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Abstract: Implementation of effi  cient vibration control schemes for seismically excited structures is becoming more and 
more important in recent years. In this study, the infl uence of diff erent control schemes on the dynamic performance of a 
frame structure excited by El Centro wave, with an emphasis on reaching law based control strategies, is examined. Reaching 
law refers to the reachable problem and criteria for the sliding state of a control system. Three reaching laws are designed 
to present diff erent sliding mode control strategies by incorporating a state space model that describes structural dynamic 
characteristics of a frame structure. Both intact and damaged structures are studied by using the aforementioned control 
strategies. The infl uence of diff erent structural damage extents, control locations and reaching law based control methods 
are further investigated. The results show that the structure can be well controlled using the sliding mode strategy when the 
induced structural damage extent does not exceed the standard percentage for considering the structure was damaged, which 
is 20% reduction in structure stiff ness, as reported in the literature. The control eff ectiveness is more satisfactory if the control 
location is the same as the direction of external excitation. Furthermore, to study the chattering phenomenon of the sliding 
mode control method, approximation and detail components extracted from the phase plots of the sliding mode control system 
are compared via wavelet transform at diff erent scales. The results show that for the same type of control law, the system 
behaves with similar chattering phenomenon.
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1  Introduction

Large and complex civil and mechanical structural 
systems need comprehensive management and 
maintenance over the entire life cycle, particularly 
various types of disasters happen. To cope with these 
challenges, development of effi  cient system identifi cation 
and structural vibration control technologies has become 
an important issue (Zhao et al., 2018a; Narjabadifam et 
al., 2021; Ghannadi et al., 2020; Altabey et al., 2021; 
Altabey, 2017a). Since the introduction of variable 
structure control (VSC) or sliding mode control 
(SMC), these strategies have become some of the most 
popular approaches for vibration control of nonlinear 
systems (Slotine and Li, 1991), especially in the fi eld 

of structural health monitoring and structural vibration 
control of systems such as buildings, bridges and wind 
turbines or in other practical applications (Mekki et al., 
2015; Grass et al., 2008; Agrachev et al., 2004; Hu et al., 
2017; Hušek, 2016; Yang et al., 1997; De Leon-Morales, 
2011; Altabey, 2016; Altabey, 2017b, 2017c, 2017d, 
2017e; Altabey, 2018; Altabey and Noori, 2017; Altabey 
and Noori, 2018; Altabey et al., 2020a, 2020b; Zhao et 
al., 2018b). Designing eff ective control laws can provide 
the desired performance to the closed-loop system in the 
presence of these disturbances/uncertainties (Liu and 
Wang, 2012; Shtessel et al., 2014). The essential property 
of SMC is that the discontinuous feedback control 
switches on one or more manifolds are in the state space. 
Thus, the structure of the feedback system is altered or 
switched as the state crosses each discontinuous surface 
(Zinober, 1994). A survey of fundamental concepts and 
methodologies of sliding mode control have been carried 
out (Tokat et al., 2015; Decarlo et al., 1988; Hung et al., 
1993; Šabanovic, 2011; Bandyopadhyay et al., 2013; 
Emel′Yanov et al., 1996; Boiko, 2005).

SMC has a wide range of applications in structural 
health monitoring and vibration control. SMC was 
successfully utilized for controlling the vibration of tall 
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buildings with an active tuned mass damper (ATMD) 
installed at the top fl oor (Adhikari and Yamaguchi, 
1997). It was also presented for seismic control of 
buildings isolated by a frictional-type sliding-isolation 
system (Yang et al., 1996). This control strategy was 
also investigated for reducing the dynamic responses of 
building structures with hybrid base-isolation protective 
systems (Zhao et al., 2000). A squeeze-mode electro-
rheological (ER) mount was designed, manufactured, 
and applied to the vibration control of a frame structure 
subjected to external excitations (Hong et al., 2002). A 
nonlinear single-degree-of-freedom structural system 
model excited by an earthquake was studied by modeling 
hysteresis and system nonlinearity (Baradaran-nia 
et al., 2012). Based on genetic algorithms (GAs), a 
fuzzy sliding mode control (FSMC) method for the 
building structure was designed to ensure its safety and 
stability (Yu et al., 1998; Wang and Lee, 2002). The 
FSMC method was also applied to seismic isolation of 
earthquake-excited structures (Alli and Yakut, 2005). A 
three-story shear building model subjected to ground 
excitations was considered by applying a RBF neural 
network to the switching surface (Li et al., 2010). The 
response prediction of beam-like structures was studied 
via the deep learning based approach (Wang et al., 
2020a; Altabey, 2021, Kost et al., 2019; Zhao et al., 
2018c). The performance and robustness of the SMC-
based semi-active control system using MR dampers was 
investigated, and was eff ectively applied to a benchmark 
cable-stayed bridge (Moon et al., 2003). An alternative 
design method of sliding mode control was proposed for 
practical implementation on nonlinear isolated bridges 
(Lee and Chen, 2011). An application of adaptive FSMC 
was presented for a benchmark problem on a seismically 
excited highway bridge (Ning et al., 2009). A discrete 
time sliding mode controller using multi-rate output 
feedback was designed to minimize structural vibration 
of a cantilever beam using shape memory alloy wires 
as control actuators and piezo-ceramics as sensor and 
disturbance actuators (Kaliaperumal et al., 2016). 
Control performances of a vehicle seat suspension 
system equipped with magneto-rheological dampers 
was studied using a new adaptive fuzzy sliding mode 
controller (Shin et al., 2016). An attitude controller 
based on non-singular terminal sliding mode control 
was designed to eff ectively show damage and dynamic 
characteristics in an aircraft (Feng et al., 2014).

Due to the characteristics of sliding mode control, 
the chattering eff ect is a critical problem. In the industrial 
fi eld, chatter detection in the ball end milling process was 
proposed by monitoring dynamic cutting forces using 
wavelet transform (Tangjitsitcharoen et al., 2015; Wang 
and Liang, 2009; Cao et al., 2013; Yao et al., 2010; Fu 
et al., 2016). By using variational mode decomposition 
and wavelet packet decomposition, milling chatter based 
on energy entropy was studied (Zhang et al., 2016). 
Chattering detection on ground cylindrical parts was 
also conducted by analyzing the time-frequency domain 

of the vibration signal via wavelet transform (González-
Brambila et al., 2006). Furthermore, wavelet analysis 
and multi-resolution analysis have been applied to 
singularity detection of mode shape and curvature mode 
of structures with some extent of damage (Zhao et al., 
2017, 2018d; Noori et al., 2018; Wang et al., 2020b, 
2021; Li et al., 2021).

On the other hand, an important group of methods 
for vibration control of structures under uncertainties, 
include robust control (Wang et al., 2004; Huo et al., 
2016; Wang, 2003; Adeli et al., 2004; Pourzeynali et 
al., 2016), optimal control (Kim et al., 2000), Neural 
Network based vibration control (Ghaboussi, 1995; 
Cho et al., 2005; Blachowski and Pnevmatikos, 2018). 
Although considerable work has been done on the 
improvement of the robustness and reliability of sliding 
mode control algorithms, few researchers have studied 
the eff ect of structural damage on the eff ectiveness of 
control strategies, control location and chattering problem 
of diff erent control laws. To the best of the authors′ 
knowledge, for the general chattering phenomenon 
in the sliding mode control, no eff ective tools have 
been developed to detect and compare diff erent types 
of singularity similarity of signals. To investigate the 
impact of the chattering problem in obtaining law based 
control, 2-D wavelet decomposition and reconstruction 
are used to extract the approximation and detailed signal 
components of phase plots of the control system. It is 
proved to be a promising tool for singularity detection 
and feature extraction of 2-D images, which reveals the 
chattering phenomenon of the control system.

2  Control system modeling

2.1  State space model

Figure 1 shows a three degree-of-freedom (DOF) 
model of a building structure equipped with control 
actuators installed at diff erent locations. The three 
control strategies, illustrated in this fi gure, include a base 
isolation, a bracing system and a tuned mass damper 
installed at various fl oor locations, where u denotes 
control input. 

Figure 2 shows a schematic diagram of the reaching 
law based sliding mode control applied to the 3DOF 
structure using the MATLAB Simulink toolbox. The El 
Centro wave is the input signal of the system. 

The control input u, e is the tracking error vector of 
trajectory signals, and de is the fi rst order diff erential 
expression. Parameter y is a multi-dimensional vector 
that represents displacements and velocities of diff erent 
fl oors of the structure. The vector equation of motion 
for the superstructure, for a more generalized model 
consisting of 1n   degrees of freedom, subjected to a 
one-dimensional earthquake ground motion, is given by:

( ) ( ) ( ) ( ) ( )t t t t t   Mx Cx Kx Pu Qw            (1)
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Fig. 1   Diff erent strategies for structural control

Fig. 2  Sliding mode control using reaching law

where T
1 1( ) [ , , , , ]n n bt x x x xx   is an 1n   order 

vector with ix  be ing the displacement of the ith story 
relative to the ground. Parameters , ,M C K  represent 
( 1) ( 1)n n    mass, damping and stiff ness matrices, 
respectively. Suppose that the primary structure of the 
building behaves linearly and is elastic. In other words, 
the stiff ness coeffi  cients 1 2, , , nk k k  and damping 
coeffi  cients 1 2, , , nc c c are supposed to be constants. In 
general, Eqs. (2) and (3), the time-dependent stiff ness 
and damping coeffi  cients t ( )K t  and b ( )K t , and t ( )c t  
and b ( )c t  are introduced on the top and base fl oor, 
respectively, for the controlled system. These equations 
are related to the diagram representations in Fig. 2. For 
simplicity, these coeffi  cients are assumed as constant 
herein. In Eq. (1), the structural stiff ness and damping 
matrix are denoted as:
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In Eq. (1), P is an ( 1)n m   location matrix of 
the control force, Q  is an ( 1)n s   location matrix of 
the external loads, is a vector of the m control forces, 
and T

1 2( ) [ , , , ]mt u u uu   is a vector of the s external 
environmental loads or disturbances. Equation (1) can 
be converted into the state-space equation as shown in 
the following form:
 

( ) ( ) ( ) ( )t t t t  z Az Bu Ew                  (4)

where T
1 2 2 2( ) [ , , , ]nt z z z z   is a state vector of the 

order (2 2)n  , A is a (2 2) (2 2)n n    system matrix, 
B is a (2 2)n m   control matrix and E is a (2 2)n s   
disturbance matrix. The parameter 1l   because for each 
control case, there is assumed to be only one control 
force applied. They are expressed as follows.
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In the following section, parameter values are 
assigned as follows. The parameter Q indicates the base 
fl oor of the structure is directly excited by seismic wave.
 

3 2 1 b 1 kgm m m m                   (12)

3 2 1 t b100 , 50N Nk k k k k
m m

    
      

(13)

 

   3 2 1 t b
s50 , 25N Nsc c c c c

m m
    

      
(14)

 

 T0   0   0   1Q                       (15)

2.1  Choice of location of control force u(t)

In general, when a seismic wave approaches a 
structure, the direct interaction between it and the upper 
structure is the base structure. However, if the building 
structure is relatively tall, the entire structural dynamic 
performance will be signifi cantly infl uenced by both 
lateral wind load and seismic load, thus a damping 
and vibration control system should be considered in 
these locations. Therefore, reasonable design of the 
location of isolation system for a primary structure is 
a very challenging problem. Specifi cally, the choice 
of location of control input  tu  determines the 
eff ectiveness of the control strategy. The following cases 
represent the structural control locations where main 
damping and vibration control system is implemented. 
Correspondingly, location matrix vectors indicate the 
control force input.

(1) Base isolation system, where the building is 
mounted on a base-isolation platform supported by 
frictional bearings. In this case,  T0   0   0   1P .

(2) Active bracing system with actuators installed 
diagonally between the ground and fi rst fl oor or other 
middle fl oors. In this case,  T0   0   1   0P  or 
 T0   1   0   0 .

(3) Active tuned mass damper installed at the top 
fl oor. In this case,  T1   0   0   0P .

2.2  Choice of disturbance w(t)

In this study, in order to investigate and compare the 
eff ectiveness of the three control strategies described 
above, the structure is subjected to the El Centro 
earthquake wave as the external source of excitation. The 
El Centro wave is one of the most typical and common 
seismic waves selected for benchmark studies, and it has 
been widely used in modeling structural excitation and 
analyzing structural dynamic performance.

3  Design of sliding mode control

Consider the linear controllable system as:
 

       ,t t t d z t  z Az Bu                 (16)

where  ,d z t  is the disturbance term satisfying the 
constraint    , ,d z t z t  , and  ,z t  is the upper 
bound of the disturbance. The control strategy is to fi nd 
u  such that z  will track the desired trajectory dz . 

Let the tracking error vector be:

d e z z                                 (17)

Herein, the goal of vibration suppression is to meet 
d 0z  and then 0  e z z .

The design of sliding mode control involves 
two phases. The fi rst phase is to select the switching 
hyper-plane  s e  to prescribe the desired dynamic 
characteristics of the controlled system. The second 
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phase is to design a controller to drive the state trajectory 
onto the sliding surface     0 s e s z  and make sure 
it remains there forever.

At the fi rst stage, the m  switching functions are 
chosen as:

  s z Rz                              (18)

  1 1 2 2 2 2 2 2 1 2, , , ,i i i i i n ns z r z r z r z r z i m        (19)

where s is a 1m  vector,  T1 2, , , mr r rR   is a 

 2 2m n   vector, and  1 2 2 2, , ,i i i i nr r r r  , ir  is a 
sliding vector.

In the sliding mode, the system satisfi es   0s z  
and   0s z , and through derivation, the control force 
is called the equivalent control force, i.e.,

 
   1

eq
  u RB RAz REw

             
(20)

Clearly, the control law of Eq. (20) cannot be 
synthesized explicitly if the external excitation term
 ,d z t  is not known a priori, which is generally the 

case with the loading encountered in vibration problems 
related to such engineering structures. However, under 
appropriate conditions, the control given in Eq. (20) can 
be synthesized implicitly via discontinuous (chattering) 
control defi ned in terms of the known system parameters. 
Therefore, the term containing  ,d z t  is dropped from 
Eq. (20), and expressed as a term associated with Ew, 
instead. This is achieved by a properly selected value 
of parameters , ,g   used in the design of control laws 
that impart a nonlinear switching discontinuous control 
action to account for the uncertainty in the excitation. 
The choice of , ,g   and hence, the control force   ,tu  
must be such that the existence and the reachability of the 
sliding mode is guaranteed. Mathematically expressed, 
the condition that T 0s s  must be satisfi ed. This 
results in:

    1t  RB REw
                      

(21)

The control law is chosen as follows:

eq h u u u
                            

(22)

The system exhibits invariance properties, yielding 
motion independent of certain parameter variations 
and disturbances. The equations governing the system 
dynamics may be obtained by substituting equivalent 
control denoted by equ  for the original control u :

  1
eq

 u RB RAz
                     

(23)

Parameter equ  is the equivalent control law that 
keeps the system states remaining on the sliding surface 

while hu  is the hitting control law that drives the system 
states toward the sliding surface. Three diff erent hitting 
control laws are described as follows:

Control Law 1:       1
h  sgn 0   u RB s  (24)

   Control Law 2:

   1
h sgn 0, 0g k       u RB s s

     
(25)

 
    Control Law 3: 

   1
h  sgn 0, 0k    u RB s s       (26)

Diff erent control laws indicate diff erent reaching 
speed and ways towards the sliding plane. Control 
Law 1 is a constant rate reaching law. This reaching 
law constrains the switching variables to the sliding 
plane at a constant rate. Control Law 2 is an exponential 
reaching law. This reaching law forces the state to reach 
the sliding manifold in a faster way. Control Law 3 is a 
power rate reaching law. This reaching law increases the 
approaching speed when the state is far away from the 
sliding plane. A fl owchart of the sliding mode controller 
procedures is presented in Fig. 3.

4  Continuous wavelet transform (CWT)

Continuous wavelet transform (CWT) is a 
convolution process of the data sequence with a set of 
continuous scaled and translated version of the mother 

Fig. 3   Flow chart of the sliding mode controller procedures
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wavelet (MW). The translating process is a smoothing 
eff ect over the length of the data sequence to localize the 
wavelet in the time domain, whereas the scaling process is 
compressing or the stretching of analyzed wavelet which 
indicates various resolutions. The stretched wavelet is 
used to capture the slow changes, while the compressed 
wavelet is used to capture abrupt changes in the signal. 
The trade-off  of enhancing resolution is between 
increased computational cost and memory by computing 
wavelet components, and multiplying each component 
by the correctly dilated and translated wavelet, resulting 
in the constituent wavelet of the analyzed signal (Silik 
et al., 2021a, 2021b, 2021c, 2021d; Kumar et al., 2021; 
Ghiasi et al., 2019, 2021). 

4.1  2-D Continuous wavelet transform 

In order to study the chattering phenomenon 
of the phase plane of the control system in a novel 
manner, a 2-D wavelet analysis is introduced for its 
superiority in singularity detection of image signals. 
The 2-D continuous wavelet transform (2-D CWT) is a 
representation of 2-D data in three determinant factors: 
position, dilation and rotation.

 Position is a 2-D vector with real-valued elements, 
and dilation and rotation are real-valued scalars. Let x 
represents a vector with two real-valued elements. 

If     2 2f x L                          (27)

is square-integrable on the plane, the 2-D CWT is 
defi ned as:

   
2

f

2

1W

;

T , , d
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x ba b f x r x
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a x b
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

 

   

(28)

where ,    are real set and positive real set, 
respectively,   is the continuous wavelet function in 
the time domain,    is the conjugate function where the 
bar denotes the complex conjugate, and r  is the 2-D 
rotation matrix:

  
   
     

cos sin
 0,2

sin   cos

 


 
 

   
 

r
          

(29)

The 2-D CWT is a space-scale representation of 
an image. For all the admissible 2-D wavelets, 2-D 
CWT can be regarded as a local fi lter for an image in 
scale and position. By applying 2-D wavelet transform, 
approximation and detail of signal components can 
be extracted at diff erent scales or resolutions. It is an 
eff ective tool for feature extraction and edge detection 
of images. This property is later used for verifi cation and 
comparison of the chattering phenomena of phase plots 

using diff erent control laws developed for vibration 
control of the structure.

5  Response of intact and damaged structure 
     with control

It is known from previous research reported in the 
literature that structures were considered to have damage 
when the stiff ness for simulation of damage is down by 
20% of its initial value, i.e., a 20% reduction in stiff ness. 
By changing the structural stiff ness coeffi  cients, 
damage is considered to model the variation of 
structural characteristics. Figure 4 shows displacement 
and velocity response of the original intact structure 
excited by the El Centro seismic wave. The maximum 
displacements of the 3rd, 2nd, 1st and bottom fl oors of 
the intact structure are 0.0033 m, 0.0043 m, 0.0048 m and 
0.0056 m, respectively, while the maximum velocity of 
the 3rd, 2nd, 1st and bottom fl oors of the intact structure 
are 0.0065 m/s, 0.0088 m/s, 0.0111 m/s and 0.0170 m/s, 
respectively. 

Figure 5 shows displacement and velocity responses 
of the controlled original intact structure excited by the 
El Centro seismic wave. The maximum displacements 

(b) Velocity response

(a) Displacement response

Fig. 4  Intact structure without control
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of 3rd, 2nd, 1st and bottom fl oors of the intact structure 
are 0.0003 m, 0.0004 m, 0.0005 m and 0.0007 m, 
respectively, while the maximum velocity of 3rd, 2nd, 
1st and bottom floors of the intact structure are 
0.0004 m/s, 0.0006 m/s, 0.017 m/s and 0.0095 m/s, 
respectively. Herein, the control location is considered 
to be at the bottom of the structure, which is regarded as 
a base isolation system.

Figure 6 shows the control input u  and phase plot of 
the system. The control input performs a relatively stable 
process, and the sliding trajectory indicates a relatively 
severe chattering phenomenon. The maximum chattering 
displacement reaches 0.0424 m. The corresponding 
control law is    1

h  sgn u RB s , where 10 .
Based on the following cases, the maximum absolute 

values of displacement and velocity of the controlled 
structure excited by the El Centro seismic wave can be 
acquired.

(1) Control Law: control law 1 (CL1), control law 2 
(CL2), control law 3 (CL3) as described above.

(2) Control Input Location: bottom fl oor, 1st fl oor, 
2nd fl oor and 3rd fl oor.

(3) Damage Cases: 1st fl oor, 1st and 2nd fl oor, 
1st, 2nd and 3rd fl oor (20% reduction of stiff ness for 
simulation of damage).

The cases of the structure without control are shown 
in Table 1 and Table 2. As shown in Table 1 for the 
intact structure, damaged structure (1st fl oor), damaged 
structure (1st and 2nd fl oors) and damaged structure 
(1st, 2nd and 3rd fl oors), the maximum and minimum 
displacements occur at the bottom and 3rd fl oor, i.e., 
0.056 m and 0.043 m, 0.058 m and 0.032 m, 0.058 m and 
0.031 m, 0.058 m and 0.030 m, respectively. Compared 
with the intact structure, the displacement of the bottom 
structure increases by 3.57%, and the displacement of 
the bottom fl oor approximately decreases by 27.91%. 
As shown in Table 2, for the intact structure, damaged 
structure (1st fl oor), damaged structure (1st and 2nd 
fl oors) and damaged structure (1st, 2nd and 3rd fl oors), 
the maximum and minimum velocity occur at the bottom 
and 3rd fl oor, i.e., 0.170 m/s and 0.065 m/s, 0.171 m/s 
and 0.063 m/s, 0.171 m/s and 0.062 m/s, 0.171 m/s 
and 0.060 m/s, respectively. Compared with the intact 
structure, the velocity of the bottom structure increases 
by 3.57%, and the velocity of the 3rd fl oor approximately 
decreases by 4.62%.

The cases of the structure with control using three 
diff erent control laws are shown in Figs. 7 and 8. 
The parameter values of the three control laws are 

10, 10, 10g    . As shown in Fig. 7, for the case 

(b) Velocity response

(a) Displacement response

Fig. 5  Intact structure with control
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Fig. 6  Sliding mode control
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Table  2   Structure without control (velocity)

Velocity Bottom fl oor 1st fl oor 2nd fl oor 3rd fl oor
Intact structure 0.170 0.111 0.088 0.065

Damaged structure (1st fl oor) 0.171 0.108 0.086 0.063
Damaged structure (1st and 2nd fl oors) 0.171 0.110 0.083 0.062

Damaged structure (1st, 2nd and 3rd fl oors) 0.171 0.110 0.084 0.060

Table  1  Structure without control (displacement)

Displacement Bottom fl oor 1st fl oor 2nd fl oor 3rd fl oor
Intact structure 0.056 0.048 0.043 0.043

Damaged structure (1st fl oor) 0.058 0.046 0.041 0.032
Damaged structure (1st and 2nd fl oors) 0.058 0.047 0.041 0.031

Damaged structure (1st, 2nd and 3rd fl oors) 0.058 0.047 0.041 0.030

(a) Bottom fl oor (b) 1st fl oor

(c) 2nd fl oor (d) 3rd fl oor
Fig. 7  Maximum displacement (absolute value)
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when the control location is at the bottom fl oor using 
control law 1, control law 2 and control law 3 for the 
intact structure, damaged structure (1st fl oor), damaged 
structure (1st and 2nd fl oors) and damaged structure 
(1st, 2nd and 3rd fl oors), the maximum and minimum 
displacements occur at the bottom and 3rd fl oor, i.e., 
0.0007 m and 0.0003 m, 0.0005 m and 0.0002 m, 
0.0098 m and 0.0049 m, respectively. The maximum 
displacement fi rst decreases by 28.57% (CL2-CL1), and 
then increases by 13 times (CL3-CL1). The minimum 
displacement fi rst decreases by 33.3% (CL2-CL1), and 
then increases by 15.3 times (CL3-CL1). As shown 
in Fig. 8, for the case where the control location is at 
the bottom fl oor using control law 1, control law 2 
and control law 3 for the intact structure, damaged 
structure (1st fl oor), damaged structure (1st and 2nd 

fl oors) and damaged structure (1st, 2nd and 3rd fl oors), 
the maximum and minimum velocity occurs at the 
bottom and 3rd fl oor, i.e., 0.0095 m/s and 0.0004 m/s, 
0.0089 m/s and 0.0004 m/s, 0.0190 m/s and 0.0053 m/s, 
respectively. The maximum velocity fi rst decreases by 
6.32% (CL2-CL1), and then increases by 1 time (CL3-
CL1). The minimum velocity fi rst does not change 
(CL2-CL1), and then increases by 12.25 times (CL3-
CL1). Figures 7 and 8 also show that for cases using 
the same control law and control location, the controlled 
structural displacement and velocity are almost the 
same, which means 20% damage in total may not aff ect 
the controlled maximum displacement and velocity of 
both the intact and damaged structure. Control law 1 
has better control performance than control laws 2 and 
3 since in this case, most of the maximum displacement 

(a) Bottom fl oor (b) 1st fl oor

(c) 2nd fl oor (d) 3rd fl oor
 Fig. 8   Maximum velocity (absolute value)
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and velocity using control law 1 are smaller than control 
laws 2 and 3. Control location is also an infl uential factor 
that determines the control eff ect. If the control location 
is at the base fl oor, it shows better control eff ect on the 
structural dynamic performance.

6   Comparative study on chattering identifi cation 
     using diff erent control strategies

In general, the phase plane generally describes the 
equilibrium status of a control system, and the sliding 
mode curve   0s z   describes the transient behavior of 
the system phase. Diff erent control laws are developed 
to guarantee the existence of sliding motion and to 
maintain it in a fi nite time in the presence of uncertainty. 
According to the current position in the state space, 
the designed control law switches between diff erent 
control structures to ensure the trajectories always move 
towards the switching condition, which is regarded 
as a variable structure control method. The ultimate 
trajectory is designed to slide within the boundaries of 
the control structures. The corresponding sliding motion 
consisting of geometrical locus and boundaries is called 
the sliding hyper surface. To design an SMC system, 
the fi rst step is to construct a sliding plane, thus making 
the state variables of the plant dynamics restricted and 
constrained to a desired system response. Based on 
Lyapunov stability theory, the second step is designing 
switched feedback gains which drive the state trajectory 
of the plant to remain on the sliding surface.

The chattering phenomenon is described as a specifi c 
motion oscillating about the sliding manifold. Such a 
motion is mainly produced by two possible mechanisms. 
One mechanism is the lack of switching nonidealities 
such as delays, i.e., parasitic dynamics present in series 
with the plant, which causes a small amplitude oscillation 
with high frequency to appear within the neighborhood 
of the sliding manifold. These parasitic dynamics 
result from the stimulus of sensor dynamics and a fast 
actuator. The second mechanism is that the switching 
nonidealities alone can cause these high-frequency 
oscillations. The chattering phenomenon discussed 
herein is mainly caused by the second mechanism. To 
quantitively measure this phenomenon, a wavelet-based 
approach is introduced.

Figures 9 and 10 show the phase trajectory and 
ideal sliding mode when the system is designed 
with control law 2 and control law 3, respectively. 
As shown in these fi gures, for the case of control law 
2, the chattering indicates considerable peaks while 
for the case of control law 3, the chattering indicates 
relatively smooth peaks. The sliding surface overall 
approximates the phase trajectory 0s  . However, the 
direct implementation of the control laws results in 
the chattering problem, which is highly undesirable. 
Therefore, two-dimensional wavelet analysis of the e-de 
plots is employed to show the signal detail variance. The 
parameter pairs assigned for the two diff erent control 

laws are:            , = 1,1 , 2,2 , 3,3 , 4,4 , 5,5g , and 
           , = 1,1 , 2,2 , 3,3 , 4,4 , 5,5  , respectively. 
The scale for the wavelet decomposition is chosen to 
change from 1 to 6.

The direct infl uence of chattering on the signal results 
in singularity of the signal. By applying the 2D wavelet 
transform of the e-de plot using mother wavelet ‘db5’, 
both the approximation and detail signals reconstructed 
in the horizontal, vertical and diagonal directions are 
analyzed. 

The approximation component refers to the low 
frequency part of the signal while the detail refers to the 
high frequency part of the signal. A 2-D rotation matrix 
shown in the 2-D wavelet transform theory determines 
the decomposition direction of the signal.

As shown in Figs. 11 and 12, parameters of the 
reaching law algorithms for CL2 and CL3 are assigned 
   , 1,1g   and    , 1,1  , respectively, and 
the specifi c case using wavelet transform at scale 6 is 
presented herein.

Approximation wavelet coeffi  cients represent the 
low frequency components of the signal depicted by 
the darkest parts, indicating relatively larger singularity, 
while the detail wavelet coeffi  cients represent the high 

(a) CL2: η = 1, g = 1

(b) CL2: η = 5, g = 5
Fig. 9  Phase plot
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frequency components depicted by the brightest parts, 
indicating relatively larger singularity. 2-D wavelet 
decomposition is realized by returning approximation 
and detail coeffi  cients at diff erent scales using 
decomposition low-pass and high-pass fi lters. The output 
wavelet 2-D decomposition structure  ,C S  contains the 
wavelet decomposition vector C and the corresponding 
bookkeeping matrix S. Vector C is organized in Eq. (30):

         
         

[ | 1

1 1 1 1 1 ]

N N N N N

N N

  

  

C A H V D H

V D H V D

    
(30)

where A, H, V, D are vectors representing approximation, 
horizontal detail, vertical detail and diagonal detail 
coeffi  cients, respectively.

Table 3 and Table 4 quantitatively compare 
the similarity of phase plots of the control system 
implemented using CL 2 and CL3, respectively. As 
shown in Table 3, for diff erent groups of parameters, the 
mean values of approximation coeffi  cients of the e-de 
plot for CL2 range from 218.2 to 227.1, 218.3 to 227.1, 
247 to 247.7 for scale 2, 4, 6, respectively. The standard 
deviations range from 56.63 to 66.54 (increase by 
19.6%), 53.44 to 64.73 (increase by 21.13%), 50.81 to 
60.92 (increase by 19.9%) for scale 2, 4, 6, respectively. 
Similar cases are also applied for horizontal, vertical 
and diagonal wavelet detail coeffi  cients. It can be seen 
that for the same scale, wavelet coeffi  cients have similar 
values due to small deviations. These indicate that the 
change of the parameter pair  , g  generally does not 
signifi cantly aff ect the chattering phenomena for the 

Table  3   Wavelet Decomposition (CL2)

Scale Approximation coeffi  cient
Detail coeffi  cient

Horizontal direction Vertical direction Diagonal direction
M S M S M S M S

(1,1) 2 227.1 57.33 0 8.739 0 13.97 0 2.800
4 227.1 54.87     -0.02 4.629 0 9.2 0 2.642
6 227.5 53.07 -0.298 5.757 0.052 5.638 0 2.285

(2,2) 2 225.0 56.63 0 9.031 0 16.55 0 3.554
4 225.1 53.44 -0.025 4.980 0 10.28 0 3.100
6 225.6 50.81 -0.325 7.029 0.163 6.826 0 3.222

(3,3) 2 224.0 59.90 0 9.059 0 15.03 0 3.457
4 224.1 57.41 -0.027 5.220 0 8.803 0 2.903
6 224.7 54.18 -0.198 7.807 0.138 7.076 0 2.346

(4,4) 2 218.2 66.54 0 8.686 0 14.25 0 3.104
4 218.3 64.73 -0.026 4.712 0 7.59 0 3.030
6 219.0 60.92 -0.253 10.50 0.161 4.505 0.004 2.848

(5,5) 2 221.8 65.22 0 8.730 0 12.87 0 3.031
4 221.8 63.42 -0.026 4.977 0 6.904 0 3.064
6 222.0 59.26 -0.215 9.874 0.057 8.643 0.002 3.514

                  Remark: M: mean, S: standard deviation, CL2 parameter assignment: (η, g)

(a) CL3: η = 1, α = 1

(b) CL3: η = 5, α = 5
Fig. 10  Phase plot
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same reaching law CL2.
As shown in Table 4, for diff erent groups of 

parameters, the mean values of approximation 
coeffi  cients of the e-de plot for CL3 range from 246.3 
to 247, 246.5 to 247.1, 247 to 247.7 for scale 2, 4, 6, 
respectively. The standard deviations range from 20.46 

to 21.33 (increase by 4.25%), 14.48 to 15.97 (increase 
by 10.29%), 11.35 to 12.39 (increase by 9.16%) 
for scale 2, 4, 6, respectively. Similar cases are also 
applied for horizontal, vertical and diagonal wavelet 
detail coeffi  cients. It can also be seen that for the same 
scale, wavelet coeffi  cients have similar values due to 

Table 4  Wavelet decomposition (CL3)

Scale Approximation coeffi  cient
Detail coeffi  cient

Horizontal direction Vertical direction Diagonal direction
M S M S M S M S

(1,1) 2 246.3 21.33 0 9.636 0 11.29 0 4.768
4 246.5 15.97     -0.02 5.258 0 6.366 0 3.433
6 247.0 12.39 -0.235 5.433 0.078 4.664 0 2.519

(2,2) 2 247.0 20.73 0 9.459 0 11.22 0 4.679
4 247.1 15.14     -0.02 5.318 0 6.549 0 3.121
6 247.7 11.59 -0.323 4.213 0.098 5.726 0 1.911

(3,3) 2 246.7 20.62 0 9.679 0 11.06 0 4.872
4 246.8 14.65     -0.02 5.281 0 6.500 0 3.374
6 247.4 11.35 -0.279 4.711 0.11 4.411 0 1.762

(4,4) 2 246.6 20.46 0 9.652 0 11.14 0 4.902
4 246.8 14.48     -0.02 5.384 0 6.436 0 3.489
6 247.4 11.72 -0.279 4.733 0.104 3.053 0.002 1.811

(5,5) 2 246.6 20.55 0 9.662 0 11.15 0 4.899
4 246.7 14.56     -0.02 5.392 0 6.421 0 3.399
6 247.4 11.76 -0.278 4.778 0.104 3.062 0 1.819

                   Remark: M: mean, S: standard deviation, CL3 parameter assignment: (η, α)

(a) (b)

(c) (d)
Fig. 11   Reconstructed signal at scale 6 (CL2), (a) approximation, (b) detail: horizontal direction, (c) detail: vertical direction and 
              (d) detail: diagonal direction
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small deviations. These deviations indicate the change 
of  ,   generally does not signifi cantly aff ect the 
chattering phenomena for the same reaching law CL3. 
However, the approximation wavelet coeffi  cients for 
CL2 and CL3 have a relatively large diff erence, which 
demonstrates that diff erent chattering eff ects are mainly 
infl uenced by the two diff erent control strategies.

7  Discussion

In this section, the eff ect of structural damage, 
control location, and control law on the structural 
dynamic performance and chattering problem of 
diff erent designed control systems are discussed by 
selecting several suitable cases to examine each of the                                          
eff ects to demonstrate the corresponding conclusions.

7.1  Eff ect of structural damage on structural control

Eff ective vibration control of structures under seismic 
load is important. However, if the structure is damaged, 
how to better design a control strategy becomes a critical 
issue. Here, three diff erent case studies are selected to 
study this critical issue. The cases are: Case 1: Intact 
structure, control location is at the 1st fl oor, control law 
is CL1, Case 2: Damaged structure (1st fl oor), control 
location is at the 2nd fl oor, control law is CL3, and Case 
3: Damaged structure (1st, 2nd and 3rd fl oor), control 
location is at the 3rd fl oor, control law is CL2.

Figure 13 presents a comparison of the maximum 

displacements and maximum velocity between the 
controlled and uncontrolled structure for the three 
diff erent case studies. As shown in Fig. 13, the legend 
behind each plot in the fi gure represents the diff erence 
percentages between the controlled and uncontrolled 
structure for all the cases of control law. From the results, 
it can be seen that the absolute values of displacements 
and velocity of the controlled structure are 10 times 
smaller than the uncontrolled structure. In addition, 
from error analysis, it can be seen that in most cases, 
the structure has almost a 1 time reduction amplitude 
compared to the uncontrolled structure. Also, for the 
same location using the same control law, most of the 
absolute values of maximum displacement and velocity 
of the controlled structure are the same, for the case that 
the analyzed structures have a certain probability of 
damage (20% reduction of structural stiff ness). The more 
signifi cant observation, for case 2 and case 3 (damaged 
structure) compared with case 1 (intact structure), even 
when the control law and location change, the induced 
20% damage does not signifi cantly change the structural 
displacements and velocity (decrease by 50%‒100%), 
which means that the structural performance will stay 
stable.

7.2  Eff ect of control location

Tall buildings are usually under lateral wind load, 
which has signifi cant eff ect on structural integrity and 
comprehensive performance. Middle and top fl oors 
probability have large displacements and should be 

Fig. 12  Reconstructed signal at scale 6 (CL3), (a) approximation, (b) detail: horizontal direction, (c) detail: vertical direction and 
             (d) detail: diagonal direction
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controlled eff ectively by installing dampers. Therefore, 
the eff ect of diff erent control locations on structures is 
important. Here, three diff erent case studies are selected 
to study this critical issue. The cases are: Case 4: Intact 
structure, control location is at the bottom, 1st, 2nd 
and 3rd fl oor, control law is CL1, Case 5: Damaged 
Structure (1st and 2nd fl oor), control location is at the 
bottom, 1st, 2nd and 3rd fl oor, control law is CL3, and 
Case 6: Damaged Structure (1st, 2nd and 3rd fl oor), 
control location is at the bottom, 1st, 2nd and 3rd fl oor, 
control law is CL2. For Case 4, the maximum structural 
displacements and velocities for bottom, 1st, 2nd and 
3rd fl oors are 0.0007 m, 0.0025 m, 0.0037 m and 0.0044 m, 
respectively, and 0.0095 m/s, 0.0158 m/s, 0.0197 m/s, 
0.0241 m/s, respectively for diff erent control locations. 
It can be seen that the higher the control location is, 
the weaker structural vibration eff ectiveness performs. 
The control location at the bottom fl oor is better or 
more eff ective in suppressing the structural response 
than the 1st, 2nd and 3rd fl oor. Generally, the structure 
is subjected to a base excited seismic wave. In other 
words, if the control location is at the same location 
where external excitation exists, the control eff ect shows 

more satisfactory results for both intact and damaged 
structures. For case 5 and 6, similar conclusions can be 
drawn when implementing diff erent control strategies.

7.3  Eff ect of diff erent control strategies

Development of the reaching law based control 
algorithms is important for eff ective structural vibration 
control. The robustness of the control algorithm / control 
law has a direct eff ect on the controlled structure. CL1 
is a constant rate reaching law, CL2 is an exponential 
reaching law, and CL3 is a power rate reaching law. 
For CL1, if the parameter   is small, the reaching 
time will be relatively long, while if it is too large, it 
will cause severe chattering. For CL2, the exponential 
term gs  causes the state forced to switching manifold 
faster as s  is large. For CL3, the reaching law causes 
the approaching speed to increase since the state is far 
away from the switching manifold. The reaching mode 
behaves as a fast and low chattering phenomenon.

Figures 9 and 10 show diff erent sliding modes 
for diff erent control laws. Table 3 and Table 4 
show the eff ect of parameter change using CL2          

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 1

(e) Case 2 (f) Case 3

Fig. 13   A comparison of the maximum displacements and velocity between the controlled and uncontrolled structure
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   1
h  sgn g    u RB s s , where    , 1,1g   to 

 5,5  and CL3         1
h  sgn u RB s s , where 

   , 1,1   to  5,5  on the intact structure with 
control. The results show that diff erent control strategies 
behave diff erently from the sliding modes; however, 
they all move towards the phase trajectory where 0s  .
2-D wavelet transform shows the variance of wavelet 
coeffi  cients (high frequency component as detail and low 
frequency component as approximation) does not change 
much for the same signal scale by using the same control 
law. However, the approximation coeffi  cients of phase 
plots for diff erent control laws have a relatively large 
diff erence. This means that the variance of parameters 
of the same control law have similar control robustness, 
and that the chattering phenomenon resulting from the 
same control law is similar.

8  Concluding remarks

In this study, a sliding mode control strategy based 
on diff erent reaching laws is proposed to suppress the 
vibration of a three-story frame structure excited by a 
seismic wave. At the fi rst step, a state space model was 
constructed based on the structural dynamic expression 
of a structure. Then, three control methods using constant, 
exponential and power reaching laws were employed to 
establish a sliding mode control system model. Diff erent 
structural damage cases, control locations and control 
laws were investigated to demonstrate their infl uence 
on the structure. The results presented herein indicate 
that the incorporation of 20% structural damage has 
little eff ect on structural control eff ectiveness. It is more 
reasonable if the control location is at the bottom of the 
structure where the external seismic excitation is exerted. 
2-D wavelet transform is used for feature extraction of 
the chattering phenomenon that exists in the phase plane 
of the sliding mode control system based on diff erent 
control laws. By multiresolution analysis of decomposed 
images of phase plots, it is proved that as the control 
parameters change within a range, diff erent control laws 
have a diff erent infl uence on the control system based on 
diff erent control laws.
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 Nomenclature:

VSC Variable structure control
SMC Sliding mode control
ATMD Active tuned mass damper
ER Electro-Rheological
FSMC Fuzzy sliding mode control
DOF Degree-of-freedom
CWT Continuous wavelet transform
2-D CWT 2-D continuous wavelet transform
CL Control Law

, ,M C K Mass, damping and stiff ness matrices, 
respectively

1 2, , , nk k k Stiff ness coeffi  cients

1 2, , , nc c c Damping coeffi  cients

t ( )K t and b ( )K t Stiff ness coeffi  cients are functions of 
the dynamic responses

t ( )c t  and b ( )c t Damping coeffi  cient are functions of 
the dynamic responses

P Location matrix of control force

Q Location matrix of external loads

( )tu A vector of control forces

( )tw A vector of external environmental 
loads or disturbances

( )tz A state vector

A A system matrix

B A control matrix

E A disturbance matrix

R A sliding matrix

, ,g  Parameters used in the design of control 
laws

,   Real set, positive real set

2 ( )L  Two-dimensional set of real integers

 Continuous wavelet function in the time 
domain

 Conjugate function

r 2-D rotation matrix


