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Abstract: The conventional pseudo-dynamic (CPD) and modifi ed pseudo-dynamic (MPD) methods are invoked to obtain 
the seismic bearing capacity of strip foundations using the limit equilibrium method, with a two-wedge failure mechanism. 
A spectral version of the conventional pseudo-dynamic method (SPD) is also invoked by considering the ground motion 
amplifi cation factor, to be a function of the non-dimensional frequency λ/B and soil damping. Numeric analyses show 
that bearing capacity results obtained by the MPD and SPD methods are generally consistent. Both experience the same 
general reduction in bearing capacity with the increase of λ/B, with successive ups and downs corresponding to soil′s natural 
frequencies. For 5<λ/B<10, SPD and MPD results fl uctuated between falling above and below CPD results. For λ/B<2.5, SPD 
and MPD results were consistent with attenuation of the shear wave, while for 10<λ/B, amplifi cation was exhibited. Results 
obtained by the CPD method monotonically decrease, due to the fact that CPD fails to inherently consider site eff ects and 
damping, and instead and relies on a single factor to consider the ground motion amplifi cation.
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 1   Introduction

The pseudo-static and pseudo-dynamic methods are 
among the most commonly-used approaches in seismic 
stability analysis, including investigating the seismic 
bearing capacity of shallow foundations. Although 
simple and robust, the pseudo-static method subjects the 
entire soil mass to the same acceleration and assumes the 
magnitude and phase of the accelerations to be invariant 
through the soil body, essentially failing to consider the 
eff ects of time duration, phase diff erences and frequency 
contents on the bearing capacity of shallow footings. 
The pseudo-dynamic method, developed by Steedman 
and Zeng (1990) to investigate seismic lateral stresses 
on a retaining wall, is able to take into account phase 
diff erences in the acceleration, and consider amplifi cation 
in the soil body. The pseudo-dynamic method was later 
improved upon by Choudhury and Nimbalkar (2005, 
2006) to include the eff ect of both primary and shear 
waves on the lateral stresses on a vertical retaining wall. 
In addition to being used by many researchers to calculate 
the lateral stresses on retaining walls (Choudhury et al., 

2007; Nimbalkar and Choudhury, 2007, 2008; Ghosh, 
2007, 2008a, 2010; Azad et al., 2008; Shafi ee et al., 
2010; Wang et al., 2011; Ghosh and Kolathayar, 2011; 
Ruan et al., 2012; Ghosh and Sharma, 2012; Ruan et al., 
2013a; Ghosh and Saha, 2014; Fathipour et al., 2021a, 
2021b), the method has since been further upgraded 
to apply to diff erent problems including seismic 
displacement in walls (Choudhury and Nimbalkar, 2007, 
2008; Basha and Babu, 2009b, 2010, 2011), nonvertical 
walls (Ghanbari and Ahmadabadi, 2010), retaining 
walls with submerged backfi lls (Choudhury and Ahmad, 
2008; Ahmad and Choudhury, 2008b, 2010; Bellezza et 
al., 2012; Chakraborty and Choudhury, 2014a, 2014b; 
Rajesh and Choudhury, 2017a, 2017b), reinforced soil 
walls ( Nimbalkar et al., 2006; Ahmad and Choudhury, 
2008a; Shekarian et al., 2008; Shekarian and Ghanbari, 
2008; Basha and Babu, 2009a; Narasimha Reddy et al., 
2009; Cheng et al., 2013; Ruan and Sun, 2013; Ruan et 
al., 2018). In addition, the pseudo-dynamic method has 
been eff ectively used to investigate the seismic stability 
of slopes (Eskandarinejad and Shafi ee, 2011; Ruan et 
al., 2013b; Qin and Chian, 2018), vertical excavations 
(Sarangi and Ghosh, 2016; Pain et al., 2017a) and 
landslides (Zhou et al., 2015) and fi nally to determine 
the seismic bearing capacity of shallow foundations 
(Ghosh, 2008b; Ghosh and Choudhury, 2011; Saha and 
Ghosh 2015a, 2015b; Zhou et al., 2016; Saha et al., 
2018; Kurup and Kolathayar, 2018; Izadi et al., 2019; 
Safardoost Siahmazgi et al., 2021). 

Despite being an improvement over the pseudo-
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static approach, the pseudo-dynamic approach is not 
without its own fl aws.  Bellezza (2014),  Choudhury et 
al. (2014) and Pain et al. (2015) criticized the pseudo-
dynamic method for failing to satisfy the traction-free 
boundary condition at the surface, for assuming a linear 
variation profi le of the acceleration amplifi cation along 
the soil depth, and requiring an a priori assumption on 
the amplifi cation factor, while also neglecting to take 
the soil′s damping characteristics into account. Bellezza 
(2014) clarifi ed that the pseudo-dynamic method failed 
to take account of refl ection at the soil′s free surface and 
thereby, the waves modeled in this method are merely 
incident waves travelling upward through a linear elastic 
backfi ll, which results in the violation of the zero-
stress boundary at the surface. Bellezza (2014, 2015) 
developed an improved pseudo-dynamic method where 
the soil was modeled as a visco-elastic Kelvin-Voigt 
material instead of a linear elastic material, in order 
to include the eff ects of soil′s damping properties. By 
modeling the shear and compression waves as standing 
waves, Bellezza (2014, 2015) managed to include the 
interference of the upward and downward travelling 
waves generated as a result of refl ection. Through this 
method, the travelling waves are inherently amplifi ed in 
the soil stratum without the need of applying an extra 
amplifi cation factor. This modifi ed pseudo-dynamic 
method was later used by Pain et al. (2015), Pain et 
al. (2017b), Rajesh and Choudhury (2017) and Khatri 
(2019) to investigate the lateral stresses and stability of 
retaining walls, and by Pain et al. (2016a) to determine 
the uplift capacity of horizontal strip anchors. In addition, 
the modifi ed pseudo-dynamic method has been used by 
Pain et al. (2016a, b), Nadgouda and Choudhury (2019) 
and Saha and Ghosh (2020) to investigate the bearing 
capacity of shallow foundations.

In this study, the conventional and modifi ed pseudo-
dynamic approaches are compared in their ability to 
predict the seismic bearing capacity of strip foundations, 
using the limit equilibrium method with a simple two-
wedge failure mechanism, also known as the Coulomb 
mechanism. The two-wedged mechanism, developed 
as a useful simplifi cation to the Prandtl (1921) failure 
surface, was used by Richards et al. (1993) in their 
investigation into the seismic bearing capacity and 
settlement of foundations. It has since been used by 
diff erent researchers (Ghosh, 2008; Saha and Ghosh, 
2015; Pain et al., 2016; Ghosh and Debnath, 2017; 
Saha and Ghosh, 2017; Izadi et al., 2019) in their 
investigations of seismic bearing capacity, thanks to its 
simplicity. In addition to the pseudo-dynamic methods, 
static and pseudo-static (PS) bearing capacity factors, 
have been calculated for the presented mechanism and 
are included in the results for comparison. Moreover, 
extra pseudo-dynamic analyses are conducted with the 
amplifi cation factor, introduced as a function of damping 
and wavelength and these analyses are referred to as 
the spectral pseudo-dynamic method (SPD). It must be 
noted that by this title, it is not meant to say that the other 

two methods are not spectral, since all pseudo-dynamic 
methods are frequency-dependent and spectral. The title 
“spectral” refers to the modifi cation of the conventional 
pseudo-dynamic method to a method that includes a 
spectral amplifi cation analysis.

2  Method 

2.1  Pseudo-dynamic formulations

Equation (1) presents the horizontal pseudo-dynamic 
acceleration function for a sinusoidal base shaking, at 
any depth z below the surface, at the time t, as proposed 
by Steedman and Zeng (1990). 
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where ah is the horizontal acceleration at any depth 
z below the footing base at the time t, ξ represents the 
oscillation factor, ω is the angular frequency, kh,base is the 
horizontal coeffi  cient of acceleration at the base level, g 
is the gravitational acceleration, fa is the amplifi cation 
factor, H is the soil depth over the bedrock and Vs is the 
shear wave velocity. While soil shear wave velocity is 
usually a spatially variable parameter (Kazemi Esfeh et 
al., 2020), as per Steedman and Zeng (1990), the shear 
wave velocity is assumed to be constant along the soil 
depth. In Eq. (1), both the eff ects of phase diff erences as 
well as changes in the magnitude of acceleration along 
the height (amplifi cation or attenuation) are considered. 
The term sin(ω × (t − (H − z) / Vs)) applies the phase 
diff erences to the acceleration function based on time 
and depth. In this term, the normalized frequency, ωH/Vs 
is an important parameter that is proportional to the time 
it takes for the wave to travel upward to the surface 
(H/Vs) normalized to the period of the base shaking. 
ωH/Vs is inversely proportional to the normalized shear 
wavelength or λ/H where λ is the shear wavelength. 
These factors implement the eff ect of the earthquake 
frequency, as well as the dynamic properties of the soil 
into the acceleration function. In addition, when the shear 
wave travels upward from the base towards the surface, 
depending on the site eff ects, damping and depth of the 
soil, the magnitude of the acceleration can be magnifi ed. 
In Eq. (1), the term (1 + (H − z) × (fa − 1) / H) applies 
the eff ects of amplifi cation to the acceleration function. 
Based on this factor, the fa is assumed a constant and 
the acceleration magnitude varies linearly along the 
soil depth. By taking into account the eff ects of phase 
diff erences, excitation frequency and amplifi cation, the 
pseudo-dynamic analysis delivers results that diff er from 
the pseudo-static and static bearing capacities depending 
on the seismic wavelength.
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Equation (2) presents the horizontal modifi ed pseudo-
dynamic acceleration function for a sinusoidal base 
shaking, at any depth z below the surface, at the time t.
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where D is the soil damping ratio. As previously 
mentioned, a major criticism of the conventional pseudo-
dynamic method (CPD) is aimed at its inability to take 
into account the damping properties of the soil. As an 
alternative the amplifi cation factor fa, function in the 
conventional method can be introduced as a function of 
the wavelength and damping. This can be done by using 
the amplifi cation function obtained in a one-dimensional 
ground response analysis of soil, in the modifi ed pseudo-
dynamic method (MPD). The amplifi cation function 
in this case is the magnitude of the transfer function 
obtained from the one-dimensional ground response 
analysis of soil as a Kelvin-Voigt solid, as carried out by 
Bellezza (2014) and presented by Kramer (1996). The 
transfer function is defi ned as the ratio of the amplitudes 
at the surface and the base rock bottom. Kramer (1996) 
presented the aforesaid amplifi cation function according 
to Eq. (3), for the one-dimensional ground response 
analysis of a uniform soil layer of damping ratio D, 
characterized as a Kelvin-Voigt solid, placed over a rigid 
bedrock.
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where F is the amplifi cation function. By adopting this 
amplifi cation function as the amplifi cation factor, fa, the 
conventional pseudo-dynamic method can be elevated 
to operate as a spectral analysis that also takes into 
consideration soils′ damping properties.

2.2   Problem defi nition

A strip footing of width B is placed at a depth of 
Df, over a soil deposit with the unit weight of γ, friction 
angle, φ, and cohesion, c, with an underlying semi-
infi nite bedrock layer, located at a depth of H to the 
footing. Figure 1 presents a schematic view of the 

problem under study. The limit equilibrium method with 
the simplifi ed two-wedge Coulomb failure mechanism 
is adopted for the bearing capacity analyses. α and β are 
the inclination angles of the active and passive zones, 
respectively. h is the depth of the failure mechanism, 
PL is the foundation load, QhA is the inertia force of the 
active wedge, QhP is the inertia force on the passive 
wedge, Q is the overburden load, QhQ is the inertia force 
on the surcharge soil block, WA is the weight of the active 
wedge, WP is the weight of the passive wedge, CLN is 
the cohesive load on the LN surface, CNO is the cohesive 
load on the NO surface, RA is the active earth pressure 
and RP is the passive earth pressure.

Shear wav e velocity was assumed to be constant 
throughout the soil deposit. Jamshidi Chenari and 
Aminzadeh Bostani Taleshani (2016) illustrated that 
the adoption of a proper averaging scenario will yield 
equivalent homogenous conditions, rendering consistent 
site response amplifi cation regimes. This has lent 
support to the contention of constant equivalent shear 
wave velocity in soil deposits overlying the rigid 
bedrock hemisphere. The seismic forces induced by the 
conventional and modifi ed pseudo-dynamic methods are 
calculated by defi ning the mass of the thin elements in the 
active and passive wedges and the surcharge soil block 
overlying the passive wedge according to Eq. (4). In the 
conventional pseudo-dynamic method, these elements 
are subjected to the acceleration fi eld defi ned by Eq. (1), 
while for the modifi ed pseudo-dynamic formulation, the 
acceleration fi eld is defi ned by Eq. (2).
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where dm(z)A, is the mass of a thin element in the active 
wedge, dm(z)P is the mass of a thin element in the passive 
wedge, and dm(z)Q is the mass of thin element in the 
surcharge soil block at the depth of z. γe is the equivalent 

Fig. 1  Problem defi nition and failure mechanism
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soil unit weight for the active wedge, taking into account 
both the unit weight of the soil and the load applied by 
the overlying superstructure at the foundation base level. 
The equivalent unit weight (γe) can be found according 
to Eq. (5).
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The horizontal inertia forces acting on the active and 
passive wedges and the surcharge soil block obtained 
adopting the conventional pseudo-dynamic method can 
be found according to Eqs. (6), (7) and (8).
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where QhA,CPD is the inertia force of the active wedge 
according to the conventional pseudo-dynamic method 
and T is the wave period. 
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where QhP,CPD is the inertia force on the passive wedge 
according to the conventional pseudo-dynamic method.
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where QhQ,CPD  is the inertia force on the surcharge soil 
block according to the conventional pseudo-dynamic 
method.

Switching to the modifi ed pseudo-dynamic method, 
the horizontal inertia forces acting on the active and 
passive wedges and the surcharge soil block can be 
found according to Eqs. (9), (10) and (11).
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where QhA, MPD is the inertia force of the active wedge, 
QhP, MPD is the inertia force on the passive wedge and 
QhQ, MPD is the inertia force on the surcharge soil block 
according to the modifi ed pseudo-dynamic method.

The horizontal inertia forces acting on the active and 
passive wedges and the surcharge soil block obtained 
adopting the pseudo-static method can be found 
according to Eqs. (12), (13) and (14).
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where QhA,PS is the inertia force of the active wedge, QhP,PS 
is the inertia force on the passive wedge and QhQ,PS is the 
inertia force on the surcharge soil block according to the 
pseudo-static method. Figure 2 shows the forces acting 
on the active and passive wedges. CMN is the cohesive 
force on the MN surface. PA is the active thrust pushing 
the adjacent passive zone and PP is the passive thrust, 
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resisting the active wedge. The active and passive lateral 
earth pressures are equated to satisfy equilibrium.

Equilibrium enforces the Eqs. (15) and (16) on the 
forces applied to the active wedge:
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WA is defi ned by Eq. (18):
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By equating the resulting PP and PA, PL or the limit 
equilibrium load sustained by the foundation can be 
determined according to Eq. (24):
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It must be noted that the terms QhA, QhP and QhQ are 
replaced in Eq. (24) depending on the adopted method 
(conventional pseudo-dynamic, modifi ed pseudo-
dynamic or pseudo-static) and they are all previously 
defi ned in equations for each method. According to 
Eq. (24), pL can be determined when the two angles α 
and β are known. This can be achieved by conducting 
an optimization process to fi nd the angles corresponding 

(a) (b)

Fig. 2  Forces acting on the failure wedges; a) active zone; b) passive zone
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to the most conservative pL value. Moreover, in both 
conventional and modifi ed pseudo-dynamic methods, 
the inertial forces imposed on the soil wedges due to 
earthquake are time-dependent. Therefore, in addition 
to the geometry, when either of the pseudo-dynamic 
methods is adopted, pL has to be optimized with respect 
to time as well. In order to obtain individual bearing 
capacity factors, three separate optimization processes 
for each approach were carried out where each time, only 
one of the three parameters of c, qf and γ would take a 
nonzero value to yield the most conservative estimation 
of the bearing capacity of the footing. Therefore, for each 
analysis, once pL is determined through the process of 
optimization, the corresponding bearing capacity factor 
can be determined. In the case of a non-zero value for γ, 
the bearing capacity factor, Nγ can be obtained according 
to Eq. (25). In the case of a non-zero value for c, the 
bearing capacity factor, Nc can be obtained according 
to Eq. (26), and fi nally for the case of a non-zero value 
for qf, the bearing capacity factor, Nq can be obtained 
according to Eq. (27).
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In this study, the nonlinear optimization problem 
was solved using an interior-point method embedded in 
Matlab, MathWorks. The three bearing capacity factors 
are obtained for a friction angle of 30°, according to 
the three diff erent pseudo-dynamic approaches, namely 
conventional pseudo-dynamic (CPD), spectral pseudo-
dynamic (SPD) and the modifi ed pseudo-dynamic 
(MPD) methods for λ/B values in the range of 0 to 40. 
Results are obtained and compared with each other and 
with the pseudo-static and static bearing capacity factors 
for three diff erent horizontal acceleration coeffi  cients 
(kh) of 0.1, 0.2 and 0.3. The value of the amplifi cation 
factor, fa, has been assumed as 1 in the CPD analysis 
(no amplifi cation). H has been assumed to be 10 times 
the foundation width, B, while the damping ratio, D, has 
been assumed as 5% and maintained constant throughout 
the analyses. In a separate series of analyses, the eff ect 
of H and D is investigated by obtaining the Nγ factor 
for kh=0.1, for damping ratios of 10 and 20 % and for H 
assumed as 5 times the foundation width.

3   Results

Figures 3 to 11 show the variation of bearing 
capacity factors Nγ, Nq and Nc estimated from three 

diff erent seismic approaches as elaborated earlier, with 
the shear wavelength λ normalized to the footing width 
B, for φ=30° and three diff erent values of kh, namely 0.1, 

Fig. 3  Variation of Nγ with the normalized wavelength for 
              φ=30° and kh=0.1, H/B=10 and D=5%

Fig. 4   Variation of Nγ with the normalized wavelength for 
               φ=30° and kh=0.2, H/B=10 and D=5%

Fig. 5  Variation of Nγ with the normalized wavelength for 
               φ=30° and kh=0.3, H/B=10 and D=5%
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0.2 and 0.3, respectively. In these analyses, H/B has been 
set to 10 while the damping ratio, D has been set to 5%.

Figure 12 presents the variation of the oscillation 

factor ξ, with depth for diff erent wavelength ratios (λ/B) 
at the most critical time, obtained from the optimization 
process for determining the Nγ for φ=30° and kh=0.1.

Fig. 6  Variation of Nc with the normalized wavelength for 
              φ=30° and kh=0.1, H/B=10 and D=5%

Fig. 7  Variation of Nc with the normalized wavelength for 
               φ=30° and kh=0.2, H/B=10 and D=5%

Fig. 8  Variation of Nc with the normalized wavelength for 
              φ=30° and kh=0.3, H/B=10 and D=5%

Fig. 9  Variation of Nq with the normalized wavelength for 
              φ=30° and kh=0.1, H/B=10 and D=5%

Fig. 10  Variation of Nq with the normalized wavelength for 
                φ=30° and kh=0.2, H/B=10 and D=5%

Fig. 11  Variation of Nq with the normalized wavelength for 
               φ=30° and kh=0.3, H/B=10 and D=5%
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As seen from Figs. 3  to 11, for very small wavelengths, 
all three methods yield almost the same bearing capacity 
factors, which is close to the static bearing capacity 
factor. As the normalized wavelength increases, Nγ, Nq 
and Nc obtained from all three approaches experience a 
dramatic decrease. This reduction of bearing capacity 
with the increase in the seismic wavelength is due 
to the more homogenous acceleration fi eld at higher 
wavelength. For smaller wavelengths, the acceleration 
fi eld is a train of excitations with rapid changes in 
the magnitude and direction of the acceleration. As a 
result, a very small wavelength translates to a spatially 
heterogeneous acceleration fi eld along the soil depth, 
where a lot of fl uctuations occur in the acceleration at 
diff erent depths within the failure zone, where at each 
point the value and direction of the acceleration can vary 
and diff erent points in the soil body move at diff erent 
phases from each other. The inertia forces in diff erent 
directions ultimately counteract each other and the highly 
variable acceleration fi eld fails to diminish the ultimate 
bearing capacity of the overlying shallow footing. This 
rapid fl uctuation can be observed in Fig. 12 where the 
smaller the wavelength, the more spatially heterogeneous 
the acceleration fi eld is and the shear wave travels many 
sinusoidal cycles along the stratu m depth. On the other 
hand, for larger wavelength, the acceleration fi eld is 
much more homogenous and the wave completes fewer 
cycles along the depth (Fig. 12). A more homogenous 
acceleration fi eld in eff ect results in higher seismic 
forces applied to the soil within the failure zone, 
while for heterogeneous acceleration fi elds, due to the 
counteraction of the opposing inertia forces, the resulting 
seismic forces are minor. This will result in much higher 
bearing capacity values for smaller λ/B values compared 
to the cases with larger λ/B values, where most of the 
points in the infl uence zone move at relatively similar 
and in-phase accelerations. The static and pseudo-static 
cases are the two opposite poles of this spectrum, where 
the static case corresponds to an infi nitely heterogeneous 
acceleration fi eld and the pseudo-static case corresponds 
to a perfectly homogenous acceleration fi eld, where 
the entire soil body experiences the same acceleration 
amplitude and experiences no opposing inertia forces 
that would otherwise arise as a result of accelerations 
in the opposite direction in a not perfectly homogenous 
case. As a result, the static case corresponds to the case 
of a very small wavelength while the pseudo-static case 
corresponds to the case of a normalized wavelength 
of infi nity. Correspondingly, the CPD results decrease 
with the increase in the normalized wavelength until 
the results trend off  towards an asymptote value which 
corresponds to the pseudo-static bearing capacity factor, 
as presented in Figs. 3 to 11. The CPD results reach 
their constant value at around λ/B = 5. The SPD and 
MPD methods present quite diff erent trends of variation 
compared to the CPD method. Both the SPD and MPD 
methods present results slightly higher than the CPD for 
small λ/B values (λ/B<2.5). For this range of λ/B values, 

the earthquake wave has undergone attenuation, where 
the amplitude of the shear wave decreases as the wave 
travels upward. This can be corroborated by Fig. 12,
where for λ/B of 0.5 and 1, the reduction in shear wave 
amplitude along the soil depth is clear. It can also be seen 
from Fig. 12 that the MPD shear wave has experienced a 
larger level of attenuation compared to the SPD method. 
This is consistent with the higher values of Nγ for MPD, 
seen in Fig. 3 for the aforesaid range of normalized 
wavelength. Similar observations can be made from 
the results of Figs. 4 to 11, in the aforesaid range of 
wavelength. 

As the wavelength increases, the SPD and MPD 

Fig. 12  Variation of the oscillation factor ξ along the soil layer 
        depth at the critical time for diff erent wavelengths,
              φ=30° and kh=0.1, H/B=10 and D=5%
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where f is the soil natural frequency.

 1/         0,  1,  2,  ...,  1( )
4 2

H nn  




         

(29)

Based on these results, the MPD and SPD methods 
both present fairly consistent results and are able to 
deal with both the site eff ects and the eff ects of phase 
diff erences. Contrary to the CPD method which relies 
on an a priori value of fa to implement the potential 
amplifi cations of ground motion, the MPD and SPD 
methods are able to take account of the eff ects of soil′s 
properties, including its damping properties and its 
shear wave velocity, as well as the geometry of the site 
(thickness of the layer) on the amplifi cation of the base 
ground motion.

Figures 14 and 15 illustrate the variation of the 
amplitude of the oscillation factor for the SPD and 
MPD methods, respectively. The acceleration transfer 
function curve, previously presented in Fig. 13 can also 
be seen in Figs. 14 and 15 in the z/H=0 plane. It can 
be seen that while the SPD approach assumes a linearly 
depth-varying oscillation amplitude, according to the 
MPD method the ξ amplitude follows a harmonic trend 
of variation with the soil depth. Despite the diff erent 
amplitude profi les between the SPD and MPD seismic 
formulations, the resulting bearing capacity values are 
quite similar, because they are both apt to capture the site 
eff ects and the out-of-phase behavior of seismic waves 
in the soil stratum underneath. The linear formulation of 
the SPD turns this approach into a simpler alternative 
to the MPD method that can be quite useful in solving 
stability problems, where complex failure mechanisms 
are employed and an integration has to be carried out 
over the depth of the soil.

In order to examine the consistency of the SPD and 
MPD approaches for diff erent damping ratios, Nγ values 
were obtained for φ=30°, kh=0.1, H/B=10 and two 
diff erent damping ratios of 10% and 20%. Figures 16 
and 17 show the variation of the Nγ as estimated from 
the three diff erent seismic approaches, with λ/B. As seen 
from the fi gures, the same general trend of reduction 
with the increase in λ/B occurs. However, it is clear that 
the increase in damping ratio has led to an increase in Nγ, 
as can be expected. In addition, while the MPD and SPD 
approaches are still quite consistent with one another, 
a higher level of inconsistency is observed at higher 
damping ratios.

Finally, the consistency of the SPD and MPD 
approaches for diff erent bedrock depths was examined 
by obtaining Nγ values for φ=30°, kh=0.1, D=5% 
and H/B=5. Figure 18 shows the variation of the Nγ as 
estimated from the three diff erent seismic approaches 
with λ/B. It can be seen from the fi gure that the MPD 
and SPD approaches remain consistent.

Based on the results provided, it can be concluded 
that while the CPD method is not able to take into 

results continue to fl uctuate between falling above and 
below the CPD values for λ/B values in the range of 
5 to 10 while for λ/B values higher than 10, the SPD 
and MPD results fall below the CPD results due to 
amplifi cation, where the wave amplitude is magnifi ed as 
it travels upward. Correspondingly, in Fig. 12 various 
levels of amplifi cation is observed. In addition, when λ/B 
equals 20, not much deviation is observed between the 
amplifi cation results of the three approaches in Fig. 12, 
which coincide with a bearing capacity factor very close 
to the pseudo-static solution.

Based on the results presented in Figs. 3 to 11, it 
can be seen that while the CPD method manages to 
consider the eff ects of phase diff erences, it is unable to 
take into account the site eff ects. Site eff ects which arise 
due to the diff erences in sediment properties, dictate soil 
behavior under the eff ects of earthquake motion. Hence, 
considering site eff ects in seismic analysis is imperative 
in minimizing earthquake damage (Paudyal et al., 2012 
and Kanbur et al., 2020).

However, the MPD and SPD methods are able to 
deal with both the site eff ects and the eff ects of phase 
diff erences. This can be clearly observed in Figs. 3 to 11 
where in addition to the general reduction in bearing 
capacity with the increase of wavelength, the variation 
of bearing capacity with wavelength also includes 
successive ups and downs where with the increase in 
wavelength, the local maximums and minimums decrease 
in value. This sequential increases and reductions 
correspond to the variation of the amplifi cation factor, fa 
with the wavelength as presented in Fig. 13, where peaks 
in fa correspond to minimums in Nγ and vice versa. The 
local peaks in fa occur at wavelengths that correspond to 
the natural frequencies of the soil. These frequencies are 
presented in Eq. (28) and the corresponding normalized 
wavelengths are presented in Eq. (29).

s1( ) 0,  1,  2,  ...,  
4 2

Vnf n
H
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Fig. 13  Variation of Nγ with the normalized wavelength for 
           φ=30° and kh=0.2, H/B=10 and D=5% superimposed
                     with the variation of fa with the normalized wavelength
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account the site and damping eff ects, the MPD and SPD 
approaches make use of formulations that embed the 
aforesaid eff ects in the bearing capacity problem. Both 
SPD and MPD methods are able to take account of the 
dependence of the amplifi cation of the base motion on 
the soil′s shear wave velocity, Vs, thickness of the soil 
layer, H and soil damping ratio, D. In addition, both 
methods present quite similar results. Therefore, instead 
of assuming an a priori fa value in the CPD approach, 
by entering the amplifi cation factor as a function of the 
non-dimensional frequency and damping ratio, the CPD 
method can be upgraded to a spectral analysis level 
(SPD), whose results fare well against those of the MPD 
method.

In the next section, an example is provided to 
demonstrate the eff ectiveness of the methods in practice. 

Example: A footing of width equal to 3 m is to be 
placed over a soil stratum with a depth of 30 m above 
the rigid bedrock. The soil has an average shear wave 
velocity of 180 m/s, a unit weight of 19 kN/m3 and a 
damping ratio of 5%. Soil friction angle is equal to 30°, 
cohesion is null and the footing is placed at a depth of 
1 m into the soil. Considering a bedrock acceleration 
of 0.3 g with a frequency of 4 Hz, what is the bearing 
capacity of the footing according to the PS, CPD, SPD 
and MPD approaches? 

Since the pseudo-static analysis is not a spectral 
analysis, the soil shear wave velocity and damping 
have no bearing on the result. On the other hand, for the 

spectral analysis:

s/ / ( ) 180 / (4 3) 15B V f B    

Nγ and Nq for kh=0.3 according to PS, CPD (fa=1), 
SPD and MPD methods are obtained from Figs. 5 and 
11 and are presented in Table 1 along with the resulting 
ultimate bearing capacity, qu. As an example, the PS 
bearing capacity is found according to the following 
formula.

u

2

1
2

11 19 11.14 3 3519 5.12 kN7.58 /m
2

c qq cN qN BN  

       



As seen from the table, the qu obtained from SPD 
and MPD methods are consistent with one another. 
However, a signifi cant disparity exists between 
the CPD/PS and SPD/MPD results. This is due to the 

Fig. 14   Variation of the oscillation factor amplitude with the 
      normalized wavelength and layer depth for the 
               SPD method

Fig. 15  Variation of the oscillation factor amplitude with the 
     normalized wavelength and layer depth for the 
              MPD method

Fig. 16   Variation of Nγ with the normalized wavelength for 
                φ=30° and kh=0.1, H/B=10 and D=10%

Fig. 17  Variation of Nγ with the normalized wavelength for 
                φ=30° and kh=0.1, H/B=10 and D=20%
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signifi cant amplifi cation that the shear wave experiences 
as demonstrated according to the following equation:

 

 

a 22
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The PS and CPD method fail to consider this 
amplifi cation and that leads to a signifi cant overestimation 
of bearing capacity.

4   Conclusions

The conventional and modifi ed pseudo-dynamic 
approaches are employed to carry out seismic bearing 
capacity analyses of strip foundations, using the 
limit equilibrium method with a two-wedge failure 
mechanism. In addition, a spectral version of the 
conventional pseudo-dynamic method was also utilized 
by considering the amplifi cation factor to be a function 
of the non-dimensional frequency and the soil damping 
ratio.

Based on the results, the CPD method with fa=1, 
presents Nγ values that start out from the static value at a 
λ/B of zero, and eventually trend off  towards the pseudo-
static Nγ as λ/B approaches λ/B = 5. The reduction in 
wavelength was shown to result in a more spatially 
heterogenous acceleration fi eld and the shear waves 
were observed to complete more cycles as they travel 
up through the soil. This heterogeneity alleviates some 
of the seismic inertia forces on the soil body due to the 
counteraction of the opposing inertia forces, leading to 
higher bearing capacity values.

SPD and MPD bearing capacity results were 
observed to experience the same general reduction 
in bearing capacity with the increase of wavelength. 
However, the SPD and MPD bearing capacity results 
also included successive ups and downs corresponding 
to the soil′s natural frequencies, where the local 
maximums and minimums decrease in value as the 
wavelength increases. For λ/B<2.5, SPD and MPD 
results were slightly higher than those of the CPD which 
was consistent with attenuation of the shear wave, with 
MPD results indicative of a higher level of attenuation. 
For 5<λ/B<10, SPD and MPD results fl uctuate between 
falling above and below the CPD values. For 10<λ/B, 
SPD and MPD results fall below the CPD results, 
demonstrating amplifi cation.

While according to the MPD method the oscillation 
amplitude follows a harmonic trend of variation with 
the soil depth, the SPD approach assumes a linearly 
depth-varying oscillation amplitude. Therefore, the SPD 
formulations are simpler and easier to apply. Despite the 
diff erent amplitude profi les between the SPD and MPD 
seismic formulations, the resulting bearing capacity 
values are quite similar and both methods are shown 
to be apt to capture the site eff ects and the out-of-phase 
behavior of seismic waves in the soil stratum underneath. 
With the increase in damping ratio, a higher level of 
inconsistency was observed between the MPD and SPD 
results, despite them remaining generally consistent.

Based on the results, the MPD and SPD methods are 
capable of taking into account damping and site eff ects 
and they produce results consistent with one another. 
Consequently, including an amplifi cation factor that is a 
function of the non-dimensional frequency and damping 
ratio, into the CPD formulation can enhance its effi  cacy 
to compete well with the MPD method in bearing 
capacity analyses, while still remaining simple and easy 
to apply, due to its linear formulation.
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