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Static and dynamic inelastic P–Δ eff ect for seismic design
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Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China

Abstract: Seismic infl uence of P–Δ eff ect is the subject of this study. First, it is pointed out that the elastic static 
amplifi cation factor shall be isolated in formulating the dynamic inelastic second order eff ect. An amplifi cation factor for 
the static inelastic P–Δ eff ect is derived. Seismic force reduction factors (SFRF) for given ductility and stability coeffi  cients 
are computed for one-story, one-span frames. The P–Δ amplifi cation factors for seismic base shears are obtained by dividing 
SFRFs with and without P–Δ eff ect. Both P–Δ amplifi cation factors and SFRFs are presented separately with two kinds of 
period abscissas. The P–Δ amplifi cation factors are dependent on periods with the maximum occurring at about 0.75 s for 
site type C and approach to the static inelastic counterpart at long periods. Post-yield stiff ness cannot fully counteract the 
adverse impact of the P–Δ eff ect. Formulas for seismic P–Δ amplifi cation factors are proposed and compared to results of 
others. Collapse capacity spectra (CCS) are reviewed and their application in codes discussed. Available CCSs are compared 
with SFRFs with fi nite ductility computed for two ensembles of seismic records. A comparison reveals that the SFRFs are 
aff ected by seismic records, and available CCSs do not always provide upper limits for the SFRFs when stability coeffi  cients 
are greater than 0.1 for frame models.
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1   Introduction

The P    eff ects reduce the lateral resistance 
of structures. Under the eff ect of strong earthquakes, 
structures experience severe inelastic deformation, and 
the P   eff ect may cause partial or total loss of load 
carrying capacity. Many studies on the infl uence of the
P   eff ect on seismic demand have been carried out 
(Gupta and Krawinkler, 2000; Adam and Jäger, 2012; 
Rosenblueth, 1965; Bernal, 1987), but because of the 
inherent complexity of the seismic response of buildings, 
this topic still attracts the attention of researchers in this 
time-consuming area.

1.1 Second order eff ect in the stability check of 
        columns

The P    eff ect in static elastic cases is quantifi ed 
by the stability coeffi  cient computed by:
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where PEd is the design load on the structure and Pcr is 
the elastic buckling load for global instability based on 

initial elastic lateral stiff ness. For a non-seismic design,
P   eff ect is included either in the strength check of 
columns in terms of the moment amplifi c  ation factor in 
the form:

e
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and the eff ective length of a column or through the 
second-order elastic analysis and the system length of 
columns. 

For seismic design, the P    eff ect cannot be 
described by Eq. (2) because of large inelastic lateral 
deformation involved in the seismic design philosophy. 
To accommodate this increased second order eff ect, 
Rosenblueth (1965) proposed the following seismic 
force amplifi cation factor (SFAF):

Rosenblueth
e
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(3)

where  is the ductility factor. Eurocode 8 (CEN, 2005) 
adopts Eq. (3) to amplify the seismic action eff ects.

Based on clause 4.4.2.2 of Eurocode 8, the equation 
for the in-plane buckling strength of a beam-column 
would be as follows:
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where GP and GM are the axial force and bending moment 
due to gravitational loads, respectively; EP  and EM  are 
the axial force and bending moment due to the design 
level seismic action, respectively;   is the strength 
reduction factor of column due to buckling, as specifi ed 
in Eurocode 3 Part 1.1; and PP  is the yield strength of 
the steel cross-section.

Equation (4) seems strange because the earthquake 
moment EM  is amplifi ed twice. To avoid this, the static 
elastic P    amplifi cation factor e1 / (1 )  shall be 
isolated from the total inelastic amplifi cation factor as 
follows:

e1
FA

                                   
(5)

FA  is the inelastic seismic P    amplifi cation factor 
for the seismic action to be sought in this study.

1.2   Literature review of the inelastic dynamic second-
       order eff ect

Bernal (1987) carried out a study on the inelastic 
dynamic P   eff ect; four records were used, and the 
seismic force amplifi cation factors (SFAF) due to the
P   eff ect were calculated at 37 periods that were 
evenly spaced between 0.2 and 2.0 s. The following 
equation was proposed for the SFAF:
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(6)

It would be applied with fi rst order elastic analysis.
Wei et al. (2012) reported an investigation of the

P    amplifi cation factor of the ideal bilinear elastic-
plastic model, with 308 ground motions recorded on site 
classes B, C, and D. Analysis was carried out over the 
course of 8 periods: 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5 and 
3 s. Data was processed with θe and μθe as the abscissa 
respectively, and Eq. (7) was proposed for the SFAF 
based on the statistical mean values:
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Amara et al. (2014) carried out a similar study to that 
of Wei et al. (2012) using two ensembles, each containing 
20 seismic records, and the periods ranged from 0.15 
to 2.0 s with step 0.01. The values were averaged for 
each combination of (θe ,  ); thus the eff ect of periods 
was eliminated. The proposed SFAF equations were the 
smallest among available results for similar research 
studies.

As reported in MacRae (1994), Neuss et al. (1983) 
recommended the use of expected inelastic drift to 
compute the P    bending moment. This method was 
further developed by Priestley et al. (1993) and was 

applied in the displacement-based seismic design done 
by Priestley et al. (2007). The New Zealand Seismic 
code (NZS 1170.5., 2004) requires the P    eff ect to be 
computed using inter-story inelastic drift at the ultimate 
limit state, and the inelastic second-order moment should 
not be larger than 0.3 times the bending moment due to 
the design level seismic shear force.

Besides Eq. (6), Bernal (1987) also suggested a limit 
on the maximum applicable ductility, based on the load-
carrying demand of buildings in the post-earthquake 
stage:

limit
e

, =0.4C C


    
                      

(8)

i.e., the ductility capacity of a frame may be greater than
limit , but only a smaller value equal to limit is allowed 

to be used. A similar criterion has been incorporated into 
the ASCE 7 (2010) since 1993 (UBC 93) in a convert  ed 
form:

e,lim
d
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(9)

in which Cd is the drift amplifi cation factor that accounts 
for inelastic deformation,  is the ratio of shear demand 
to shear capacity and is permitted to be taken as 1 (1 / 
can be understood as an overstrength factor). Based on 
the load and resistance factors applied in the Eurocodes, 
Asimakopoulos et al. (2007) suggested 0.55C  in 
Eq. (8).

1.3  Review of the collapse capacity spectrum

More recently, a collapse capacity spectrum (CCS) 
was introduced. Miranda and Akkar (2003) defi ned the 
collapse capacity spectral value as the value of Rc, at 
which the bilinear elastic-plastic system with negative 
post-yield stiff ness has a sudden increase of drift as R
shows only a small increase; here, R is defi ned by:

y
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R
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(10)

in which m is the mass of the oscillator, aS is the elastic 
acceleration spectrum, and Fy is the yield strength of the 
elastic-plastic system. Rc varies with periods and post-
yield stiff ness, Miranda and Akkar (2003) analyzed 
systems with periods ranging from 0.2 to 3.0 s while 
subjected to 72 earthquake ground motions from fi rm 
soil, and proposed Eq. (11) for the mean (greater than 
median) spectra of Rc:

c 7.5 0.89 0.04 0.15ln
e

1 0.261 1
e ( )T T TR  

        
      

(11)

whereT is the period, and is the post-yield stiff ness 
ratio. Equation (11) is independent of the ductility factor 
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because Miranda and Akkar (2003) adopted a bilinear 
elastic-plastic relation (Fig. 1). The only limitation on 
the post-yield branch is the zero lateral strength after the 
drift reaches Δu where:

y y
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(12)

FEMA 440 (2005) presented Eq. (13) for the CCS, 
which is rather close to, Eq. (11):

c 1 0.15ln
e

0.251
( ) TR  

                    
(13)

Adam and Jäger (2012) made a similar investigation 
regarding the CCS. The ATC63 far-fi eld (ATC63-FF) 
44 seismic records on NEHRP (FEMA-368, 2000) site 
classes C (soft rock) and D (stiff  soil) were used. The 
following CC median spectra were proposed for the 
bilinear hysteretic model:
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where 

 1 emin 3.6, 40 0.4)T                   
(14b) 

Adam and Jäger (2012) also found that the median 
CCSs for the Peak-oriented and pinching hysteretic 
models are slightly greater than CCSs for bilinear 
models. Eq. (11) is signifi cantly greater than Eq. (14) 
when the period is longer than 2.5 s.

Equation (8) specifi es the maximum ductility factor 
permitted to be utilized. Similarly, Eq. (11) or Eq. (14a) 
may be used. Even if the ductility is infi nite, the strength 
reduction factor is limited by Eq. (11) or by Eq. (14). 
Considering that the ductility defi nition always includes 
the elastic part of the system, i.e., the ductility factor 
is never less than 1.0, instead of Eq. (8), the following 
equation was proposed:
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(15a)

and because Eq. (14) is used as a reference for the 
simplifi cation, one obtains

 A&J e0.156 0.051 0.135C T            (15b)

A&J 0.178 0.332C   when 0.5 4 sT   . A comparison 
of Eq. (15) with Eq. (14) is given in Fig. 2. Equation 
(8) is also shown in Fig. 2(a). From this comparison, 
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Fig. 1   Bilinear model with and without P-Δ eff ect
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one may understand that the application of Eq. (14) is 
similar to Eq. (8), but they are from diff erent derivations. 
Equation (14) is fundamentally important.

Ibarra and Krawinkler (2005) carried out a 
comprehensive study on CCSs with limited ductility. 
They used backbone curves composed of three linear 
segments: linear elastic (stiff ness K , yield drift

 
δy), 

post-yield hardening (stiff ness αsK, the capping drift δc) 
and a post-capping segment with a negative slope -αcK. 
Three types of hysteretic curves (bilinear, peak-oriented 
and pinching models) were used, and 40 seismic records 
(LMSR-N) from California were adopted to construct the 
CCSs. The ratio δc/δy 

is set to be 2, 4 and 6, respectively, 
representing high, medium and low ductility systems. 
The post-capping stiff ness parameter αc is set to 0.1, 
0.3 and 0.5, modeling small, as well as steep and very 
steep reduction of the post-capping capacity. The P  
parameter is set to be 0.0, 0.0178T and 0.0356T , where
T is the period. By using such detailed hysteretic models, 
the ratio

 
δc/δy, the post-capping stiff ness αc and the P  

eff ect were identifi ed to be the three parameters that 
most infl uence the collapse capacity of a system. Cyclic 
deterioration is an important but not dominant issue for 
collapse evaluation. P    eff ects greatly accelerated 
collapse of deteriorating systems and may be the primary 
source of collapse for fl exible but very ductile structural 
systems. Ibarra and Krawinkler (2005) also revealed that 
under the same

 
δc/δy, ratio systems with small negative 

post-capping stiff ness have signifi cantly larger collapse 
capacity than those with large or very large negative 
stiff ness.

For models with steep and very steep post-capping 
negative stiff ness, the CCS of Ibarra and Krawinkler 
(2005) for a given ratio

 
δc/δy  is close to the spectrum of 

seismic force reduction factors (defi ned by Eq. (10)) of 
others (Miranda and Bertero, 1994; Borzi and Elnashai, 
2000) for a prescribed ductility

 
μ = δc/δy 

beyond which 
the system is regarded as being fully collapsed, i.e., 
including the post-capping segment with steep and very 
steep negative stiff ness in determining R leads only to a 
small increase in R when compared with fully neglecting 
the post-capping negative segment.

CCSs represent the upper limits for assessing the 
seismic behavior of existing building. For new buildings, 
the P    eff ect is preferably included in advance 
in the determination of the seismic base shear, and if 
doing so, the probability of collapse will be minimal. 
The stability coeffi  cient θe  is not solely determined by 
the period (Ibarra and Krawinkler, 2005), so in this 
paper θe is regarded as an independent parameter in the 
determination of the seismic force amplifi cation factor 
(denoted by 

e,FA  or A ), accounting for the inelastic
P   eff ect.

It might be appropriate here to mention that Bernal 
(1992) is the fi rst to propose the collapse spectrum, but 
he expressed it via inelastic acceleration spectra which 
depends on period, stability coeffi  cient and peak 

ground velocity.
Borekci et al. (2014) studied the collapse spectra 

caused by stiff ness and strength degradations: no P    
eff ect was included. Ucar and Merter (2018) adopted 
energy-based equilibrium equations to include the 
P   eff ect.

1.4  Inelastic spectra of this study

The spectra of the seismic force reduction factor 
(SFRF) of a system for a prescribed ductility factor have 
been extensively studied (Miranda and Bertero, 1994; 
Borzi and Elnashai, 2000). Miranda (1993) introduced 
a “predominant period of the ground motion”, gET , to 
normalize the abscissa of the SFRF spectra, R , for 
soft soil, and gET is the period at which the peak relative 
velocity of a 5% damped linear elastic system occurs. 
It was found to be very close or nearly equal to period

gRT at which the peak value of R  occurs. Ordaz and 
Pérez-Rocha (1998) proposed a new R  spectrum based 
on the observation that the maximum SFRF occurs at a 
period, denoted as gDT , where the spectral displacement 
was also a maximum. In fact, gE gR gDT T T  (Zhao and 
Tong, 2009).

Denoting the period at which the elastic acceleration 
has a peak value by gaT , gaT is slightly less than the 
intersection period ( A/VT ) of the constant spectral 
acceleration and constant velocity regions, and gRT was 
greater than the intersection period ( V/DT ) of the constant 
spectral velocity and constant displacement regions of 
a 5% damped Newmark-Hall type spectrum. Currently 
the elastic acceleration spectra were expressed in four 
period subranges: (0, 0.1), (0.1, A/VT ), ( A/VT , V/DT ) 
and (> V/DT ), and it was realized that the SFRF spectra 
should be similarly expressed. The SFRF spectra in this 
paper will be constructed with the period abscissa being 
divided into 3 ranges: (0, gaT ), ( gaT , gRT ) and ( gRT , ). 
Correspondingly, the elastic acceleration spectra aS are 
also established with the period in three ranges (0, gaT ), 
( gaT , gDT ) and ( gDT , ). 

In this study, one-story, one-bay frames are adopted. 
An ensemble of 102 earthquake records on site soil type 
C from PEER Ground Motion Database and another 
ensemble of 44 far-fi eld seismic records proposed in 
FEMA-P695 are used in this analysis. The 102 and 44 
spectral values for several specifi c periods are checked 
to reveal their probabilistic distribution. Dynamic 
inelastic P    eff ect is represented by an amplifi cation 
factor for the base shear, and the amplifi cation factors are 
compared with those obtained in a static inelastic P  
analysis. The eff ect of post-yielding stiff ness is studied 
to check whether the unfavorable eff ect of the P    
eff ect is mitigated. The R  spectra are constructed with 
two types of abscissas. Finally, simplifi ed formulae are 
proposed for the dynamic inelastic P   eff ect of SDOF 
systems.
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2  Static P–Δ eff ect in the inelastic stage

Figure 3 shows two drift states of a cantilever: the 
drift at yielding and the drift at the ductility limit  . At 
the drift of the ductility limit, the displacement of the 
oscillator is the maximum, but its velocity is zero, so one 
may see it as if it was in a static state; the acceleration is 
also a maximum and the inertia force is in equilibrium 
with the physical restoring force of the oscillator. At 
this state, the maximum second-order base moment is 
derived as follows.

The elastic lateral stiff ness is 0K (Fig. 1) and the base 
shear is

 
Fy0. Because static elastic second-order analysis 

is carried out or the second order eff ect is considered 
in the member capacity check (ANSI/AISC 360-10), the 
member′s plastic moment will be:

y0
P y0 y

e1
F h

M F h P   
                  

(16)

where
 

e
0

P
hK

 . Equation (16) represents the transient 

point between elastic and plastic states. From Eq. (16):

e
y y0

e1
P F h 



                       
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And after it yields at the base shear force
 
Fy0, it fl ows 

plastically to the ductility  limit; the total displacement 
is μΔy. At this displacement point there is no damping 
force because of zero velocity, so the bending moment 
at the base is:

 
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(18)

Because of max PM M , the system will lose its 
dynamic stability. To avoid dynamic instability, one 
should amplify the required capacity in advance. Based 

on Eq. (18), the base shear amplifi cation factor should be:

,static e1 ( 1)FA                             (19)

The amplifi ed base shear is now:

 e y01 ( 1) F  

correspondingly the bending moment based on static 
elastic second order analysis is amplifi ed to Eq. (18), and 
therefore dynamic instability can be avoided.

One may also interpret Eq. (19) in a diff erent way: if 
a structure is designed without considering an amplifi ed 
inelastic P    eff ect, then to assure the stability of the 
structure in a severe seismic event, the overstrength 
factor should be at least as large as Eq. (19).

Equation (19) is derived statically. In the following 
section, inelastic dynamic analysis will be carried out to 
check whether Eq. (19) is also valid under the action of 
real seismic records.

3  Dynamic P–Δ eff ect in the inelastic system 

In determining the R  spectra, elastic dynamic 
analysis is fi rst carried out to fi nd the maximum base 
force Fe, max, and then inelastic dynamic analysis is carried 
out to fi nd the inelastic base shear

 
Fy, μ for a prescribed 

system ductility factor  , fi nally
 e.max y,/R F F  . For 

each seismic record, the elastic acceleration spectrum aS
has a peak value at gaT , while the R spectrum has a peak 
value at gRT , where gaT

 
and gRT

 
are computed through 

linear and elastic-plastic dynamic analyses, respectively. 
Two spectra ( aS and R ) are used to obtain the base shear 
Sα/Rμ. The period abscissa is divided into three ranges: (0,

gaT ), ( gaT , gRT ) and gRT . Spectral values are outputed 

at periods 
1 2 3

2
, ,ga gR ga gR

i ga gR

T T T T
T i T i T i

N N N


   ,

1,2,...., ji N , +1, 1, 2, 3jN j   are t he numbers to 
output spectral values in each period range, and for all 
seismic records,

 
Nj 

are the same. Sprectra are constructed 
by direct summation of spectral values at the same 
sequence points.

The current available literature constructed spectra 
of SFRFs for a given site type by providing a direct 
summation of spectral values in the same period. 
The present paper will also construct such spectra for 
comparison.

For SDOF systems, the dynamic equilibrium 
equation based on the moment at the bottom is:

e 0 g[ ( , ) ]mx cx F k x K x mx      
         

(20)

where m  is the mass, c  is the damping, x  is the lateral 
displacement, x  and x  are the lateral velocity and 
acceleration, F  is the restoring force of the system, and
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Fig. 3  Drifts at yielding and the ductility limit
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gx the seismic acceleration record. The P    eff ect is 
represented by the factor e 0/ ( )P hK , P is the axial 
force, h is the height of the cantilever column, and 0K is 
the initial stiff ness. The target ductilities are 2 , 3, 4, 
5, and 6. θe are set to be 0, 0.05, 0.1, 0.15 and 0.2.

Additionally, 2D one-bay frames are created by the 
Open System for the Earthquake Engineering Simulation 
(OpenSees) structural analysis platform, as illustrated in 
Fig. 4. The non-yielding members, beams and columns 
are modelled using elastic beam-column elements 
because they are capacit y-designed and are checked to 
remain elastic. The columns and beams are W24X104 
and W24X68, respectively. The hysteretic behavior of 
the frame is modelled using zero-length elements at the 
beam end and column base. The zero-length elements 
with a materia  l model for steel members (steel01) with 
a 0.005 post-yield stiff ness factor are used to simulate 
the plastic hinge of the strong-column/weak-beam 
mechanism. Lumped masses are placed at the nodes. A 
5% Rayleigh mass and stiff ness proportional damping 
is adopted. Corotational transformation is utilized to 
simulate a large nonlinear geometric transformation. 
The nodes on the same fl oor are constrained together 
using equal translational degree-of-freedom.

A fl owchart for determing the seismic force reducti on 
factor is shown in Fig. 6 (Qu et al., 2011). In the fi gure,
 is the damping ratio; Fe is the elastic seismic force; Fy 
is the yield strength; and max is the maximum drift; Δy is 
the yield drift; demand is the demand ductility ; and target
is the target ductility.

For the ensemble of 102 seismic records, histograms 
of the R values are presented in Fig. 7 for two periods 
and 2 ,  the shape of the histograms is close to 
logarithmic normal distribution. 

Beam plastic hinge

Base plastic hinge
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00
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m

Fig. 4   Two-dimensional one-bay nonlinear analysis frame 
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Fig. 5  The hysteresis model of Steel01 for plastic hinges

Fig. 6   The fl owchart of the iterative procedure for SDOF buildings analysis
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   The period considering the P    eff ect is:

e

0 0 e

0

e e

12 2
/ 1

1 1

m mT
K P h K

T T

     
 


 







 

     

(21)

where 
e 0T   

is  the period without the P   eff ect ( e 0 ) 
and will be denoted asT .When ,ga gRT T T , peak points 
appear on the elastic and inelastic response spectra of the 
system with the P   eff ect, so in the following, the R
spectra will be constructed using / gRT T as the abscissa.

The median spectra of the seismic force modifi cation 
factor for the SDOF building structure is shown in Fig. 8 
for e 0,  0.05,  0.1,  0.15,  0.2 . Comparing Figs. 8(b)‒
(e) with Fig. 8(a) ( e 0 ), it can be seen that:

(1) The SFRFs with the P   eff ect are smaller than 
those lacking the P    eff ect, and the larger the P  
factors are, the smaller are the SFRFs;

(2) When the period is less than gaT , R  increases 
rapidly from about 1.0 and reaches the fi rst peak point at

gaT . As the period increases to gRT , the spectra reach the 
second peak point, which is usually larger than the fi rst 
peak at gaT . For gRT T , the value decreases with the 
increase of period and fl attens gradually after 2 gRT

 
and 

tends toward a constant;
(3) The peak values at gaT and gRT drop more quickly 

than at other periods as the P    factor increases. 
Because

0 e, (max) e, (max)e,

y, 0 y, y,

( / )
( / )
K P hF

R
F K P h

  
  

  
 


        

(22)

faster dropping of R implies a quicker increase of y,  , 
where y,  is the yielding displacement for the   target 
ductility, considering P   eff ect;

(4) With the increase of  θe , when 1.4
gR

T
T

  and 3 , 

the R increases as the period increases, signifying that 
the infl uence of the P   eff ect is mitig  ated slightly for 
longer periods. Note that Eq. (14) expresses the same 
trend: Rc is larger as the period increases.

The amplifi cation factor of the seismic force due to 
P    eff ect is defi ned  as:

 
ee , 0

,

1 ( / )
( / )

gR
F

gR

R T T
A

R T T
 

  


 



                
(23)

where R is defi ned by Eq. (22). e(1 ) is introduced 
in Eq. (23) due to the fact that the elastic amplifi cation 
factor 1/ e(1 )  will be considered in the member check.

The amplifi cation factor ,FA  spectra are   presented 
in Fig. 9 for the SDOF system, with a diff erent ductility 
and P   eff ect coeffi  cient. It can be seen that: 

(1) ,FA  is larger as  becomes larger;
(2) A steep rise of the ,FA  spectra occurs from 0 to

gaT ;
(3) The values of ,FA  are the largest at gaT and the 

second largest at gRT ;
(4) As the period becomes larger than gRT , ,FA  drops 

and it decreases more slowly as the period increases;
(5) In the period range of ( , )ga gRT T , ,FA  are smaller 

than at gaT and gRT .
(6) At the period 3 gRT , ,FA  is close to ,staticFA . This 

is interesting and signifi cant: in the long period range, 
the static derivation is valid.

Based on Fig. 9, the mean values of the median 
spectra ,FA  in the period range of ga gRT T

 
are 

computed as  follows (Peak points and nearby ranges 
are not included; the peak values of R in Fig. 8 also are 
not utilized in practice because of the uncertainty of the 
characteristic periods): 

,max ,
1 dgR

ga

T

F FT
gR ga

A A T
T T



 
                

    
(24)
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Fig. 7  Distribution pattern of Rμ value for specifi c SDOF systems for μ = 2
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A piecewise function is proposed for the ,FA 
spectra in Fig. 9 as follows:

 
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(25)

where

  .max e1 0.9 0.1 1FA                        (26)

Figure 10 shows a comparison of , staticFA and , maxFA .
, maxFA has a smaller scatter when the abscissa is taken to 

be e( 1)   instead of e . , maxFA is larger than , staticFA
especially when e( 1)   becomes larger than 0.5. 
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Therefore, the inelastic dynamic P    eff ect is larger 
than the inelastic static P    eff ect in this period range.

An analysis also has been carried out for unlimited 
ductility, Fig. 11(a) shows the median ductility response
R (i.e., Collapse Capacity Spectra of Adam and Jäger 
(2012) ) in the range of ga gRT T for varied θe. It is seen 
that when θe > 0, R has an upper limit due to inelastic 
dynam ic instability. As a comparison, Fig.11 also shows 
the static ductility response , staticR , which is based on 

Eq. (19) and is derived for the period range for which the 
equal displacement law is valid: 

, static
e1 ( 1)

R 
 


 

                       
(27)

4   Eff ect of post-yield stiff ness

This section will address the issue of whether the 

Fig. 9   The amplifi cation factor AF, μθ median spectra for SDOF systems and fi tting curves
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post-stiff ness of the system can counteract the adverse 
infl uence of the P   eff ect.

Models with the post-yield stiff ness factor  0.1 
are analyzed and the stability coeffi  cien ts are e 0 ,
0.10, 0.15 and 0.2, respectively. Figure 12 presents 
the spectra of , 0.1R   . When compared to Fig. 8, the 
following conclusions can be drawn:

(1) , 0.1R   are greater than , 0.005R   for the same θe, 
and signifi cantly greater when e 0.15 ;

(2) As shown in Fig. 12(b)‒12(d), , 0.1R    for
e 0   , 0.05 and 0.1 are smaller than , 0.005R   in 

Fig. 8(a)‒8(c) for e 0.005  , 0.045 and 0.095 when
2 gRT T , especially in the short period range. For
2 , or for longer period 2 gRT T , the diff erences 

between Fig. 12(b)‒12(d) and Fig. 8(a)‒8(c) are small.
Figure 13 give the spectra of , 0.1FA  :
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(28)

Comparing Fig.13(a), 13(b), 13(c) with Figs. 9(b), 
(c), (d), one can fi nd that . 0.1 . 0.005F FA A   , Fig. 13(d) 
illustrates t he ratio . 0.1 . 0.005/F FA A    for e 0.20 . As 

the ductility coeffi  cient increases, this ratio is smaller, 
implying that the benefi cial eff ect of post-stiff ness is 
more pronounced for the larger ductility factor.

Figure14 presents the following ratios:
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They are always greater than 1.0. This means 
that although the post-yield stiff ness is benefi cial for 
 improving earthquake-resistant behavior and this 
benefi cial eff ect is more pronounced if the ductility 
factor is larger, it is unable to cancel the un  favorable 
infl uences of the same amount of the stability coeffi  cient 
as is the case with negative stiff ness. 

5  Spectra without normalized period

Although the elastic acceleration spectra used in 
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Fig. 12   The median SFRFs spectra for SDOF with a post-yield stiff ness factor 0.1
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various codes can also be understood as normalized by 
two periods, as they have also two periods designated as

CT and DT in EC8 or ST and LT in ASCE 7. However, they 
were established  by directly summing up the acceleration 
spectral values of seismic records at the same site type. 
Thus, they ought to be understood as normalized by the 
site type, not by the period.

So, SFRFs incorporating the P   eff ect are also 
established by calculating the median values of SFRFs 
for the 102 seismic records in site type C. The period 
range is 0‒4 s. The results are shown in Fig. 15: the value 
of R increases as the period varies from 0 to 0.75 s. The 
peak values, existing for each isolated record, disappear. 
As the period increases from 0.75 s, the value of R
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increases more slowly. R  approaches a constant only 
when e 0 , the equal displacement law is valid in the 
long period range and when there is no second order 
eff ect.

Figure 16 shows the seismic force amplifi cation 
factors computed by:

e

e

e , 0
,

,

(1 ) ( )
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R T
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 (30)

At fi rst, ,FA  increases rapidly from 1.0 in the range 
of 0‒0.5 s; it reaches a ma ximum at 0.75 sT  . As the 
period increases, it decreases gradually and approaches 
the values of static inelastic second-order analysis. The 
following equation is proposed for the SFAFs in Fig.16:
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Fig. 15  The median SFRFs spectra for SDOF and the comparison with Adam and Jäger (2012)
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where

 max e1 1.7 1A                         (3  2)

6  Comparison with available results

As shown above, the P   amplifi cation factors with 
normalized periods are approximately calculated, as 
done in Eq. (25) and Eq. (26). Note that in the practical 
design, the period r ange of the structure is usually within 

~ga gRT T ; Eq. (26) is therefore adopted as the P  
amplifi cation factor for comparison. For SFAF spectra 
without normalized periods, Eq. (32) is adopted.

After taking away the term e1 / (1 )  from Eq. (6) 
by Bernal (1987), one obtains the P    amplifi cation 
factor as defi ned in this paper:

,Bernal e1 1.87( 1)FA                     (33)

Similarly, based on Eq. (7) (Wei et al., 2012) the
P   amplifi cation factor is  :

 ,Wei e e0.85( 1)
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(34)

According to Eq. (3) (Rosenblueth, 1965), it is:
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(35)

Figure 17 shows the comparison between these two 
results and the equations proposed in this paper. It can 
be seen that:

(1) Eq. (32) is larger than Eq. (26) because peak 
values of isolated records are included in formulating 
Eq. (32) statistically; Eq. (26) is the smallest among the 
four equations;

(2) Both Eq. (33) and Eq. (34) are slightly larger than 
Eq. (32);

(3) When e( 1) 0.6   , Eq. (33) is the largest, 
mainly due to the fact that Bernal (1987) used the mean 
instead of the median values; the mean values are greater 
than the median ones;

(4) when e( 1) 0.5   , Eq. (34) is larger than Eq. (33).
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(5) Rosenbluth′s equation gives reasonable results 
when e( 1) 0.35   .

Adam and Jäger (2012) presented Eq. (14) as the 
collapse capacity spectrum; they did not specifi ed a limit 
on the ductility factor. Therefore, their collapse capacity 
spectrum can be seen as the upper limit of R , Eq. (14) 
(Adam and Jäger, 2012) are shown in Fig. 15. For 

e 0.15  and e = 0.2, they are less than  the results of 

present paper when 1.5 sT  and 3 . Subsequently, 
a new analysis using the same 44 seismic record  s as 
those in Adam and Jäger (2012) is carried o  ut and the 
results are provided in Fig.18. For e 0.1 ~ 0.2 , Eq. 
(14) is close to the upper limits of the present paper, but 
in the short period range, Eq. (14) is higher because of  
unlimited ductility. When e 0.15 , 3 sT  and 0.2 , 

2.5 sT  , the results in the present paper are higher 

Fig. 17  Comparison with available P-Δ amplifi cation factors
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than Eq. (14), probably because one-story frame models 
(one degree of redundancy) are used in the present 
paper, while Adam and Jäger (2012) used an inverted 
pendulum (statically determinate).

7   Summary

The seismic force P    amplifi cation factors of 
SDOF systems were investigated. Frame models were 
used in the analysis, and plastic hinges were allowed 
at beam ends and column bases. Two ensembles of 
seismic records were  adopted, with the fi rst ensemble 
containing 102 records on site type C and the second 
44 records for comparison. Two types of seismic force 
reduction factors spectra, and correspondingly, two 
types of P    amplifi cation factors were established: 
one type uses the natural periods normalized by two 
site-specifi c characteristic periods, gaT

 
and gRT

 
as the 

abscissa, while the other uses the natural periods as the 
abscissa. Equations for the P    eff ect modifi cation 
factors were proposed. The basic fi ndings of this study 
are summarized as follows:

(1) The static inelastic P    amplifi cation factor 
was derived: the obtained formula is Eq. (19);

(2) The statistical distributions of SFRF spectral 
values were examined and found to have a lognormal 
distribution, so median spectra were constructed in this 
study;

(3) The P    eff ect decreases the SFRFs, in 
particular, the peak values at the characteristic periods

gaT
 
and gRT . P    amplifi cation factors defi ned by 

Eqs. (23) and (30) quantify such decreases, and these 
defi nitions diff er from the others in that the static elastic
P    amplifi cation factor (Eq. (2)) is eliminated in this 
study;

(4) Equations (25) and (31) are proposed for the
P   amplifi cation factors;

(5) An analysis showed that post-yield stiff ness 
cannot fully compensate for the adverse infl uence of the
P   eff ect on the SFRFs for any ductility factor greater 
than 1.0;

(6) For two ensembles of seismic records used in 
this study, there exist noticeable diff erences among their 
SFRF spectra, especially when the ductility factors are 
greater than about 3.5;

(7) The physical meaning and application of collapse 
capacity spectra (with unrestricted ductility) were 
discussed. They were compared with the SFRF spectra 
with limited ductility. It was found that:  

(8) The comparison of the proposed functions with 
available equations in the open literature has been 
researched.
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