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Abstract: The dynamic soil-structure interaction of a shear wall embedded in elastic isotropic and homogeneous soil 
layers underlain by bedrock, subjected to SH waves, is modeled in the present article. The soil layers consist of irregular 
interfaces and it has been shown that the scattering due to the roughness of the layers has significant effect on the displacement 
of both the foundation and the shear wall. To demonstrate the phenomena indirect boundary element method (IBEM) has been 
used on the basis of its validation in previous problems of similar type. The system response is compared with the analytical 
solution of the same type of model for vertically propagating incident SH waves. It is observed that for the low frequency of 
wave, displacement is abruptly high, and as a result the combination of shear wall and foundation perceives resonance. The 
thickness of the soil layer, mass of the shear wall, stiffness of the bedrock and the soil layers all affects the system frequency 
and displacement.
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1   Introduction

Soil-structure interaction plays an important role in 
structural dynamics. In earthquake engineering, many 
problems have dealt with the study of soil-structure 
interaction and its influence on the structural response 
due to seismic waves. In most practical engineering 
applications, depending on the soil conditions and 
structural type, the foundations are partially or totally 
embedded in the ground and it is found that the 
surrounding soil greatly alters their static and dynamic 
response. This became part of the attraction to studying  
the effect of different types of foundations and the 
surrounding soil. 

The response of an infinitely-long elastic shear wall 
erected on a rigid semi-cylindrical foundation was studied 
for vertically incident SH waves by using analytical 
method (Luco, 1969). Later on this was generalized to 
arbitrary incidence of S waves (Trifunac, 1972). These 
solutions later were extended to 2-D semi-elliptical 

foundations (Wong and Trifunac, 1974), 3-D foundation 
(Lee, 1979), and to torsional response (Luco, 1976; Apsel 
and Luco, 1976). Analytical solutions were discussed for 
in-plane 2-D response due to incident P, SV, and Rayleigh 
waves by approximating the ground surface as a circular 
arc with very large radius (Todorovska, 1993). Next the 
model was used to study the difference of soil-structure 
interaction in dry and water saturated sits for poroelastic 
half-space (Todorovska and Rjoub, 2006a and 2006b). 
Soil-structure interaction is also studied by Lee and Luo 
(2014) for shallow rigid circular foundations due to 
Plane SH waves from far-field earthquakes.     

     The use of analytical methods is restricted to simple 
foundations and homogeneous half-space. To study more 
complex structural systems, numerical methods such 
as the finite element method (FEM) and the boundary 
element method (BEM) were also developed. FEM 
requires the use of special transmitting boundaries or 
infinite elements, which may lead to inaccuracy because 
of the difficulty of satisfying the boundary condition at 
infinity. To solve the problem of inaccuracy artificial 
boundaries have been considered. An artificial viscous 
boundary has been introduced to study the vertical 
impedance function and the effective input motion of 
a circular surface foundation and an embedded column 
foundation in homogeneous half-space (Luco and Wong, 
1987). The impedance function of surface or embedded 
foundations in a layered half-space has been analyzed to 
examine the effects of layer depth, embedment depth and 
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Poisson′s ratio by setting consistent boundary conditions 
(Kausel et al., 1975; Tassoulas and Kausel, 1983). An 
iterative transmitting boundary has been introduced for 
the dynamic soil structure interaction of a nuclear power 
plant in half-space (Liao et al., 1984; Liao, 1999). There 
are more examples of artificial boundaries which include 
non-reflecting boundaries (Smith, 1974) and absorbing 
boundaries (Clayton and Engquist, 1977; Engquist and 
Majda, 1977; Higdon, 1986). Another method known as 
the scaled boundary finite element method (SBFEM) also 
has been used to study dynamic structure-foundation-
soil interaction by Li et al. (2013).

The boundary element method (BEM) only 
discretizes the boundary of the definition domain. It 
is different from the discretization of total continuum 
and uses functions satisfying the governing equation 
to approximate boundary conditions. It does not need 
artificial boundaries because it uses Green′s functions, 
which that automatically satisfy the radiation conditions 
at infinity. A Green′s function of a load uniformly 
distributed on an inclined line has been used to calculate 
impedance functions of embedded foundations (Wolf 
and Darbre, 1984a and 1984b). Studies for 2-D and 3-D 
foundations, in homogeneous or layered half-space, 
using Green′s functions of point loads and a non singular 
integral approach have been presented (Luco and 
Wong, 1987; de Barros and Luco, 1995; Manolis and 
Beskos, 1988; Sbartai and Boumekik, 2008; Messioud 
et al., 2016).  It has been shown that compliant bedrock 
influences the impedance function and the number of 
peaks in the frequency domain and that the amplitudes 
of peaks depend on the thickness of the soil deposit 
(Abascal and Dominguez, 1986; Japon et al., 1997).

Formers carried work concerning the effect of the 
site characteristics on dynamic soil-structure interaction 
but it is not characterized for many physical properties 
of the site, such as soil layers of irregular interfaces. In 
this literature, Liang et al. (2013) carried the effort by 
using the indirect boundary element method (IBEM) 
for the effect of soil layer over bedrock in the model 
of shear wall with semi-circular rigid foundation. The 
soil-layer is described as a homogeneous and isotropic 
medium and is assumed to consist that it consists of a 
finite number of layers with plane interfaces in between 
the bedrock and the free ground surface.

In contrast to the model considered by the previous 
researchers (Liang et al., 2013), the ensuing model 
consists of irregular layers, as in reality this type of layers 
exists beneath the earth surface. So, it is imperative to 
study the present model′s conformance to reality. In 
this paper there is an indirect boundary element method 
(IBEM) to evaluate the influence of site with soil layer 
consisting of a finite number of irregular faced sub layers 
in between the bedrock and the free ground surface. This 
problem seems to be more practical and scattering of SH 
waves in multilayered media with irregular interfaces has 
many applications in dynamic soil-structure interaction. 
The methodology here uses Green′s function (Liang 

et al., 2013; Wolf, 1985; Liang and Ba, 2007; Aki and 
Richards, 1980; Ding and Dravinski, 1996; Ba et al., 
2018; Wang et al., 2017) to explain dynamic response of 
the model and the result is compared with de Barros and 
Luco (1995), Liang et al. (2013), and Trifunac (1972) 
to see the effect of scattering of waves in soil-structure 
interaction and vibration of foundation and shear wall. It 
is found that the scattering of SH waves due to irregular 
soil interfaces has considerable influence in the motion 
of shear wall and the soil-structure interaction.   

                                

2   Methodology

2.1  Model

The model consists of a shear wall with rigid semi-
circular foundation embedded beneath the elastic layers 
of soil overlaying elastic half-space (bedrock). The 
interfaces between the layers are assumed to be irregular 
but sufficiently smooth without sharp corners. Both the 
soil layers and bedrock are homogeneous and isotropic. 
As in Fig. 1, the total thickness of soil layers over the 
bedrock is D . The soil layer is divided into N  sublayers 
with approximately same width. The spatial domains of 
the sublayers are denoted by Dj, j = 1, 2, ..., N  while the 
irregular interfaces are designated by Ci, i = 1, 2, ..., N‒1 
(Fig. 2). The boundary between the foundation and the 
soil layers is considered as Γ . The top free surface is flat 
and is denoted by SF. Each irregular interface is assumed 
to vary around the corresponding flat reference surface 
with depth zi, i = 1, 2, ..., N‒1. The flat reference surfaces 
are denoted by Si, i = 1, 2, ..., N‒1. If the ith irregular 
interface is flat, then iC  will coincide with the reference 
surface iS . The material properties of the half-space are 
characterized by shear wave velocity βR, mass density 
ρR, shear modulus Rµ , and damping ratio ξR, while the 
material properties of the soil layers are characterized by 
shear-wave velocity βL, mass density ρL, shear modulus 
μL, and  damping  ratio ξL.  The  radius  and  mass (per unit 
length) of  the  foundation are a  and 0M , respectively. 
The shear wall has width 2a  and height H  with mass 
Mb per unit length, shear-wave velocity βb and damping 
ratio ξb. The complex  material  parameters   are   denoted   
by asterisks. The plane S-wave is incident to the soil layer 
from bedrock by forming an incidence angle θ  with 
horizontal, Fig. 1, and has angular frequency ω . The 
number N  depends on ωa/βL and as ωa/βL increases; 
larger N  is needed to ensure accuracy due to the effect 
of nonlinearity within the soil and different shapes of the 
soil layers and foundation.

The effective motion of the foundation is represented 
as a sum of two parts: the response when the inertia of 
both foundation mass 0M  and shear-wall Mb are not 
taken into account, and the response associated with 
the inertial force 0F  of the foundation mass and inertial 
force Fb of the shear wall. To find the free-field response 
an indirect boundary integral equation method (Ding 
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and Dravinski, 1996) is used, which employs Green′s 
function for  the  harmonic load  in  the free-space. Also, 
results in Liang et al. (2013) using Green′s function agree 
well with the analytical work of Trifunac (1972) for the 
same model. Therefore we have used the IBEM method, 
here, with the line load in the foundation surrounded 
by soil-layers. First the free-field ground motion and 
scattered wave field in each soil layer is calculated 
and, accordingly, by adding these two the resultant 
free-field site motion is found. Then, a set of fictitious 
distributed harmonic loads is applied on the boundary of 
the foundation bounded by respective soil layers. Using 
these loads and the rigid condition of the foundation the 
displacement and traction Green′s function are found. 
Next, the impedance function (i.e., the force imposed 
on a massless foundation when it moves with a unit 
displacement) is calculated. Finally, the first part of the 
foundation response is obtained by using the impedance 
function, and the second part is calculated from the 
equilibrium condition for the foundation. After this the 

Fig. 1   Model of the problem
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relative shear wall response is calculated which gives the 
difference between displacement of the top of shear wall 
and the foundation along with the effect of scattering of 
SH-waves.

  
2.2  Motion of free field

Free-field ground motion is the site response due to 
the incident SH waves in the absence of the shear wall 
and foundation. The incident SH wave from the bedrock 
concerning the displacement is considered in the form of 
Ding and Dravinski (1996),

inc
0exp[ i ( cos sin ) i ]v k x z tθ θ ω= − − +           (1)                             

in which k0 is the wave number.
The total wave-field in the multi-layered media can 

be expressed as a superposition of the wave field due to 
the flat-layers and scattered wave field according to 

ff s ,  1,  2,  ,         j j jv v v j N= + = ⋅ ⋅⋅          (2)  

in which the superscript ff denotes the wave field of the 
flat-layer system, and s denotes the scattered wave field 
caused by the irregular interfaces.

The free-field motion in each flat-layer is given by 
Ding and Dravinski (1996),
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reflected S  waves in the domain jD . The parameters jA ,
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where  and  
j j

j j
m la b  denote the sources intensities in the 

form of amplitudes, r is the position vector of the sources 
with respect to O , and jM and jL

 
represent the order of 

approximation, that is the number of discretized sources, 
along the auxiliary surfaces jC+  and jC− (corresponding 
to interface jC ), respectively. The functions jG  are 
Green′s functions for the line load in the free-field which 
represent the impulsive response, and are given by
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      in which 2
0H ( )⋅ denotes the Hankel function of the 

second kind and zero order and it is defined as 

   
(2)
0 0 0( ) ( ) i ( )H J Y⋅ = ⋅ − ⋅                     (5c)                                                          

in which 0 ( )J ⋅ and 0 ( )Y ⋅  are Bessel′s function of the first 
and second kind of zero order respectively.

Putting the values from Eqs. (3) and (4) in Eq. (2) we 
get the resultant free field motion of the site as
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Using the formula of traction i.e., *( )yz j jv zτ µ= ∂ ∂  
where *µ  modulus of rigidity (Lame coefficient), we 

can find the tractions from Eq. (6) for different layers 
as follows.
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where          

        1 exp[ i ( cos sin )]N N N NR A k x zθ θ= − −         (9b)
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2.3  Motion of foundation with harmonic load 
   
Consider the harmonic line load jq  in the jth sub 

layer (Fig. 3) of the foundation boundary as (Liang et 
al., 2013)

( , ) ( tan )exp(i )jq x z q z x tδ γ ω= −             (10)

The uniformly distributed line load acting on an 
inclined line is limited to be within one sub-layer. 
The time factor exp(i )tω  will be omitted henceforth. 
Applying inverse Fourier transform to Eq. (10), the line 
load in wave number domain is obtained as
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where wave number k ′  is real valued and is in the range 
from −∞  to +∞  and is related to θ , *

R and  ω β as 
(Wolf, 1985)
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(12)                  

It has been assumed that the loaded sublayers with 
the two interfaces are fixed. The calculation of the load 
on the two interfaces is conducted over local coordinates 
as in Fig. 3. Accordingly, the dynamic-equilibrium 
equation for displacement ( , )v k z′ is 

* 2 2
L L[ ( , ) , ( , )] ( , ) ( , )zz jG k v k z v k z v k z q k zρ ω′ ′ ′ ′ ′− + = − −  (13)   

Physically, Green′s function signifies the impulsive 
displacement or traction caused by a harmonic load. The 
displacement Green′s function , ( , )u jg x z

 
and traction 

Green′s functions , ( , ) t jg x z due to the line load, as in 
Eq. (11), are per Liang et al. (2013)

                                                                                     

Fig. 3  Semi-circular foundation enclosed by irregular soil 
               layers with distributed load acting on an inclined line
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and γ is the angle between line load and horizontal 
surface (Fig. 3); for vh (homogeneous solution of 
Eq. (13)), the calculation is similar to the steps of the 
calculation of the free-field ground motion as in Eq. (6) 
c.f. Liang et al. (2013). 

Also  ( , )yz k zτ ′
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is the particular traction function and h ( , )yz k zτ ′ , 
the homogeneous traction function, is given by the 
expressions in Eqs. (7), (8) and (9) but  and  j jA B are 
evaluated as in Liang et al. (2013).

2.4  Impedance function

Impedance function relates the force applied on the 
massless foundation to the displacement it has caused. If 
the set of fictitious load  ( 1,2,3, , )jq j N= ⋅ ⋅ ⋅

 
is applied 

on the surface of the boundary of the foundation Γ, 
shown in Fig. 3, then the displacement ( , )U x z  and  
stress ( , )T x z  at a point ( , )x z  on Γ can be expressed per 
Liang et al. (2013) as
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For out of plane excitation, the foundation has out of 
plane displacement Δ only, where
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The impedance function relating the force applied on 
a massless foundation to the displacement is, per Liang 
et al. (2013),

                                                                                      
,

1
( , ) d

N

yy t j j
j

K g x z s
Γ

Λ
=

= ∑∫      
             

(24)

where jΛ  are fictitious loads in the jth sub layer when 
the foundation moves with a unit displacement. Further 
details about the calculation of impedance function 
above can be found in Liang et al. (2013).

2.5   Effective input motion

The effective displacement response is the response 
when the site is considered without foundation and 
wall plus the response when the site is with wall and 
foundation. If Δ1 is the motion of the free site and Δ2 
is the motion associated with inertial force 0F  of the 
foundation mass and inertial force Fb of the shear wall 
then the effective displacement response is

1 2∆ ∆ ∆= +                           (25)

For embedded foundation (Liang et al., 2013)

f , f
1

1

( , ) ( , ) ( , ) d
N

t j j
j

yy

U x z g x z T x z s

K
Γ

Λ
∆ =

 
− 

 =
∑∫

        (26)

where Uf (x,z) and Tf (x,z) are the displacement and 
traction of free-field ground motion on boundary Γ 
respectively given by Eqs. (21) and (22).

Next the displacement Δ2 caused by the inertial force 
is

0 b
2

yy

F F
K

∆
+

=   
                           

(27)            

where for rigid foundation (Liang et al., 2013)

               
2

0 0F Mω ∆=                          (28a)

Also for shear wall according to Trifunac (1972) and 
Wolf (1985) 

                         

*
2 b

b b *
b

tan k HF M
k H

ω ∆=
                

(28b)

where *
b *

b

k ω
β

=
 
is the complex wave number in the shear 

wall.  
Substituting the expressions from Eqs. (27), (28a) 

and (28b) in Eq. (25) we obtain 

1
*2
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0 b *
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ω
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(29)

The relative displacement Δb between the top of the 
shear wall and the foundation can be written as (Trifunac, 
1972)

b *
b

1 1
cos k H

∆ ∆
 

= − 
 

 
                     

(30)

In the present paper we have considered the 
irregular interfaces of soil layers; therefore it will lead 
the scattering of the incident waves. Accordingly, the 
displacement response of foundation and shear wall 
will depend upon the material and physical properties 
of the system including scattered waves in soil layers. 
Therefore, to see the effect of scattering of plane waves 
on the structure response we compare our results with 
those in the homogeneous half-space (Trifunac, 1972) 
and soil layers with regular interfaces (Liang et al., 
2013). For this both Δ and Δb are normalized by the 
surface displacement amplitude of free-field ground 
motion, that is

fU
∆∆ =

                               
(31)

b
b

fU
∆

∆ =            
                   

(32)
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3   Numerical results and discussion

The results found in this paper for the impedance 
function, foundation response and relative shear wall 
response are compared with the existing ones to see 
the effect of scattered SH waves. For the computation 
soil parameters of Hollywood Storage Buildings are 
considered (Fig. 4) (Ding and Dravinski, 1996), and in 
order to achieve best accuracy of the results, 36N =  
(number of soil layers) per wavelength is used (Ding and 
Dravinski, 1996). 

A comparison of  impedance function is done with 
the same  model embedded in layered viscoelastic half-
space (de Barros and Luco, 1995) and in soil layers with 
regular  interfaces (Liang. et al., 2013).  The  expression            
for the impedance function discussed in (Barros and 
Luco, 1995) is 

(2)
1 L
(2)

L 0 L

( )
( )yy

H aaK
H a

ω βω
β ω β

 
= π 

               
(33)

where ( )2 ( )nH ⋅  is the Hankel function. Impedance 
function yyK  is normalized by the shear modulus of 
soil layer μL. In Eq. (33) Re( )yyK  is designated as a 
normalized stiffness coefficient and LIm( ) ( )yyK aω β  
is referred as a normalized damping coefficient. 

Figure 5 shows a comparison of our result by means 
of the solution in (Barros and Luco, 1995; Liang et 
al., 2013) with respect to the dimensionless parameter

Laω β . It is considered that soil layers and bedrock 
have identical material properties and the damping ratio 
0.0001. Observing the graph, it is seen that the nature of 
the variation of the real as well as imaginary parts of the 
impedance function in our result is approximately the 
same as that of Barros and Luco (1995) and Liang et al., 
(2013). But for the higher values of frequency our result 
fluctuates with some varying magnitude. The reason 
behind this is that in our case we have considered the 
soil layers with irregular interfaces, and the irregularity 
causes arbitrary scattering for different frequencies 
of SH waves. In  Fig. 6  there  is  a   comparison  of  
foundation response ∆  in our case with those of Liang 
et al. (2013) and Trifunac (1972), which is 
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We plotted dynamic response of foundation versus 
the dimensionless parameter Laω β  for different values 
of the parameters o s 1M M =  and b o 1,  2,  4M M = . It 
is seen that the results of the two methods agree very 
well with some fluctuations for lower frequency which 
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Fig. 4  Soil parameters of the site of the Hollywood Storage 
             Building (Duke et al., 1970)
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Fig. 6   Effect of scattering of SH waves in foundation response 
        and a comparison with those of Trifunac (1972) and 
            Liang et al. (2013)

signifies that the scattered waves have high intensity for 
the lower frequency. This indicates that the resonance 
of the foundation shifts towards the lower frequency. 
Moreover it is observed that on increasing the mass of 
the shear wall amplitude of the foundation response 
increases. 

Scattering of wave is the physical phenomena in 
which the path of the propagating wave deviates from its 
original path because of the localized non-uniformities 
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in the medium. This depends on the number of irregular 
points on the layers, material properties of the medium, 
frequency, and the velocity of the wave. To analyze the 
phenomenon of scattering due to the presence ofirregular 
points in the soil layers a  geometrical model  is  depicted
in Fig. 7. The roughness of the soil layer depends on 
the irregular points and on increasing the number of 
irregular points roughness of the layer also increases. 
The interface between the layer and the half-space is 
cosine-shaped and is defined by Ding and Dravinski 
(1996).

1, 0.5
   

1 0.05(1 cos 2 ), 0.5

x
z

x x

 >= 
+ + π ≤        

(35)

In Fig. 7, M and L are the number of sources along 
the auxiliary surfaces C+  and C−  respectively. Along 
the interface, the number of collocation points is taken 
to be No. The length of the  interface  on  which  the   
collocation  points are distributed is considered as nX . 
The sources of lengths mX  and lX  are distributed over 
the auxiliary surfaces C−  and C+ , respectively; length 
of the irregular part of the interface is taken to be 1X . 

Table 1    Three different sets of irregular points with geometrical 
             values Xn = 2, Xl = 2.1, Xm = 2.1, X1 = 1.9, ds = 0.0339,
              dr = 3ds and d = 0.1 in one layer model 

   M       L                   N0      z1

1st set of irregular points     12      12     30   0.5

2nd set of irregular points     14      14     35   0.6

3rd set of irregular points     16      16     40   0.7
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3rd set of irregular points

Fig. 9  Effect of scattering of SH waves in the relative shear 
             wall response due to three different sets of coordinates 
        of irregular points in soil-layers and their respective 
            source intensities

The depth of the flat layer is 1z  and the maximum 
deviation of the irregular interface from a flat layer is 
considered as d . The distance between two adjacent 
collocation points is denoted by ds Moreover, dr is the 
distance between the auxiliary surfaces C±  and the 
interface C . Further details about the significance of  
the considered geometry of the soil layer can be found in 
Ding and Dravinski (1996).

To see the effect of scattering through the scattering 
sources in the soil layers we have considered three 
different set of coordinates (Table 1) demonstrating the 
position of the irregular points in the soil layers. 

Accordingly, Figs. 8 and 9 show that both the 
foundation response and relative shear wall vibrations 
are different for the three different respective sets of 
scattering centers. This indicates that roughness in the 
soil layers plays an important role in providing the 
source intensity to the wave passing over it.

Following  Trifunac (1972) and Liang et al. (2013), 
we combine the stiffness and the height of the shear wall 
into a dimensionless parameter L bH aε β β= . Then 

0ε =  corresponds to a  rigid shear wall added as a rigid 
mass to the foundation. Figures 10-14 show the dynamic 
response of the foundation ∆  and relative response 
of shear wall b∆ plotted with respect to the excitation 
frequency, for different shear wall stiffness ( 0,  2, 4ε = ), 
different collective soil-layers thickness relative to the 
foundation size ( 2,  3,  4D a = ), different ratio between 
bedrock and soil layer velocity R L( 2,  4,  8)β β =   
and different shear wall masses relative to that of the 

SF O X

Z
D1Xm

D2

C-

C+

X1

Xl

Xn

h

dr

dr

ds

d

θ

Incident SH wave

Position of a collocation point
Position of a line source

Fig. 7     Geometry of the irregular (i.e., scattering) points in one-
             layer with a cosine shaped interface
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            soil-layers and their respective source intensities
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foundation b o( 1,  2)M M = . For the layered half-
space, the parameters are R L R L1,  0.005ρ ρ ξ ξ= = =  
and b 0ξ = . In the layered half-space, the frequency for 
which interference produces the maximum response of 
the soil layers is 

               
L

L
(2 1) ; 0, 1, 2,

2
n n

D
β

ω
+ π

= = ⋅ ⋅ ⋅         (36)  

             
Therefore, D a = 2 corresponds to L Laω β = 0.79, 

2.36, 3.93, 5.49,…; D a = 3 corresponds to L Laω β =
0.52, 1.57, 2.62, 3.67,…; D a = 4 corresponds to 

L Laω β = 0.39, 1.18, 1.96,…; and so on. The resonant 
frequencies of the shear wall are 

         

b
b

(2 1) ; 0, 1, 2,
2

n n
H

β
ω

+ π
= = ⋅ ⋅ ⋅

        
(37)

Here, 2ε =  gives b Laω β = 0.79, 2.36, 3.93, 5.49, …;
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Fig. 10  Dynamic response of foundation for different soil-    
                layer thickness when ε = 0, 2, 4 and Mb/Mo = 1
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Fig. 11 Dynamic response of foundation for different soil-
               layer thickness when ε = 0, 2, 4 and Mb/Mo = 2

4ε =  gives b Laω β =  0.39, 1.18, 1.96, 2.75, 3.53, 4.32, 
5.11, …; and so on. 

If an incident wave with the above values of 
frequencies (Eqs. (36) or (37)) passes through the soil 
layers   or   shear  wall  then   it   produces   maximum 
displacement on the respective mediums. To investigate 
this phenomenon, frequency of the incident wave is 
comprised in the expression Laω β , and throughout 
the soil layer it takes the value of L Laω β  for resonant 
frequency; again on the shear wall, for resonant 
frequency it takes the value of b Laω β . Resonance of 
the mediums has been analyzed along with the effect of 
scattering in the vibrating system.

From the Figs. 10-12 it can be observed that the 
foundations as well as the relative shear wall response 
are arbitrary. For different values of the frequency they 
have different amplitude of vibration. Comprising the 
scattering of waves among different thickness of the soil 
layers ,D  in comparison to radius of the foundation, 
has significant effects on the dynamics of the system. It 
can be seen that for higher value of D a  the response 
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amplitude of the foundation as well as shear wall is low. 
This signifies that increasing total thickness of the soil-
layers in between the bedrock and free surface will lead 
the small amplitude vibration of the foundation and shear 
wall. With increasing shear-wall mass ( b oM M ), the 
foundation responses around the frequencies at which 
the soil layers experience the strongest interference 
increase significantly, implying that a heavier shear wall 
may go for a larger foundation response. Moreover, it 
can be seen that with increasing shear-wall flexibility 
( )ε , the peak of the foundation response becomes larger.

Again, increasing the velocity βR of the wave on the 
bedrock in comparison to that of layered space βL has 

significant effects on the movement of the foundation 
and relatively in shear wall along with scattering of 
waves. In Figs. 13 and 14 it is seen that for high value 
of ratio βR/βL the displacement amplitude is high for 
both foundation and shear wall but again the nature of 
vibration is arbitrary because of scattering. This shows 
that increasing relative bedrock stiffness (βR/βL) results 
in the larger foundation response. This can be explained 
physically by the that larger fraction of wave energy 
being trapped in the soil layers when (βR/βL) increases.

Investigation was also carried out to see the impact 
of variation in the angle of incidence of SH wave. For 
this, angle of incidence θ  has been considered with 
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the values 2, 3, 4, 9θ = π π π π . From Figs. 15 and 
16 it is observed that for the vertically incident waves 
( 2θ = π ) the scattering is taking place in large scale and 
displacement of both the foundation and shear wall is 
high. At the same time it is observed that if the wave 
is striking the system with some angle of inclination 
( 3, 4, 9θ = π π π ) then the scattering magnitude is 
low, and as well the displacement response varies in 
small scale. 

Finally, it is seen that due to scattered S waves in 
soil layers the dynamic response of the foundation and 
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Fig. 15   Response of foundation for different angles of incidence 
             of SH waves taking ε = 3 and Mb/Mo = 2 and D/a = 2
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Fig. 16   Response of shear wall for different angles of incidence 
              of SH wave taking ε = 3 and Mb/Mo = 2 and D/a = 2
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shear wall fluctuates around the analytical result for 
the same model. In general, for larger bedrock stiffness 

R L 4,  8β β =  as the shear wall flexibility ε  increases 
the largest peaks of the foundation response gradually 
shift toward lower frequencies, indicating that the 
system becomes more flexible. Increasing shear-wall 
mass b oM M , collective soil-layer thickness D a  and 
bedrock stiffness R Lβ β  all influence the dynamics of 
the foundation and shear wall. This indicates that there 
exists interaction between the shear wall and the soil 
layers with scattering of SH waves.

           

4    Conclusions 

In the present assignment, the outcome of the 
dynamic soil-structure interaction, using the composite 
model consisting of shear-wall with semi-circular 
foundation embedded in the soil-layers with irregular 
faces, has been investigated by implementing indirect 
boundary element method (IBEM). Displacement of 
the model consisting of shear wall with foundation 
is evaluated using the Green′s function of line load in 
the free space and foundation. The expressions for the 
dynamic response of model contain the terms signifying 
the scattering of waves through soil layers. Moreover, 
to see the effect of roughed interfaces of soil-layers a 
comparison was made with the analytical solutions and 
showed that both the foundation response and the shear 
wall movement  have   arbitrary  nature  of  vibration  
due  to scattering, but their amplitudes fluctuate around 
the responses  of  the analytical  results. This  varying   
nature  of displacement is arbitrary and is included in 
both the dynamics of foundation and shear wall. It is seen 
that the physical properties of the layered soil, bedrock 
and the shear wall are effective for the vibrant response 
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of the system and soil-structure interaction. Particularly, 
the media between the bedrock and free space has a 
predominant role in the soil-structure interaction. Half-
space stiffness, soil-layer thickness, irregularity of 
soil-layers, shear wall stiffness and shear-wall mass all 
affect the dynamics of foundation and relative shear wall 
response. 
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