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Abstract: This paper presents the experimental and numerical studies conducted on a steel column and a steel frame 
structure using free vibration analysis. The effects of damages on structures were investigated, which were simulated by 
introducing multiple cracks at different locations in the experimental and numerical models. The acceleration responses 
of the test models, were recorded through an accelerometer, and were used to calibrate the numerical models developed 
in finite element based software. Modal frequencies of damaged and undamaged structures were compared and analyzed, 
to derive relationships for damaged and undamaged structures’ frequencies in terms of crack depth. It was found that, 
due to the presence of cracks, the mechanical properties of a structure changes, whereby, the modal frequencies decrease. 
An approximately linear trend was observed for the frequency decrease with the increase in crack depth, which was also 
confirmed by the numerical models. The derived relationships were extended to further develop a mechanics-based damage 
scale for steel structures, to help facilitate structural health monitoring and screening of vulnerable structures.
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1  Introduction

Columns, beams and frames are widely used as 
structural components for carrying compression and 
bending loads, respectively, in a majority of mechanical 
and civil structures and infrastructures. Beams and 
columns are connected together to form frames for 
carrying vertical loads due to gravity, and lateral loads 
due to wind and earthquake actions. Steel structures 
provide resistance to the external applied loads through 
the development of internal normal and shear stresses 
in the structural members, and through the development 
of shear and bearing stresses at the connections, e.g. 
bolted members. The design and safety of such structural 
members are generally based on the initial uncracked 
section properties. The damage present in any structural 
member causes changes in the physical parameters and 
mechanical properties of a structure, e.g., cross-sectional 
area, moment of inertia, flexure and shear rigidity, 
which dictate the health of the structure, and which 
are essential for identifying maintenance requirements. 

The early identification of structural damage is vital 
to avoid structural failure in case of extreme loading 
conditions, which undetected can result in catastrophic 
conditions. Presently, there is a lack of simple methods 
and procedures that can facilitate prompt assessment 
of structural health and quickly screen structures for 
such risk. In the present study, vibration analysis was 
carried out, both experimentally and numerically, to 
study the effect of pre-existing structural damages on 
the fundamental vibrations of structures, and further, 
to derive simple analytical formulae for correlating 
structural damage with vibration characteristics of 
structures, which can be essential for structural health 
monitoring.

1.1  Literature review 

In recent years, significant work has been done in 
the field of structural health monitoring, with the aim 
to evaluate the health of structures for identification of 
any required maintenance or repair. Recent researchers 
(Behzad et al., 2005; Kshirsagar and Bhuyar, 2010; Mia 
et al., 2017) have discovered through numerical analyses 
of cantilever beams that natural frequencies are reduced 
due to the presence of cracks. It was also found that the 
amount of decrease largely depends on the area and the 
size of the crack. It was found that the frequencies are 
less affected by the presence of cracks at a distance from 
the secured end, i.e., fixed boundary condition, where 
the bending moment and sectional curvature demands 
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are relatively less. Similar observations have been 
made by Jagdale and Chakrabarti (2013) such that, for 
a particular crack location, the natural frequencies are 
inversely proportional to crack depth, and the reduction 
in frequencies is higher where the bending moment is 
more vigorous. In earlier research (Ostachowicz and 
Krawczuk, 1991), based on the numerical analysis of 
beams, it was found that the reduction in frequency 
becomes most immense in cases where the cracks in 
members are adjacent to each other. Similarly, analysis 
of columns has demonstrated a difference in modular 
properties and mundane frequencies of the damaged 
and undamaged cases (Khan et al., 2014). Khalate and 
Bhagwat (2016) and Owolabi et al. (2003), carrying 
out an experimental study on the analysis of a beam, 
engendering multiple cracks in the beam, and giving 
precise locations and depths of crack, observed a great 
reduction in the natural frequencies of cracks near the 
restrained end. Ramanamurthy and Chandrasekaran 
(2011), by performing finite element analysis for a 
composite cantilever beam, concluded that the damage 
was identified by increasing values of crack depth and 
damage severity. Penny et al. (1993) predicted that any 
method of damage location is critically dependent on 
the accuracy of the damage model, and further, that it is 
difficult to calculate frequencies at higher modes. Neves 
et al. (2016) has observed that the stiffness of a cracked 
beam is less than the stiffness of an un-cracked beam, and 
that condition was reflected in the decrease of the natural 
frequencies of the cracked beam and in its free dynamic 
response. Luo et al. (2005) focused on studying the 
dynamic behavior of cracked structures by using the finite 
element approach (FEA), summarizing that the crack 
surface is persistently in an open state, i.e., the opposing 
sides of the crack do not come into contact during 
vibration. Anifantis and Dimarogonas (1983) discovered 
that the existence of cracks in columns can significantly 
affect the stability of the vertically loaded columns. 
Altunışık et al. (2017), conducted modal parameter 
identification and vibration-based damage detection 
by using the finite element method and experimental 
measurements of multiple cracked cantilever beams with 
hollow circular sections. They discovered that cracks 
strongly affect the natural frequencies of the beam; at 
the cracked section the frequencies decreased non-
monotonically in response to the reduction in flexural 
stiffness of the beam at the damaged section. Chinka et 
al. (2018) observed that modal analysis is used easily to 
observe the effect of cracks on the natural frequencies 
and mode shapes for a range of crack locations and 
crack depth. Altunışık et al. (2018) analyzed vibrations 
of a multiple damaged cantilever beam with box-section 
by transfer matrix method, finite element method, and 
operation modal analysis. Gaviria and Montejo (2016) 
obtained results for structural health monitoring showing 
that the system’s dynamic parameters can be used to 
determine the occurrence of damage, and that robust 
estimation of the stiffness matrix can be used to size and 

locate the damage. Tao et al. (2014) developed a method 
that can be used to sense and localize damage-induced 
nonlinearities in structures under seismic excitation. The 
nonlinearity behavior of the structure, such as opening 
and closing of the cracks in concrete and yielding of 
steel, can be noticed in the real structure.

Antunes et al. (2012) used the optical technology 
sensor to verify the practicality of tall dynamic 
structures. Their work showed that it is possible to get 
the Eigenfrequencies, which can be used to calculate 
the reaction of structures along a lifetime. Ikemoto et al. 
(2014) found that damage evaluation of a frame structure 
is possible when a change in the natural frequency 
and maximum strain ratio is observed for a structure. 
Baruh and Ratan (1993) identified the position of 
damage by establishing a damage detection system. The 
detection is done in two parts. First, the Eigensolution 
is identified using a modal identification technique. 
Then, the identified Eigensolution is used together with 
the properties of the eigenvalue problem to sense the 
damage components. Kharrazi et al. (2002) recognized 
damage by using the finite element model, updated with 
the experimental study of different damage cases. Hearn 
and Testa (1991) concluded that the position of a crack 
in the structure is determined using changes in natural 
frequency derived from the equation of motion. Damage 
to a structure is seen to influence natural frequencies 
and mode shapes. Foti (2013) proposed two methods for 
damage identification in bridges using simulated data 
for a simply supported structure. The change in Mode 
Shapes method and Mode Shapes Curvature methods 
is not properly sensitive to damage since the change in 
displacement mode shapes is generally too small. Wahab 
and Roeck (1999) showed that the modal curves of the 
lower modes are more precise than those of higher ones. 
They concluded that attention should be given when 
using the modal curves of higher modes for damage 
recognition.

Kim et al. (2003) conducted an experimental study 
on a simply supported steel truss bridge. He identified 
the mode shapes of the bridge with high precision and 
accuracy. They observed that the change in modal 
frequencies and mode shapes for the damaged cases 
cause high-stress distribution and global stiffness 
loss. Zhou et al. (2010) added that vibration-based 
monitoring techniques (VBMT) have proved useful for 
the detection and localization of structural damages. Yan 
et al. (2007) found that frequency change can detect the 
presence of structural damage, while determining the 
location of structural damage requires information of 
the vibration mode. Kessler et al. (2002) investigated a 
potential role of the frequency response of a composite 
structure in an SHM system by validating the numerical 
and experimental model. Good agreement was found 
between numerical and experimental results for lower 
frequencies, but the comparison was impractical for the 
modes at higher frequencies. 

Demir and Özener (2019) assessed the capability 
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of numerical simulation by comparing the acceleration 
time histories and displacements with the measured 
counterparts. There results gathered information that 
the seismic shear stresses did not reduced due to 
the existence of the column in the ground. Godínez-
Domínguez and Tena-Colunga (2019) observed the 
chief elements responsible for dissipating the earthquake 
input energy, yielding mappings for different load-steps 
were achieved using both nonlinear static and dynamic 
analyses. Furthermore, dynamic parameters for the 
response maxima were acquired from the story and 
global hysteresis plots. Rahman et al. (2019) validated 
the simulation model for the wind turbine tower with 
an experimental study in terms of natural frequency, 
mode shape and uncontrolled response at the 1st mode. 
Fakhraddini et al. (2019) performed the nonlinear 
dynamic analyses on Eccentrically Braced Frames. The 
results have been post-processed by nonlinear regression 
analysis in order to identify the key parameters that 
effect the peak displacement pattern of these frames. 
Results display that proposed displacement patterns have 
comparatively good agreement with those developed by 
an exact nonlinear dynamic analysis.

Tang et al. (2019) established a finite element model 
to determine the critical structural components. Then, 
the engineering requirements and the framework of the 
monitoring system are studied based on the results of 
numerical analysis. The specific implementation of the 
structural health monitoring is then carried out, which 
comprises of sensor selection, installation and wiring. 
Hu et al. (2019) performed finite element analysis of 
the cantilever beam. The optimal sensor placement for 
the best response reconstruction is determined by the 
projected method based on the updated FE model of 
the beam. Next the sensors are mounted on the physical 
cantilever beam, a number of experiments are performed. 
The responses at key locations are reconstructed and 
compared with the measured ones. 

Although previous studies confirm that natural 
frequency decreases due to the presence of a crack, 
they do not provide a relationship between crack depth 
and frequency decrease. Also, multiple cracks were 
engendered for the column structures and multiple cracks 
were studied simultaneously. Previous studies are mostly 
carried out on beams and are numerical-calculation based. 

In this study, the free vibration analysis of undamaged 
and damaged (cracked) column and frame structures 
are performed using both experimental and numerical 
calculations. Natural frequencies are extracted from the 
damaged and undamaged column and frame structures 
both numerically and experimentally and then compared 
to show the rigor of damage affecting the health of the 
structure. The comparison between the numerical and 
experimental study is presented, and the results provide 
a good agreement of both cases.

2   Experimental study

Experiments were performed on column and frame 
structures separately. The column consisted of a squared 
cross-section, and the material of the column was steel. 
The dimensions of the column were 1000 mm length 
and a cross-sectional area of 12.5 mm. The frame model 
was a single-story steel structure. Three squared beams 
were welded together to form a frame structure. The 
dimensions of the beams were 1000 mm of length and a 
cross-sectional area of 31 mm. 

In order to find the mechanical properties of the 
materials, standard tensile tests were conducted for 
column and frame specimens. Dog bone samples were 
created for both structures according to ASTM standard 
specification. The mechanical properties of column and 
frame structures are tabulated in Table 1 and Table 2.

The column was instrumented with a single 
accelerometer. The accelerometer was screwed to the 
top end of the column structure as shown in Fig. 1. The 
frame structure was instrumented with an accelerometer. 
The accelerometer was screwed to the top end of the 
structure where the two beams were joined by a welded 
joint as shown in Fig. 7. Accelerometer (model # 
1703469, Dytran /accuracy of 492.2 mv/g) converted 
the vibrational signal into a voltage signal that was 
further analyzed by the data acquisition systems to show 
the response of the structure. Free vibration analysis 
of undamaged structures were recorded by striking 
them with the face of the hammer. The structures were 
induced to vibrate, and the accelerometers recorded the 
data. This data from the accelerometer was subjected 
to the data acquisition system which filtered the data 

Table 1  Mechanical properties/ dimensions for column strucutre

Properties/ 
dimensions Yield stress Length, l Width, w Depth, d Young′s 

modulus Density Poison 
ratio

Values 279.32 N/mm2 1000 mm 12.5 mm 12.5 mm 200 GPa 0.128 kg/m3 0.30

Table 2   Mechanical properties/ dimensions for frame sructure

Properties/ dimension Length, l Width, w Depth, d Young′s 
modulus Density Poison 

ratio Yield stress

Values 1000 mm 31 mm 31 mm 200 GPa 7700 kg/m3 0.30 377.437 N/mm2
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and removed unwanted noise signals. The output of the 
data acquisition system was a text file. This text file was 
analyzed in the software SeismoSignal, which provided 
the modal frequencies of the mechanical structures. The 
natural frequencies for the column and frame structures 
were obtained from the plots depicted in Figs. 3 to 6 
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Fig. 1   Block diagram of column structure
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              column for experimentation
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           Fig. 6   8 mm damaged column response
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and Figs. 13 to 16. The crests in the plots correspond 
to the natural frequencies and were extracted using the 
frequency at the peaks of the plots. We were interested 
in measuring the global lateral response of the structure;  
therefore, the installation of a single accelerometer at the 
top of the structure was enough to provide the global 
acceleration response of the model. The numerical to 
experimental comparison also considered the same 
reference for global response simulations.

The acceleration response measured by the 
accelerometer at the top included the global response 
for all the modes. The present study included signal 
processing and fast Fourier transform (FFT) for 
transforming the time-domain signal to frequency 
domain. The latter provided clear information in terms 
of the energy and frequency contents of the signal; 
e.g., the FFT plot exhibits spikes at the dominating 
frequencies, where the amplitude and width of spike 
indicate the amount of energy for each frequency. In the 
present study the modal frequencies identified through 
FFT were compared with the numerically calculated 
frequencies for fundamental and higher modes. 
SeismoSignal software was used. In this module, the 
fourier amplitude spectrum and the power spectrum 
(or power spectral density function) were computed by 
means of fast Fourier transformation (FFT) of the input 
time-history. The Fourier amplitude spectrum shows 
how the amplitude of the ground motion is distributed 
with respect to frequency, effectively meaning that the 
frequency content of the given accelerogram can be 
fully determined. The power spectral density function, 
on the other hand, may be used to estimate the statistical 
properties of the input ground motion and to compute 
stochastic response using random vibration techniques.

The column and frame structures were damaged to 
extract the natural frequencies of the cracked structures. 
The column was damaged at three different depths, i.e., 
3 mm, 6 mm and 8 mm at a distance of 250 mm from the 
fixed end. Vibration Analysis was performed for each 
crack depth. Then the column was damaged further at 
the center with three different depths, i.e., 3 mm, 6 mm and  
8mm.Vibration analysis was again performed for each 
case. The frame structure was damaged at three different 
depths, i.e., 10 mm, 20 mm, and 30 mm at the joint of 
the structure. Figures 7‒12 show the experimental setup 
of the frame structure.

3   Analytical solution

The stiffness, time-period and frequency of the 
column structures were determined by the following 
equations.

312 EIK
l

=

The modulus of elasticity (E) was calculated from 

Fig. 9  Zoom view of damaged structure 10 mm crack

Fig. 10  Zoom view of damaged structure 20 mm crack

Fig. 11   Zoom view of damaged structure 30 mm crack

 Fig. 12 Zoom view of accelerometer attached to the top end
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the tensile test and found to be 200 GPa. The moment 
of inertia of the column (I), and length (l) of the column 
was 1 m. 
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Fig. 13  Undamaged frame response
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Fig. 14   10 mm damaged frame response
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Fig. 15  20 mm damaged frame response
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 (a) Undamaged column             (b) 3 mm damaged                 (c) 6 mm damaged          (d) 8 mm damaged column

Fig. 17   Undamaged and damaged column with different crack depths in simulation software

Fig. 18  Undamaged structure

                   Fig. 19  Damaged structure 10 mm crack 

Fig. 20  Damaged structure 20 mm crack

Fig. 21 Damaged structure 30 mm crack

Putting the values in the above equation gave us the 
frequency of the structures.

4  Numerical analysis

The column and frame structures were modeled in 
the ABAQUS 6.14 software for finite element analysis. 
The dimensions and the mechanical properties of the 
column and frame structures are illustrated in Table 1 
and Table 2. Boundary conditions were imposed at the 
bottom of the column to make it a fine-tuned column and 

at the bottom of the frame structure to make it a fixed 
steel structure. The first three modal frequencies of the 
structures were extracted for free vibration analysis. 

All the dimensions and crack locations for column 
and frame structures in numerical model were kept 
exactly the same as in experimental models. Cracks were 
created by deleting finite regions in the numerical model, 
which is a common approach for creating damages.

Figure 17 shows the undamaged and damaged 
column structure for different crack depths. Figures 
18‒21 depicts the undamaged and damaged frame 
structure for different crack depths.

Y

X
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5  Mesh convergence study

Mesh for column structure was generated using 
ABAQUS. Four different meshes, i.e., coarse, medium, 
fine and very fine, were generated to study mesh 
independence. The details of the mesh size are given in 
Table 3. The natural frequencies of the column structure 
were calculated using linear perturbation method in the 
finite element software. As shown in Table 3, there is 
negligible difference in the natural frequencies values, 
indicating that our first mesh is suitable for analysis, 
which is also time efficient. Hence, all the results reported 
here were produced using coarse mesh as tabulated in 
Table 3. 

6  Results and discussion

The numerical and experimental data was recorded 
for undamaged and damaged mechanical structures. 
First, the column was damaged near the fixed end; after 
that, the column was damaged again at the center of the 
column to create multiple cracks. The frame structure 
was damaged at a single location at the joint where 
beams were welded together. The crack was induced in 
the column at the length of 250 mm from the restrained 
end, with crack depths of 3 mm, 6 mm, and 8 mm. Two 
dimensionless parameters were defined as crack depth 
ratio and frequency ratio. Crack depth ratio is the ratio 
of the depth of crack to the width of the structure. The 
frequency ratio is the ratio of damaged frequency to 
the undamaged frequency for the first three modes of 
vibrations. The frequency ratios for the experimental 
and numerical cases were plotted against the crack depth 
ratios when the crack was modeled near the fixed end of 
the column. 

The plots for the first mode as seen in Fig. 22 
show a linear decrease in the frequency ratio when the 
crack depth ratio increases, i.e., when the crack depth 
increases. The graphs for numerical and experimental 
cases show a little variation among each other when the 
crack depth increases. In the second and third mode, as 
depicted in Figs. 23 and 24, when the frequency ratios 
are plotted for the numerical and experimental cases 
against the crack depth ratios, the frequency ratio can be 
seen to follow the same linearly decreasing trend as the 
damage level in the column increases. The pattern of the 
graph is the same as it is for the first mode. The outcome 
for both experimental and numerical simulation is 

Table  3   Mesh properties for column structure

Mesh type Number of elements First natural frequency Second natural frequency Third natural frequency

Coarse mesh 1425 0.0659033 0.26713 0.41921
Medium mesh 2688 0.065733 0.26613 0.41911

Fine mesh 4098 0.064912 0.26331 0.41903
Very fine mesh 9879 0.064386 0.26299 0.40123
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Fig. 23  Numerical and experimental comparison for the second 
               mode of vibration for a crack near the fixed end
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Fig. 24   Numerical and experimental comparison for the third 
              mode of vibration for a crack near the fixed end
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Fig. 22  Numerical and experimental comparison for the first 
              mode of vibration for a crack near the fixed end

within the limits of agreeable error. The frequency ratio 
for the first three modes shows a slight decrease in the 
frequency ratios for the depth of 3 mm to 6 mm, while 
for the crack depth at 8 mm the frequency ratios decrease 
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Table 4  Numerical and experimental comparison for the first three modes of vibration for a crack near the fixed end

Crack depth ratio Numerical frequency 
ratio

Experimental frequency 
ratio

Age error (%)
Frequency to numerical difference

First natural 
frequency ratio

0.24 0.87805 0.88888 1.2
0.48 0.85723 0.77776 -9.2
0.64 0.30761 0.33333 8.3

Second natural 
frequency ratio

0.24 0.93934 0.90549 -3.6
0.48 0.78861 0.72506 -8.05
0.64 0.51371 0.45638 -11.15

Third natural 
frequency ratio

0.24 0.92143 0.89406 -2.9
0.48 0.83971 0.78812 -6.14
0.64 0.63311 0.50605 -20
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Fig. 25  Numerical and experimental comparison of the first 
                    mode for the crack positioned away from the fixed end
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Fig. 26   Numerical and experimental comparison of the second 
                 mode for the crack positioned away from the fixed end
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Fig. 27  Numerical and experimental comparison of the third 
                 mode for the crack positioned away from the fixed end
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rapidly, which indicates that the structure is going to 
failure. When the numerical and experimental results 
are plotted together, we see that there is less variation in 
the frequency ratio for both numerical and experimental 
cases. The data show a promising result for the first three 
modes when the crack is modeled near the restrained 
end (250 mm). The comparison of both numerical and 
experimental cases justifies the results of both cases.

The comparison was drawn showing the plots for 
both numerical and experimental cases. The comparison 
of the frequency ratio for the numerical and experimental 
cases is tabulated in Table 4. 

7  Experimental and numerical results for 
      multiple cracks

For multiple cracks, the column was damaged at 
a second location, 500 mm from the fixed end. The 
crack near the fixed end depth was constant, i.e., 8 
mm, however, three depth cases were taken into the 
account. The crack depth of 3 mm, 6 mm, and 8 mm 
were modeled at the center of the column. First three 
natural frequencies for each depth case were calculated 
both experimentally and numerically. The first natural 
frequency ratio for the different crack depth ratios 
is depicted in Fig. 25. The plot follows a linearly 
decreasing trend. The results show that when the crack is 
positioned away from the fixed end, the frequencies tend 
to decrease as the damage level in the column increases. 
However, the frequency does not decrease as drastically 
as it does for the crack positioned near the fixed end. 
The numerical and experimental frequency ratios were 
plotted for the second and third mode where the crack 
is positioned at the center of the column, as shown in 
Figs. 26 and 27. The outcome from the results shows a 
linear decrease in the frequency ratios when the crack 
depth ratio is increased. The data from both numerical 
and experimental cases show a little variation among 
each other, and both plots show a linearly decreasing 
trend. The frequency ratios are not severely affected by 
the crack when it is modeled at the center of the column, 
whereas the frequency ratios decreased drastically when 
the crack was modeled near the fixed end. The numerical 
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Fig. 28   Numerical and experimental comparison for the first 
               mode of vibration
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and experimental comparison for each damage scenario 
and three modal frequencies are tabulated in Table 5. 

For both experimental and numerical cases, it is 
noticeable that when the crack is induced into the column 
the modal frequencies are affected. As well, it can be 
optically discerned that the frequency ratios decrement 
as the crack depth in the column structure increments. 
Moreover, the reduction in frequencies is greatly affected 
by the crack being present near the fixed end. If we 
keep incrementing crack depth near the fine-tuned end, 
a time will come when the failure of the structure will 
transpire. Additionally, from the above data, it can also 
be described that crack depth away from the fine-tuned 
end does not readily affect the health of the column. 
Moreover, there is a linear decrease in the frequency 
ratios when the crack depth keeps incrementing.

8  Frame structure

The comparison was drawn for the numerical and 
experimental cases for the frame structure. The results 
were plotted together to show the response of the 
structure for the three depth cases, as discussed earlier. 
There is a linear decrease in the frequency ratio for 
increasing damage level. Thus, from these comparisons, 
it is pragmatic that the frequencies are in mutual 
correspondence with each other. The comparison of 
numerical and experimental data for the first, second and 
third mode shows a linearly decreasing trend for different 
crack depth ratios, as depicted in Figs. 28‒30. The plots 
illustrate that the numerical and experimental data show 
less variation in the frequency ratios. The error in the 
data is miniscule, and it is observed that the frequency 
ratios for both cases are in mutual correspondence with 
each other.

The numerical and experimental comparison for 
each damage scenario of a frame structure and three 
modal frequencies are tabulated in Table 6.

It can be visually perceived from the comparison of 
the numerical and experimental results that the frequency 
ratio is reduced when the crack in the structure advances. 
The results for the numerical and experimental cases are 
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Fig. 29   Numerical and experimental comparison for the second
             mode of vibration
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Fig. 30   Numerical and experimental comparison for the third
              mode of vibration
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Table 5  Numerical and experimental comparison for the first three modes of vibration for a crack at the center of the column

Crack depth ratio Numerical frequency 
ratio

Experimental frequency 
ratio Age error (%)

First natural 
frequency ratio

0.24 0.36853 0.27866 -24.3
0.48 0.34553 0.25988 -24.7
0.64 0.30138 0.19437 -35

Second natural 
frequency ratio

0.24 0.86925 0.73325 -15.6
0.48 0.82158 0.70021 -14.7
0.64 0.78339 0.66211 -15.4

Third natural 
frequency ratio

0.24 0.75951 0.66711 -12.1
0.48 0.70078 0.60037 -14.3
0.64 0.64861 0.56429 -13
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Table 6  Numerical and experimental comparison for the first three modes of vibration for frame structure

Crack depth ratio Numerical frequency 
ratio

Experimental frequency 
ratio Age error (%)

First natural 
frequency ratio

0.25 0.92309 0.90278 2.2
0.50 0.83095 0.80247 -3.4
0.75 0.61007 0.55561 -8.9

Second natural 
frequency ratio

0.25 0.82014 0.78976 -3.7
0.50 0.73804 0.64329 -12.8
0.75 0.61007 0.46785 -23

Third natural 
frequency ratio

0.25 0.80597 0.75961 -5.7
0.50 0.73248 0.62090 -15
0.75 0.52402 0.37581 -28

in less error. We can say that the data of both cases is 
promising and comparable. 

9  Development of damage scale for steel 
       members 

We realize that cracking in structural members 
occurs primarily under imposed loads due to gravity, e.g., 
superimposed dead loads and live loads due to people 
and contents, and lateral loads, e.g., due to winds and 
earthquakes. Further, considering an elastic-perfectly 
plastic inelastic behavior of structural steel members, 
the frequency of a member, which has been damaged 
under the application of loads, decreases in relation with 
the member displacement ductility demand, as follows;

2

d

ud

1

f
f

µ =
 
 
 

where μ is the displacement ductility demand, measured 
as the ratio of inelastic displacement demand to the yield 
displacement capacity of the member, fd is the frequency 
of the damaged member (cracked member), while fud is 
the frequency of the counterpart undamaged member. 
The above relationship can be used to calculate the 
member displacement ductility demand on a member 
for a specified decrease in the member frequency, 
or alternatively, to calculate the decrease in member 
frequency given the displacement ductility demand. 
The experimental and numerical data with regard to the 
frequency decrease in steel columns, for the engendered 
cracks in the column, was analyzed to correlate the 
frequency decrease to the crack depth. A relationship 
was established between the ratios of damaged-to-
undamaged frequency of column to the crack depth ratio 
x, using constraint regression analysis:

d

ud

1 0.75f x
f

 
= − 

 

where fd is the frequency of damaged column, fud is the 
frequency of counterpart undamaged column, and x is 
the ratio of crack depth to the total depth of column. 
Furthermore, knowing the curvature demand on a 
cantilever structural member, the yield displacement 
capacity of the member can be formulated, as follows:

2
y y

1
3

h∆ φ=

where Δy  is the yield displacement capacity, ϕy is the yield 
curvature capacity of the section, and h is the height of 
the column. The above equation can be also extended to 
beam members, considering double bending condition 
and equal moments at the end restraints, replacing the 
factor 1/3 by 1/6. Interestingly, inelastic analysis of steel 
sections has shown that the yield curvature of a steel 
section can be related to the section depth and steel yield 
strain capacity:

y
y

2
d
ε

φ =

where d is the section depth, and εy is the yield strain 
capacity of steel material. The above equations for yield 
displacement and yield curvature capacities can be used 
in conjunction with the fd/fud relationship to derive a 
formula for calculating inelastic displacement demand 
on the column under lateral loads, in terms of member 
chord rotation: 

( )
y

2

2 1
3 1 0.75

h
d x

ε
θ

 
=  

− 

where θ is the member chord rotation. For a cantilever 
column under later load, it is quantified as the ratio of 
the displacement demand of free end to the height of the 
column. This parameter can be used for member damage 
assessment and verification of structures. For example, 
considering a more practice case of G60 steel, with yield 
strength of 60 ksi (415 MPa), cantilever column of height 
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3 m, and depth 300 mm. Assuming that a crack has been 
formed in the column under lateral load, with crack 
depth ratio x = 0.20, which is 20% of the column depth. 
Using the basic hooks law will provide yield strain εy of 
0.0021. Furthermore, using the aforementioned equation 
will provide an estimate of curvature ϕy of 0.0138 (1/m), 
yield displacement Δy of 41.38 mm, and member chord 
rotation of 0.019 (1.90%). This means that any lateral 
load developing a crack in the column, at the critical 
section of 20% depth, will cause the column to undergo 
a member chord rotation of 1.90%. Increasing the crack 
depth up to 50% (x = 0.50), the member chord rotation 
will increase to 0.0353 (3.53%). It is worth mentioning 
that most codes allow only 2%– 2.5% of column chord 
rotation for seismic actions, in order to control inter-
story drift under lateral imposed load and to protect the 
building partition walls. The derived equations can be 
used to identify the threshold crack depth, and similarly, 
can be used for screening of buildings vulnerable to 
seismic forces. 

10  Conclusions

Experimental and numerical study of a column 
and frame structure, subjected to free vibration, was 
presented. Free vibration investigation was conducted 
to extract the natural frequencies of the structure. The 
column was damaged at three crack depths and at two 
different locations to discover the reaction of the column 
subjected to free vibration. The frame structure was 
damaged at three different crack depths at a joint to 
discover the reaction of the structure presented to free 
vibration. The plots show a linear relationship when 
the frequency ratio is plotted against the crack depth 
for various damaged scenarios for both structures. It is 
concluded that the modal frequencies of the structure 
decrease as the cracks in the structure increment near 
the restrained end of the column structure, and the 
frequencies also decrease when damage appears in the 
frame structure. For different crack depths, the decrease 
in modal frequencies is less as the crack moves away 
from the fine-tuned end. From the trends of the plots, 
it can be noticed that the trend of these ratios shows a 
linear response for both experimental and numerical 
cases. The data in both cases show a change in the modal 
frequencies when the crack appears in the structure. 
When the crack depth increases there is a decrease in the 
frequencies, and the decrease can be noted by considering 
the plots of the frequency ratio with respect to the crack 
depth. The crack in the structure does not propagate, 
and it is assumed that the free vibration does not affect 
the crack propagation in the frame structure. From the 
outcomes of this research it is established that when we 
keep increasing the crack depth near the fine-tuned end, 
the stiffness of the material decreases and the material 
becomes degraded. When we keep incrementing the 
crack depth in the structure, a time will come when the 
column structure will go to failure. With the decrease in 

natural frequencies and change in mode shapes, we can 
monitor the health of the column structure for various 
damage scenarios subjected to free vibration, to take 
safety precautions at the right time before the structure 
undergoes permanent failure.
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