, with and without considering the probability 
distribution parameters of the uncertainties.

For both LHS and CCD methods, corresponding 
collapse responses were obtained and compared at 
statistical levels of 0 to 100%.

Therefore, according to Figs. 11 to 14, the correlation 



coeffi  cients between the collapse responses at statistical 
levels 0 to 100% for the LHS and CCD methods are 
0.99562, 0.99426, 0.99261, and 0.97955 for μSa, μlnSa, 
σlnSa, and MAF, respectively. 

Given the correlation coeffi  cient (R) of above 
0.98 between the collapse responses at the statistical 

levels of 0 to 100% for the two simulation methods, 
it was concluded that the CCD method can be used to 
produce samples and analyze uncertainties without 
considering the probability distribution parameters of 
the uncertainties.

Fig. 10  Flowchart of the proposed methodology
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Fig. 11  Correlation coeffi  cient between μSa values at levels of 0 
              to 100% obtained from LHS and CCD methods

Fig. 12   Correlation coeffi  cient between μlnSa values at levels of 0 
              to 100% obtained from LHS and CCD methods
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6.2  Comparing diff erent prediction methods

In this study, ANN and RSM were employed to 
predict collapse risk and collapse fragility curves by 
considering model uncertainties. The data of the input 
layer for 12 uncertainties consisted of 281 normalized 
independent variables generated by the LHS method (Z1) 
and 281 normalized independent variables generated by 
the CCD method (Z2). The target data were mean collapse 
capacity (μSa or μlnSa), collapse standard deviation (σlnSa), 
and mean annual frequency (MAF) obtained from IDA 
for the simulations. On the other hand, the output data in 
the ANN output layer were the predicted mean collapse 
capacity, collapse standard deviation, and mean annual 
frequency. To assess and compare the accuracy of the 
prediction methods, three criteria were employed: 1) 
correlation coeffi  cient (R), 2) mean square error (MSE), 
and 3) root mean square error (RMSE), which are defi ned 
as Eqs. (12), (13) and (14), respectively. Moreover, the 
estimation error was calculated using Eq. (15):

obs obs est est
1

2 2
obs obs est est

1 1

(( ) ( )) (( ) ( ))

(( ) ( )) (( ) ( ))

n

i i
i

n n

i i
i i

y y y y
R

y y y y



 

  


 



 
      

(12)
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Estimated - Calculated
Error ( ) 100

Calculated
    

         
(15)

where yobs is the value obtained from IDA, obsy  is the 
mean value of the measures obtained from IDA, yest is the 
predicted value, and esty  is the mean predicted value.

Table 3 provides the ANN structure. The number 
of neurons in the hidden layer of the network should 
be selected in a way that the network′s prediction error 
is minimized. The number of the hidden layers and 
neurons in the hidden layers was chosen to be 1 and 8, 
respectively. 

The Tansig and Purline transfer functions were used 
in the hidden and output layers, respectively. The ANN 
was a feed-forward network with a back-propagation 
algorithm. Also, the Levenberg-Marquardt (LM) 
algorithm was applied to train the network. In this study, 
70% of the data were used as training data, while the 
remaining 30% were employed as the test data.

Tables 4 and 5 provide the correlation coeffi  cients 
(R) between the target data and the output data along 
with MSE and RMSE values for 281 LHS simulations 
and 281 CCD simulations for the training data, test data, 
and all data by the ANN.

Additionally, Table 6 represents the correlation 
coeffi  cients (R) between the target data and the output 
data along with MSE and RMSE values for 281 LHS 
simulations and 281 CCD simulations for the all data by 
the RSM. 

Three diff erent tests were performed to compare the 
prediction methods to the IDA results for both LHS and 

Fig. 13   Correlation coeffi  cient between σlnSa values at levels of 0 
              to 100% obtained from LHS and CCD methods

Fig. 14  Correlation coeffi  cient between MAF values at levels 
              of 0 to 100% obtained from LHS and CCD methods
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CCD simulations. In the fi rst step, structural collapse 
responses were calculated by diff erent methods while all 
the uncertainties were set to their mean values (Table 7). 
Then, collapse fragility curves were drawn (Fig. 15). It is 
seen in Fig. 16 that the maximum errors of μSa , μlnSa and  
σlnSa under RSM and ANN for the LHS method are about 
6% and errors of MAF under RSM and ANN are 9% and 
6%, respectively. At the same time, for CCD method, the 
maximum errors of μSa , μlnSa and  σlnSa under RSM and 

ANN are about 6%, while the error of MAF under RSM 
and ANN is about 6%. 

In the second step, Sa values corresponding to the 
collapse probability at the levels of 16%, 50%, and 
84% were calculated (Table 8). The maximum error 
under RSM and ANN for the LHS and CCD methods is 
approximately 3.5%. 

In the third test, structural collapse responses of LHS 
and CCD methods at levels of 16%, 50%, and 84% are 

Table 4   Correlation coeffi  cients (R), MSE, and RMSE of responses predicted by the ANN (LHS)

All dataTest dataTrain data
ANN (LHS)

RMSEMSERRMSEMSERRMSEMSER
0.0862930.0074470.98770.150140.0225430.95580.0317720.001010.9984μSa

0.065470.00428620.98570.115290.0132910.95880.0211310.000446510.9984μlnSa

0.0330820.00109450.90630.0586660.003344170.71630.00967879.368×10-50.9919σlnSa

6.84×10-54.679×10-90.97680.00012061.4566×10-80.89052.151×10-54.625×10-100.998MAF

             Table 5  Correlation coeffi  cients (R), MSE, and RMSE of responses predicted by the ANN (CCD)

All dataTest dataTrain data
ANN(CCD)

RMSEMSERRMSEMSERRMSEMSER
0.109410.011970.98060.189040.0357350.94020.0428640.0018370.9971μSa

0.0679560.00461810.98460.120320.0144780.95340.0203430.000413830.9986μlnSa

0.0294510.00086740.92140.0504570.00254590.7860.0123150.000151660.9858σlnSa

6.546×10-54.286×10-90.96320.00011611.3469×10-80.90421.923×10-53.6976×10-100.9966MAF

Table 6   Correlation coeffi  cients (R), MSE, and RMSE of responses predicted by the RSM

RSM (CCD)RSM (LHS)
All data

RMSEMSERRMSEMSER

0.102820.0105720.98260.086530.0074870.9875μSa

0.058620.00343650.98820.046340.0021480.9928μlnSa

0.029620.000877350.91730.030170.00091040.9139σlnSa

5.844×10-53.415×10-90.96814.923×10-52.426×10-90.9875MAF

Table 7  Estimated collapse responses when all uncertainties are set to their mean values

ANN (CCD)RSM (CCD)ANN (LHS)RSM (LHS)IDA
1.541.4991.5241.4931.504μSa

0.34340.32520.31230.31550.3242μlnSa

0.41120.39820.39960.39640.422σlnSa

1.861.641.651.591.75MAF (×10-4)

                               Table 8  Sa values corresponding to the collapse probability at the levels of 16%, 50%  and 
                                             84% when all uncertainties are set to their mean values

ANN (CCD)RSM (CCD)ANN (LHS)RSM (LHS)IDACollapse 
Probability

0.940.930.920.930.9116%
1.411.391.371.381.3950%
2.122.062.042.042.1184%
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Fig. 15 Estimated collapse fragility curves when all 
                uncertainties are set to their mean values

provided in Tables 9 and 10 for IDA, RSM, and ANN 
results. 

Then, 10,000 samples were produced with 
considering the probability distribution of the 
uncertainties, and 10,000 more samples were produced 
without considering the probability distribution of the 
uncertainties for the 12 epistemic uncertainties. However, 
since 6,600,000 nonlinear dynamic time-history analyses 
are required for each of the 10,000 simulations using 44 
accelerogram records, and 15 incremental steps for each 
accelerogram using the Hunt-Fill algorithm, which is 
very time-consuming, the structural collapse responses 
are estimated only by the RSM and ANN approaches 
in a short time. Tables 9 and 10 provide the collapse 
responses at the levels of 16%, 50%, and 84%. Figures 
17 to 20 show the predicted response errors from the 
IDA values for the 281 simulations.

- At levels of 16%, 50%, and 84%, the maximum 
μSa errors for the LHS method and 281 simulations under 
RSM and ANN were 3.4% and 1.4%, respectively, while 
for 10,000 simulations under RSM and ANN, they were 

2.5% and 1.3%, respectively.
- The maximum, μSa errors for the CCD method 

and 281 simulations under RSM and ANN were 3.3% 
and 2.2%, respectively, while for 10,000 simulations 
under RSM and ANN, they were 5.3% and 1.8%, 
respectively.

- The maximum, μlnSa errors for the LHS method 
and 281 simulations under RSM and ANN were 6.8% 
and 3.3%, respectively, while for 10,000 simulations 
under RSM and ANN, they were 6.4% and 2.3%, 
respectively.

- The maximum,  μlnSa errors for the CCD method 
and 281 simulations under RSM and ANN were 11% and 
2.2%, respectively, while for 10,000 simulations under 
RSM and ANN, they were 16.7% and 15%, respectively.

- The maximum σlnSa errors for the LHS method 
and 281 simulations under RSM and ANN were 3.2% 
and 2%, respectively, while for 10,000 simulations under 
RSM and ANN, they were 2.5% and 1.9%, respectively.

- The maximum σlnSa errors for the CCD method 
and 281 simulations under RSM and ANN were 1.3% 

Table 9   Estimation of μSa, μlnSa, σlnSa, and MAF values at the levels of 16%, 50%, and 84% for the LHS method under RSM and ANN

LHS IDA RSM ANN RSM ANN

Number of samples 281 281 281 10000 10000

μSa 16% 0.889815 0.894587 0.901919 0.91179 0.89639

50% 1.341208 1.387041 1.348254 1.3641 1.3547

84% 1.946592 1.945388 1.951696 1.9411 1.9714

μlnSa 16% -0.17628 -0.16422 -0.18216 -0.16501 -0.1792

50% 0.20706 0.220909 0.201245 0.21275 0.2119

84% 0.584525 0.563205 0.582308 0.57535 0.5884

σlnSa 16% 0.324904 0.335367 0.31851 0.32905 0.3202

50% 0.389693 0.39633 0.384123 0.39426 0.3971

84% 0.477648 0.462676 0.482543 0.46554 0.4802

MAF 16% 9.293×10-5 9.674×10-5 0.0001015 9.579×10-5 9.71×10-5

50% 0.0002146 0.0002123 0.0002109 0.0002069 0.0002163

84% 0.0004638 0.0004525 0.0004768 0.0004534 0.0004767
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Fig. 16     μSa, μlnSa, σlnSa, and MAF errors when all uncertainties 
               are set to their mean values
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Table 10   Estimation of μSa, μlnSa, σlnSa, and MAF values at the levels of 16%, 50%, and 84% for the CCD method under RSM and ANN

CCD IDA RSM ANN RSM ANN

Number of samples 281 281 281 10000 10000

μSa 16% 0.888668 0.859653 0.869548 0.84128 0.8723

50% 1.321346 1.358001 1.329281 1.3292 1.3375

84% 1.998194 1.98773 1.964654 1.9636 1.9867

μlnSa 16% -0.194743 -0.21268 -0.199084 -0.22725 -0.2239

50% 0.195192 0.216703 0.193591 0.18263 0.2003

84% 0.605813 0.590601 0.599812 0.57518 0.6052

σlnSa 16% 0.323115 0.327435 0.326781 0.32931 0.3121

50% 0.400425 0.398295 0.398030 0.39665 0.3923

84% 0.469604 0.465782 0.477167 0.46772 0.4813

MAF 16% 9.038×10-5 8.336×10-5 9.385×10-5 9.556×10-5 9.581×10-5

50% 0.0002149 0.0002517 0.0002328 0.0002301 0.0002287

84% 0.0005166 0.0005373 0.0005483 0.0005201 0.0005012
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Fig. 17  μSa error at levels of 16%, 50%, and 84%
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Fig. 18   μlnSa error at levels of 16%, 50%, and 84%

Er
ro

r (
%

)

Er
ro

r (
%

)

(a) LHS method (b) CCD method

Fig. 19  σlnSa error at levels of 16%, 50%, and 84%
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and 1.6%, respectively, while for 10,000 simulations 
under RSM and ANN, they were 1.9% and 3.4%, 
respectively.

- The maximum MAF errors for the LHS method 
and 281 simulations under RSM and ANN were 4.1% 
and 9.2%, respectively, while for 10,000 simulations 
under RSM and ANN, they were 3.6% and 4.6%, 
respectively.

- The maximum MAF errors for the CCD method 
and 281 simulations under RSM and ANN were 17.1% 
and 8.3%, respectively, while for 10,000 simulations 
under RSM and ANN, they were 7.1% and 6.4%, 
respectively.

7  Summary and conclusions

This study was conducted to investigate collapse 
responses of a concrete moment frame structure 
by considering model uncertainties. The modeling 
uncertainties of collapse response evaluation were the 
parameters of the modifi ed Ibarra-Medina-Krawinkler 
moment-rotation curve for beams and columns. For the 
uncertainty analysis, the correlations between the model 
parameters in a component and two structural components 
were considered. The Latin hypercube sampling (LHS) 
method was employed to produce independent random 
variables with considering the probability distribution 
of the uncertainties, while the central composite design 
(CCD) method was used to produce independent random 
variables without considering the probability distribution 
of the uncertainties. Next, the Cholesky decomposition 
was applied to produce dependent random variables 
for the two simulations. In the fi rst step, 281 random 
variables were produced for the uncertainties using 
the LHS method by considering their correlation and 
IDA was performed with 44 far-fault accelerograms to 
determine the collapse response of the structure. For the 
281 simulations using the 44 selected accelerograms 15 
incremental steps for each accelerogram by the Hunt-Fill 
algorithm, a total of 185,460 nonlinear dynamic time-
history analyses were performed. In the second step, 281 
random variables were produced for the uncertainties 
using the CCD method by considering their correlations. 
For this purpose, 185,460 new dynamic nonlinear 

time history analyses were performed. Then, collapse 
responses were predicted for both simulation modes 
using RSM and ANN. 

To compare the collapse responses of the two 
simulation modes, the collapse responses were obtained 
at statistical levels of 0 to 100%. The results revealed 
that the LHS and CCD correlation coeffi  cients of μSa, 
μlnSa,  σlnSa  and MAF at statistical levels of 0 to 100% are 
0.99562, 0.99426, 0.99261, and 0.97955, respectively. 
Considering that the correlation coeffi  cients were 
above 0.98 between the collapse responses at statistical 
levels of 0 to 100% in the two simulation methods, the 
CCD method can be employed to produce samples for 
uncertainty analysis and structural collapse response 
prediction without considering the probability 
distribution of uncertainties. 

Three diff erent tests were performed to compare the 
prediction methods to the IDA results for both LHS and 
CCD simulations. The results are as follows:

- When all the uncertainties are set to their mean 
values, under RSM and ANN, for the LHS method, the 
maximum errors of μSa, μlnSa and  σlnSa were 6% and the 
maximum error of MAF was 9%. At the same time, for 
the CCD method, the maximum errors were 6% for μSa , 
μlnSa and  σlnSa and 6% for MAF.

- The Sa errors at the collapse probability of 16%, 
50%, and 84% for the LHS and CCD methods under 
RSM and ANN were about 3.5%.

- At levels of 16%, 50%, and 84%, for the LHS 
method and 281 simulations under RSM and ANN, the 
maximum μSa errors were 3.4% and 1.4%, the maximum 
μlnSa errors were 6.8% and 3.3%, the maximum σlnSa 
errors were 3.2% and 2%, and the maximum MAF errors 
were 4.1% and 9.2%, respectively, while for 10,000 
simulations under RSM and ANN, the maximum μSa 
errors were 2.5% and 1.3%, the maximum μlnSa errors 
were 6.4% and 2.3%, the maximum σlnSa errors were 
2.5% and 1.9%, and the maximum MAF errors were 
3.6% and 4.6%, respectively.

- At levels of 16%, 50%, and 84%, for the CCD 
method and 281 simulations under RSM and ANN, the 
maximum μSa errors were 3.3% and 2.2%, the maximum 
μlnSa errors were 11% and 2.2%, the maximum σlnSa errors 
were 1.3% and 1.6%, and the maximum MAF errors 
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Fig. 20  MAF error at of levels 16%, 50%, and 84%



were 17% and 8.3%, respectively, while for 10,000 
simulations under RSM and ANN, the maximum μSa 
errors were 5.3% and 1.8%, the maximum μlnSa errors 
were 16.7% and 15%, the maximum σlnSa errors were 
1.9% and 3.4%, and the maximum MAF errors were 
7.1% and 6.4%, respectively.

References

Anderson JA (1995), An Introduction to Neural 
Networks, MIT press.
Baker J and Cornell C (2006), “Vector-Valued Ground 
Motion Intensity Measures for Probabilistic Seismic 
Demand Analysis,” Report No. 150, Pacifi c Earthquake 
Engineering Research Center, College of Engineering, 
University of California, Berkeley.
Beheshti-Aval SB, Khojastehfar E, Noori M and 
Zolfaghari M (2015), “A Comprehensive Collapse 
Fragility Assessment of Moment Resisting Steel 
Frames Considering Various Sources of Uncertainties,” 
Canadian Journal of Civil Engineering, 43(2): 118–131.
Borekci M, Kirçil M and Ekiz I (2014), “Collapse Period 
of Degrading SDOF Systems,” Earthquake Engineering 
and Engineering Vibration, 13(4): 681–694.
Bucher C and Most T (2008), “A Comparison of 
Approximate Response Functions in Structural 
Reliability Analysis,” Probabilistic Engineering 
Mechanics, 23(2-3): 154–163.
Buratti N, Ferracuti B and Savoia M (2010), “Response 
Surface with Random Factors for Seismic Fragility of 
Reinforced Concrete Frames,” Structural Safety, 32(1): 
42–51.
Der Kiureghian A and Ditlevsen O (2009), “Aleatory 
or epistemic? Does it matter?” Structural Safety, 31(2): 
105–112.
Fattahi F and Gholizadeh S (2019), “Seismic Fragility 
Assessment of Optimally Designed Steel Moment 
Frames,” Engineering Structures, 179: 37–51.
Federal Emergency Management Agency (2000), FEMA 
350, Recommended Seismic Design Criteria for New 
Steel Moment‐Frame Buildings, SAC joint Venture, 
Washington, DC.
Federal Emergency Management Agency (2009), FEMA 
P-695, Quantification of Buildings Seismic Performance 
Factors, Washington, DC.
Gholizadeh S and Aligholizadeh V (2019), “Reliability‐
Based Optimum Seismic Design of RC Frames by a 
Metamodel and Metaheuristics,” The Structural Design 
of Tall and Special Buildings, 28(1): e1552 (19 Pages).
Gholizadeh S and Mohammadi M (2016), “Reliability-
Based Seismic Optimization of Steel Frames by 
Metaheuristics and Neural Networks,” ASCE-ASME 
Journal of Risk and Uncertainty in Engineering Systems, 
Part A: Civil Engineering, 3(1): 04016013 (11 Pages).
Gomes HM and Awruch AM (2004), “Comparison 

of Response Surface and Neural Network with Other 
Methods for Structural Reliability Analysis,” Structural 
Safety, 26(1): 49–67. 
Haselton CB and Deierlein GG (2008), “Assessing 
Seismic Collapse Safety of Modern Reinforced Concrete 
Moment-Frame Buildings,” Report No. PEER 2007/08, 
Pacifi c Earthquake Engineering Research Center, 
College of Engineering, University of California, 
Berkeley.
Haselton CB, Liel AB, Lange ST and Deierlein GG 
(2008), “Beam-Column Element Model Calibrated 
for Predicting Flexural Response Leading to Global 
Collapse of RC Frame Buildings,” Report No. PEER 
2007/03, Pacifi c Earthquake Engineering Research 
Center, College of Engineering, University of California, 
Berkeley.
Hassanzadeh A and Gholizadeh S (2019), “Collapse-
Performance-Aided Design Optimization of Steel 
Concentrically Braced Frames,” Engineering Structures, 
197: 109411 (15 Pages).
Ibarra LF and Krawinkler H (2005), “Global Collapse 
of Frame Structures Under Seismic Excitations,”Report 
No.152, Pacifi c Earthquake Engineering Research 
Center Berkeley, CA.
Ibarra LF, Medina RA and Krawinkler H (2005), 
“Hysteretic Models that Incorporate Strength and 
Stiff ness Deterioration,”Earthquake Engineering and 
Structural Dynamics, 34(12): 1489–1511.
Karimi Ghaleh Jough F and Beheshti Aval S (2018), 
“Uncertainty Analysis Through Development of 
Seismic Fragility Curve for an SMRF Structure Using 
an Adaptive Neuro-Fuzzy Inference System Based on 
Fuzzy C-Means Algorithm,” Scientia Iranica, 25(6): 
2938–2953.
Karimi Ghaleh Jough F and Şensoy S (2016), “Prediction 
of Seismic Collapse Risk of Steel Moment Frame 
Mid-Rise Structures by Meta-Heuristic Algorithms,” 
Earthquake Engineering and Engineering Vibration, 
15(4): 743–757.
Karimi Ghaleh Jough F and Şensoy S (2020), “Steel 
Moment-Resisting Frame Reliability via the Interval 
Analysis by FCM-PSO Approach considering Various 
Uncertainties,” Journal of Earthquake Engineering, 
24(1): 109–128.
Khojastehfar E, Beheshti-Aval SB, Zolfaghari MR 
and Nasrollahzade K (2014), “Collapse Fragility 
Curve Development Using Monte Carlo Simulation 
and Artifi cial Neural Network,” Proceedings of the 
Institution of Mechanical Engineers, Part O: Journal of 
Risk and Reliability, 228(3): 301–312.
Li X (1996), “Simultaneous Approximations of 
Multivariate Functions and Their Derivatives by Neural 
Networks with One Hidden Layer,” Neurocomputing, 
12(4): 327–343.
Liel AB, Haselton CB, Deierlein GG and Baker JW 
(2009), “Incorporating Modeling Uncertainties in the 

No. 1                          Mohammad Amin Bayari et al.: Analyzing uncertainties involved in estimating collapse risk                                115



Assessment of Seismic Collapse Risk of Buildings,” 
Structural Safety, 31(2): 197–211.
Lignos DG and Krawinkler H (2010), “Deterioration 
Modeling of Steel Components in Support of Collapse 
Prediction of Steel Moment Frames Under Earthquake 
Loading,” Journal of Structural Engineering, 137(11): 
1291–1302.
Myers RH, Montgomery DC and Anderson-Cook CM 
(2009), -Response Surface Methodology: Process and 
Product Optimization Using Designed Experiments, 
John Wiley & Sons., New York.
Palanci M (2019), “Fuzzy Rule Based Seismic Risk 
Assessment of One-Story Precast Industrial Buildings,” 
Earthquake Engineering and Engineering Vibration, 
18(3): 631–648.
Panagiotakos TB and Fardis MN (2001), “Deformations 
of Reinforced Concrete Members at Yielding and 
Ultimate,” Structural Journal, 98(2): 135–148.
Park J and Towashiraporn P (2014), “Rapid Seismic 
Damage Assessment of Railway Bridges Using the 
Response-Surface Statistical Model,” Structural Safety, 
47: 1–12.
Tothong P and Cornell CA (2007), “Probabilistic Seismic 
Demand Analysis Using Advanced Ground Motion 
Intensity Measures, Attenuation Relationships, and 
Near-Fault Eff ects,” Report No. PEER 2006/11, Pacifi c 
Earthquake Engineering Research Center, College of 

Engineering, University of California, Berkeley.
Tung Y-K and Yen BC (2005), Hydrosystems Engineering 
Uncertainty Analysis, McGraw-Hill New York.
Ugurhan B, Baker J and Deierlein G (2014), 
“Uncertainty Estimation in Seismic Collapse Assessment 
of Modern Reinforced Concrete Moment Frame 
Buildings,”Proceedings of the 10th National Conference 
in Earthquake Engineering, Anchorage, Alaska.
Vamvatsikos D and Cornell CA (2002), “Incremental 
Dynamic Analysis,” Earthquake Engineering & 
Structural Dynamics, 31(3): 491–514.
Vamvatsikos D and Cornell CA (2004), “Applied 
Incremental Dynamic Analysis,” Earthquake Spectra, 
20(2): 523–553.
Zareian F and Krawinkler H (2007), “Assessment of 
Probability of Collapse and Design for Collapse Safety,” 
Earthquake Engineering & Structural Dynamics, 
36(13): 1901–1914.
Zareian F, Krawinkler H, Ibarra L and Lignos D 
(2010), “Basic Concepts and Performance Measures in 
Prediction of Collapse of Buildings under Earthquake 
Ground Motions,” The Structural Design of Tall and 
Special Buildings, 19(1‐2): 167–181.
Zhang D, Han X, Jiang C, Liu J and Li Q (2017), “Time-
Dependent Reliability Analysis Through Response 
Surface Method,” Journal of Mechanical Design, 
139(4):  041404 (12 pages).

116                                            EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 21


