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Abstract: This study investigates the effect of nonlinear inertia on the dynamic response of an asymmetric building 
equipped with Tuned Mass Dampers (TMDs). In the field of structural engineering, many researchers have developed 
models to study the behavior of nonlinear TMDs, but the effect of nonlinear inertia has not received as much attention for 
asymmetric buildings. To consider nonlinear inertia, the equations of motion are derived in a local rotary coordinates system. 
The displacements and rotations of the modeled building and TMDs are defined by five-degree-of-freedom (5-DOFs). The 
equations of motion are derived by using the Lagrangian method. Also in the proposed nonlinear model, the equations of 
motion are different from a conventional linear model. In order to compare the response of the proposed nonlinear model 
and a conventional linear model, numerical examples are presented and the response of the modeled buildings are derived 
under harmonic and earthquake excitations. It is shown that if the nonlinear inertia is considered, the response of the modeled 
structures changes and the conventional linear approach cannot adequately model the dynamic behavior of the asymmetric 
buildings which are equipped with TMDs.
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1   Introduction

A tuned mass damper (TMD) is a moving mass 
which is connected to the primary structure by springs 
and dampers (Viet and Nghi, 2014). The application of 
a TMD as a device to suppress the vibration of dynamic 
systems was first proposed by Frahm (Hsiao et al., 
2005). Since then, many researchers have investigated 
the effectiveness of linear TMDs to control the vibration 
of linear structures (Guo et al., 2012). However, many 
important characteristics of a dynamic system can only 
be modeled by nonlinear governing equations. Moreover, 
there is a wide range of important phenomena that are 
nonlinear (Nayfeh, 2000). 

Many researchers have studied the nonlinear 
behavior of TMDs in mechanical and structural systems. 
Alexander and Schilder (2009) studied the behavior 
of a nonlinear TMD, which was modeled as a two-
degree-of-freedom system with cubic nonlinearity. 
In this study, the nonlinearity was physically derived 
from a geometric configuration of two pairs of springs. 
Wang (2011) proposed a new type of nonlinear TMD 

in order to improve its performance for machining 
chatter suppression. In this study, the nonlinear TMD 
was equipped with an additional series friction-spring 
element. Viet and Nghi (2014) considered a nonlinear 
single-mass two-frequency pendulum TMD to reduce 
horizontal vibration. Li and Cui (2017) studied the 
control performance of a TMD when nonlinear behavior 
caused by nonlinear spring stiffness is taken into account 
for practical application. Djemal et al. (2015) studied the 
nonlinear behavior of TMD, which was modeled as a 
two-degree-of-freedom system. In this study, the jump 
phenomenon of the nonlinear TMD was experimentally 
validated. Eason et al. (2015) studied the response 
attenuation of a linear primary structure (PS)-nonlinear 
tuned mass damper (NTMD) dynamic system with and 
without an adjustable-length pendulum tuned mass 
damper by using numerical and experimental methods. 

On the other hand, several researchers have studied 
the effects of inertia nonlinearity on the behavior of  
nonlinear mechanical systems. Mayet and Ulbrich (2015) 
studied the nonlinear detuning of a centrifugal pendulum 
vibration absorber. Mamandi et al. (2010) studied the 
nonlinear behavior of an inclined beam subjected to a 
moving load. Hosseini and Khadem (2009) studied the 
free vibration of a rotating shaft with nonlinearities in 
curvature and inertia. Also in the field of the structural 
engineering, Amin Afshar and Aghaei Pour (2016) 
studied the inertia nonlinearity in irregular-plan isolated 
structures under seismic excitations.

Among the papers dealing with modeling nonlinear 
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TMD, very little attention has been given to inertia 
nonlinearity due to torsional-lateral coupling. However, 
if inertia nonlinearity is considered in an asymmetric 
building, the dynamic response of the building 
may change (Amini and Amin Afshar, 2011). Also, 
phenomena such as saturation, jump and energy transfer 
between modes can take place (Amini and Amin Afshar,  
2011).

In this study, five degrees-of-freedom (5-DOFs) 
are defined to model the behavior of an asymmetric 
single story building equipped with TMDs. In the novel 
nonlinear approach, unlike conventional linear models, 
the inertia nonlinearity is not ignored. To consider the 
inertia nonlinearity in the equations of motion, the 
structure properties such as stiffness and damping are 
defined in a local rotary system of coordinates. The 
nonlinear equations of motion are also derived in a 
local rotary system of coordinates. However, in the 
conventional linear approach, the equations of motion 
are considered in a fixed global system of coordinates 
and the structure properties such as stiffness and damping 
are defined in the directions of the fixed axes.

The goal of this study is to show the weakness of 
the conventional linear approach to model the dynamic 
behavior of a single-story asymmetric building equipped 
with TMDs. In addition, a new approach is presented to 
model the dynamic behavior of an asymmetric building 
equipped with TMDs. By using a novel nonlinear 
approach proposed herein, the equations of motion will 
become quite different with the conventional linear 
approach. Also, if the inertia nonlinearity is considered, 
the response of the modeled structures may change 
under harmonic and seismic excitations. 

This paper is organized as follows. In Section 2, 
the nonlinear equations of motion are derived and 
these equations are compared with conventional linear 
equations. In Section 3, the response of the modeled 
buildings is derived under harmonic excitations and 
the response of the linear and nonlinear models are 
compared. The response of the modeled buildings is 
also derived under seismic excitation. Conclusions are 
presented in Section 4.

2  Equations of motion

As shown in Fig. 1, a single-story asymmetric 
building is equipped with TMDs. It is assumed that 
the floor diaphragm is rigid. Moreover, the floor center 
of mass is denoted by C.MS and the story center of 
stiffness is represented by C.RS. To consider the inertia 
nonlinearity, two coordinates systems are defined (see 
Fig. 2(b)). The first coordinates system is the local rotary 
xyz system, which is located on the base of the building 
and rotates by an angle θ. The second system is the global 
XYZ coordinates system, which is fixed on the ground. 

The parameter ex, denotes the eccentricity between 
the floor center of mass and story center of stiffness. This 
parameter can be calculated by
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where kyjs denotes the stiffness of the jth resisting element 
in the y direction. The parameter xjs represents the 
x-coordinate of jth resisting element in the y direction.

Note that in this study, only the x direction eccentricity 
is considered. Trombetti and Conte (2005) verified that 
for a torsionally coupled one-story system, one of the 
mode shapes is purely translational. In this study and 
for each building, the x axis represents the mode shape 
which is purely translational (see Fig. 4(b)).

As seen in Fig. 2(a), in the conventional linear 
approach, the stiffness and damping parameters of 
the building and TMDs are defined in the global XYZ 
coordinates system. However, in the novel nonlinear 
approach, the stiffness and damping of the building and 
TMDs are defined in the local rotary coordinates system 
(see Fig. 2(b)). 

The Lagrangian method is used here to derive the 
equations of motion. Based on the Lagrangian method, 
the motion equations in the local and global coordinates 
system can be derived by (Amini and Amin Afshar,  
2011)

d
d
 ∂ ∂

= − ∂ ∂ 
qi

i i

L LF
t q q                       

(2)

where qi are the coordinates of the five degrees-of-
freedom system in the global coordinates system ( Xsu ,

Ysu , θ , XTu , YTu .) and the local one ( xsu , ysu , θ , xTu ,
yTu ). The variables xsu  and ysu

 
are the displacements 

of the floor center of mass in the x and y directions. 
Moreover, θ  is the rotation of the one-story building 
about the z axis. Also xTu  and yTu

 
are the displacements 

of the TMDs in the x and y directions (see Fig. 3). In Eq. (2), 
qiF  are the external non-conservative forces such as 

Fig. 1  Plan of the one-story building equipped with TMDs; 
           : structure elements (beams and columns) 

X

Y
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excitation and damping forces and the parameter L is 
defined by (Amini and Amin Afshar, 2011) 

L T V= −                                   (3)

where V is the potential energy which is stored in the 
resisting elements of the building and TMDs, also T is 
the total kinetic energy of the system (Amin Afshar and 
Aghaei Pour, 2016). The parameter V can be calculated 
by local DOFs as follows (Amini and Amin Afshar,  
2011):
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Also, the value of V can be calculated by global 
DOFs by (Amini and Amin Afshar, 2011):
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Note that in Eqs. (4) and (5), the value of θ is 
assumed to be small. In Eqs. (4) and (5), the parameter 

RsKθ  is the torsional stiffness of the one-story building 
and can be calculated by:
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where xjsK is the stiffness of the jth element resisting 
in the x direction; and yjsK  is the stiffness of the jth 
element resisting in the y direction. In Eqs. (4) and (5), 
the parameters ysK  and xsK  are the total stiffness of the 
single-story building in the x and y directions. Moreover, 
in Eqs. (4) and (5), the parameters xTK  and yTK  are the 
stiffness of the springs which are connected to the TMDs 
in the x and y directions. 

In Eq. (3) , the parameter T can be calculated by 
global DOFs as follows:
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In the above equations, the parameters sm  and Tm
are the total mass of the one-story building and TMDs, 
and sr is the gyration radius of the floor about the floor 
center of mass. Note that in this research, TMDs have 
been considered as a lumped mass. 

The relationship between global variables and local 
ones can be expressed as
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where XgU and YgU are the displacements of the ground 
in the X and Y directions. 

The dynamic equations of motion can be derived in 
two different forms. The first form is the conventional 
linear form and the second is the nonlinear form which 
is proposed herein. In Eq. (4), the potential energy 
is calculated in the local coordinates system and the 
proposed nonlinear equations can be derived. Also in 
Eq. (5) , the potential energy is calculated in the global 
coordinates system and conventional linear equations of 
motion can be derived.

The dynamic equations of motion can be derived 
by substituting the potential and kinetic energy in Eqs. 
(3) and (2). In the conventional approach, as seen in 

(a)

(b)

Fig. 2  Stiffness and damping parameters defined (a) in the 
        global XYZ coordinates system and (b) in the local 
              xyz coordinates system
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Fig. 2(a), the damping and stiffness parameters are 
defined in the global XYZ coordinates system. Also 
in Fig. 2(b), the damping and stiffness parameters are 
defined in the local coordinates system.

In order to express the equations of motion in terms 
of non-dimensional parameters, these parameters are 
defined:
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where sθω is defined by
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In the above equations, xsC , ysC and RsCθ are 
damping coefficients of the one-story building, and xTC
and yTC are the damping coefficients of the TMDs (see 
Fig. 2).

As previously mentioned, based on the Lagrangian 
method, the dynamic equations of motion in conventional 
linear form can be expressed as
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In Eqs. (12)-(14), the parameter m is defined by:

s
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In the novel approach which is proposed in this 
study, as shown in Fig. 2(b), the damping and stiffness 
parameters are defined in the local rotary xyz coordinates 
system. The potential energy is derived based on local 
quantities ( xsu , xsu ,θ , xTu  and yTu ). If the potential 
energy is derived based on local quantities and it is 
substituted in Eqs. (3)  and (2), the dynamic equations of 
motion can be expressed as
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It is seen that the Eqs. (18)-(22) are different from 
Eqs. (12)-(16), and nonlinear terms are observed in  Eqs. 
(18)-(22). In  Eqs. (18)-(22), the terms 2 ysu θ− 

 , 2 xsu θ ,
2 yTu θ− 

  and 2 xTu θ  are the Coriolis  components of the 
acceleration. The terms ysu θ−  , xsu θ , yTu θ−   and xTu θ
denote the tangential components of acceleration and the 
terms 2

xsu θ−  , 2
ysu θ−  , 2

xTu θ−  and 2
yTu θ−  are centrifugal 

componen of the acceleration. 

3  Numerical study

In order to compare the performance of the proposed 
nonlinear model with the conventional linear model, 
three types of structures are considered. The natural 
frequencies of the modeled structe shown in Table 1. The 
properties of the modeled structu listed in Table 2. In the 
modeled structures, the damping ratio is assumed to be 
4%. Note that the modeled structures are different only 
in torsional stiffness ( RsKθ ) and the other parameters 
of these structures such as mass, translational stiffness, 
damping and gyration radius are the same. Structure 
type 1 has the maximum torsional stiffness and structure 
type 3 has the minimum torsioffness. In Table 1, the 
parameters Ω1 and Ω3 are defined by

31
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, ωω
Ω Ω

ω ω
= =
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In Table 1, parameters 1ω , 1xω , 3ω , 2xω  and 5ω  
are the natural circular frequencies of the modeled 
structures in the first five modes. The position of the 
rigid diaphragm in the three first natural mode shapes of 

Fig. 3   Displacements of the structure and TMDs defined in 
              the local and global coordinates systems

Table 1   Natural frequencies of the modeled structures

Structure 
type no. ω1 (rad/s) ωx1 (rad/s) ω3 (rad/s) ωx2 (rad/s) ω5 (rad/s) Ω1 Ω3

1 9.44 10.46 11.97 14.34 16.92 0.90 1.14
2 6.67 10.46 11.08 14.34 15.80 0.64 1.06

3 5.24 10.46 10.98 14.34 15.63 0.50 1.05

Table 2   Properties of the modeled structures

structure type 
no. ωxs (rad/s) ωys (rad/s) ωθRs (rad/s) ωxT (rad/s) ωyT (rad/s) ex/r exT/r  m

1 12.24 12.24 12.75 12.25 12.25 0.5 0.5 10

2 12.24 12.24 7.78 12.25 12.25 0.5 0.5 10

3 12.24 12.24 5.99 12.25 12.25 0.5 0.5 10
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the modeled structures is shown in Fig. 4.
The response of the modeled structures will be 

derived under harmonic excitations and earthquake 
excitations. The dynamic differential equations of 
motion have been solved by the SIMULINK toolbox of 
the MATLAB 8.0 solver package.

3.1  Structures response to harmonic excitation

As seen in Eqs. (18)-(22), the ground accelerations 
are denoted by gXU  and gYU  in the X and Y directions. In 
harmonic excitation, these parameters are selected to be:

1sin( )cosΩ ω β=gX H xU A t                  (24)

1sin( )sinΩ ω β=gY H xU A t

                  (25)
	  	

where the parameter β  is the excitation arrival angle 
with respect to the X direction. The variable ΩH denotes 
the excitation frequency ratio. In the presented examples, 
the excitation arrival angle is assumed to be 60° with 
respect to the X direction, unless other values for β  are 
mentioned. 

The response of the linear and nonlinear models is 
compared in the time domain and frequency domain. 
The response of the structures in the frequency domain 
is derived by Fast Fourier Transform (FFT).

In this study, different values for β  and A are 
selected to show the difference between the response 
of the linear and nonlinear models. In most of the 
presented numerical examples, the response of the linear 
and nonlinear models is identical at low amplitudes of 
excitation. Thus, the excitation amplitude is selected 
in a range to highlight the difference between the two 
models.

In Section 3.1.1 the parameters β  and ΩH  are selected 
in a range so that the first mode of the structure is the 
dominant mode, and in Section 3.1.2, these parameters 
are selected to be in a range so that the second mode 
of the structure is the dominant mode. Note that if the 

parameter β  is selected to be near zero, the second mode 
of the structure is the dominant mode and if β  is near  
90° , the first mode of the structure is the dominant mode. 
3.1.1  Response of the structures under excitation with 
           frequency ratio ΩH = Ω1 

First, the response of the modeled structures are 
compared when the excitation frequency ratio is Ω1. 
Figure 5 shows the response of structure type 1 under 
harmonic excitation. In this example, the variable A 
is selected to be 0.04 m/s2. As seen in the figure, the 
response of structure type 1 in the linear and nonlinear 
models is the same. Moreover, the frequency content 
of the response is shown in Fig. 5(b). The dominant 
frequency of the response in the directions of X and Y, 
and θ is the frequency of the first mode ( 1ω ). 

In structure type 1, if the amplitude of excitation 
is increased, or the excitation frequency is changed, 
the response of the linear and nonlinear models remain 
identical. Moreover, if the excitation arrival angle is 
changed, the response of linear and nonlinear models 
remains coincident. Thus, considering nonlinear terms 
in the motion equations of structure 1 is not important. 

Time history and frequency content of structure 
type 3 are shown in Fig. 6. In this figure, the excitation 
amplitude is 0.04 m/s2. In Fig. 6, it is seen that the 
response of the linear and nonlinear models are quite 
different. The frequency content of the X displacement 
shows that the nonlinear model has three peak points. 
One of the peak points is observed at frequency ratio 
Ω = 0, which means that the rigid diaphragm does not 
oscillate about its initial equilibrium position. Moreover, 
two other peak points occur at a frequency ratio of Ω =1.0 
and Ω1. As seen in Fig. 6(a), in initial steps of excitation, 
the response of the linear and nonlinear models are 
identical, but after the initial steps, the response of the 
linear and nonlinear models become quite different. In 
the nonlinear model, after the initial steps of excitation, 
the energy transfers from the mode with a frequency 
ratio of Ω1 to the mode with a frequency ratio of Ω =1.0. 

In Fig. 7, the time history and frequency content of 

(a) (b) (c)

Fig. 4   Position of the rigid diaphragm in three first natural mode shapes of the modeled structures: (a) first natural mode with 
           frequency of ω1 and frequency ratio of Ω1; (b) second natural mode with frequency of ωx1 and frequency ratio of Ω1 = 1;
             (c) third natural mode;  : initial position of the floor center of mass,  : secondary position of the floor center of mass

X

Y
Initial position of diaphragm
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(a) (b)
Fig. 5    Response of structure type 1 under harmonic excitation with amplitude A = 0.04 m/s2 and frequency ratio of ΩH = Ω1: (a) time 
             history; (b) frequency content
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(a) (b)

Fig. 6     Response of structure type 3 under harmonic excitation with amplitude A = 0.04 m/s2 and frequency ratio of ΩH = Ω1: (a) time 
             history; (b) frequency content
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(a) (b)
Fig. 7    Response of structure type 3 under harmonic excitation with amplitude A = 0.12 m/s2 and frequency ratio of ΩH = Ω1: (a) time 
             history; (b) frequency content
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structure type 3 are shown. In this figure, the excitation 
amplitude (A) is selected to be 0.12 m/s2. By comparing 
the structure response in Figs. 6 and 7, it is concluded 
that if the excitation amplitude (A) is increased, the 
difference between the linear and nonlinear models 
becomes larger.

In Fig. 8, the response and frequency content of 
structure type 2 are shown. The excitation amplitude 
(A) is assumed to be 0.12 m/s2. Again, it is seen that 
the response of linear and nonlinear models are not 
identical. The frequency content of the X displacement 
shows that the nonlinear model has three peak points. 
One peak point is observed at a frequency ratio of Ω = 
0, and two more peak points occur at the frequency ratios 
of Ω1 and 2Ω1. 

If Fig. 7 and Fig. 8 are compared, it is seen that the 
difference between the linear and nonlinear models is 
reduced for structure type 2. As  previously mentioned, 
the torsional stiffness of structure type 2 is greater than 
structure type 3. Also in Fig. 7 and Fig. 8, energy transfer 

between modes is observed in the nonlinear model. 
The time history and frequency content of structure 

type 2 is seen Fig. 9. In this example, the excitation 
amplitude (A) is 0.09 m/s2. The parameter β  is selected 
to be 90° . It is observed that in the linear model, the 
floor center of mass has no movement in the X direction. 
However, in the nonlinear model, the structure response 
is quite different as the floor center of mass oscillates 
in the X direction. The frequency response of the X 
displacement shows two peak points in the nonlinear 
model. One peak point is observed at the frequency ratio 
Ω = 0, which means that the structure does not oscillate 
about its initial equilibrium position in the X direction. 
3.1.2   Response of the structure under excitation with 
           frequency ratio ΩH = 1.0

In Fig. 10, the response of structure type 3 is shown 
under harmonic excitation. The excitation amplitude 
(A) is selected to be 0.18 m/s2, and the excitation arrival 
angle is assumed to be 2.86° (0.05 rad) with respect to 
the X axis (β = 0.05 rad). Note that if the parameter β  

(a) (b)
Fig. 8   Response of structure type 2 under harmonic excitation with amplitude A = 0.12 m/s2 and frequency ratio of ΩH = Ω1: 
            (a) time history; (b) frequency content
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(a) (b)
Fig. 9   Response of structure type 2 under harmonic excitation with amplitude A = 0.09 m/s2, frequency ratio of ΩH = Ω1 and
             β = 90̊ : (a) time history; (b) frequency content
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is equal to 0°, the response of the linear and nonlinear 
models becomes identical for all of the modeled 
structures. For example, the response of structure type 
3 under harmonic excitation is shown in Fig. 11. In Fig. 
11, the parameter β  is selected to be 0° and the value of 
A is 0.18 m/s2. Moreover, ΩH is selected to be 1.0.  It is 
seen that the response of the linear and nonlinear models 
is exactly the same. In this case, only the second mode 
of the structure is excited. As seen in Fig. 4(b), this mode 
is purely translational and in Fig. 11, the response of the 
structure is also purely translational and the torsional 
response of the structure is equal to zero. Moreover, in 
reality, it is not likely that the parameter β  would be 
exactly equal to zero. For these reasons, in Fig. 10, a 
minor excitation arrival angle is selected which is near 
to zero ( 0.05 rad 2.86β = ≈ ° ).

As seen in Fig. 10, in the initial steps of excitation, 
the response of the linear and nonlinear models are 
identical. In the linear model, the amplitude of the 
response in the X direction increases in the initial steps 

of excitation and after that it reaches a certain constant 
value. However, in the nonlinear model, the amplitude 
of the response in the X direction increases first and after 
that it reaches a certain value and then the amplitude of 
response decreases. In the linear model, the amplitude 
of the response in the Y direction and θ  remains near to 
zero through the excitation. However, in the nonlinear 
model, the response amplitude in the Y direction and θ
increase after the initial steps of the excitation. In the 
frequency content of the X displacement, the main peak 
occurs at the frequency ratio of Ω = 1.0. In the linear 
model, this peak is greater than in the nonlinear model. 
When the energy, which is absorbed by the dominant 
mode in the X direction, reaches a certain amount, the 
saturation phenomenon occurs. When the saturation 
phenomenon takes place, the energy transfers from the 
dominant mode in the X direction to the mode with a 
frequency ratio of Ω1; so the amplitude of the response 
in the X direction decreases and the amplitude of the 
response in the Y direction increases in the nonlinear 

Time (s)
(a) (b)

Fig. 10    Response of structure type 3 under harmonic excitation with amplitude A = 0.18 m/s2, frequency ratio of ΩH = 1.0 and 
                β = 0.05 rad ≈ 2.86̊ : (a) time history; (b) frequency content
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Fig. 11   Response of structure type 3 under harmonic excitation with amplitude A = 0.18 m/s2, frequency ratio of ΩH = 1.0 and 
              β = 0̊ : (a) time history; (b) frequency content
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model. Note that the mode with a frequency ratio of Ω1 
is the dominant mode in the response of the Y direction 
in the nonlinear model. 

In Fig. 10(b), the frequency content of the X 
displacement shows that the nonlinear model has one 
small peak at a frequency ratio of Ω = 0, which means 
that the floor center of mass does not oscillate about its 
initial equilibrium point. It is observed that after the 
saturation occurs, the floor center of mass oscillates 
around new position.   

The response of structure type 2 in the time domain 
and frequency domain is seen in Fig. 12. The parameter 
β  is 30°, and the parameter A is selected to be 0.2 m/s2. 
It is observed that the response of linear and nonlinear 
models is not exactly the same, but are very similar and 
the difference between the two responses is negligible. In 
Fig. 12, the dominant mode of the structure is the second 
mode with a frequency ratio of Ωx1. Here, unlike Fig. 10, 
the saturation phenomenon does not take place and the 
energy is not transferred between modes. Note that in 

structure types 3 and 2, the ratio between 1xω and 1ω  is:

1

1

2.0xω
ω

≈                              (26)

                  
1

1

1.57xω
ω

≈                             (27)            

As seen in Eq. (26)  for structure type 3, the ratio 
between 1xω and 1ω  is 2:1. This ratio enables the 
structure to be more capable of saturation phenomenon. 
The saturation phenomenon can occur in structure type 
2; however, it happens at higher amplitudes of excitation. 
In the next section, the maximum amplitude of the 
response in the linear and nonlinear models is compared. 
3.1.3  Comparing the maximum response of the linear 
           and nonlinear models under harmonic excitation

In Figs. 13-17 the maximum response of the linear 

(a) (b)
Fig. 12   Response of structure type 2 under harmonic excitation with amplitude A = 0.20 m/s2, frequency ratio of ΩH = 1.0 and 
               β = 30 ̊ : (a) time history; (b) frequency content
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Fig. 13 Maximum response of the modeled structures under harmonic excitation with frequency ratio of ΩH = 1.0 and
                β = 0.05 rad ≈ 2.86̊ : (a) type 3; (b) type 2
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and nonlinear models are compared when the excitation 
amplitude (A) is increased. Note that in structure type 
1, the maximum response of the linear and nonlinear 
models is identical. Thus, the comparison between 
linear and nonlinear models is not shown for structure 
type 1. Also, the parameter β  is selected to be 0.05 rad 
(2.86°), 30°, 60° and 90°.  If the parameter β  is 0.05 rad 
(2.86°) or 30°, the second mode of the structure will be 
dominant mode. If the parameter β  is 60° or 90°, the 
first mode of the structure will be dominant mode. It is 
seen that when the excitation amplitude increases, the 
difference between the maximum response of the linear 
and nonlinear models becomes greater. In Fig. 13 and 
14, the parameter β  is assumed to be 0.05 rad (2.86°) 
and 30° and the parameter ΩH is selected to be 1.0. In 
Fig. 13(a) and structure type 3, the maximum response 
of the linear and nonlinear models are identical if the 
excitation amplitude (A) is less than 0.4 m/s2. When 

the excitation amplitude becomes greater than 0.4 m/s2, 
the maximum response of the linear and nonlinear models 
change (see Fig. 13(a)). In structure type 2, the maximum 
response of the linear and nonlinear models changes if 
the excitation amplitude becomes greater than 0.56 m/s2 
(see Fig. 13(b)). In Figs. 13 and 14, the maximum 
response of the linear and nonlinear models changes due 
to the saturation phenomenon. As was shown earlier, the 
saturation phenomenon occurs in structure type 3 when 
its second mode is the dominant one. The saturation 
phenomenon can also occur in structure type 2, where it 
occurs at higher amplitudes than in structure type 3. As 
previously mentioned, the ratio between  1xω  and 1ω  is 
2:1 for structure type 3. This ratio enables structure type 
3 to be more capable of saturation.

In Figs.15 and 16, the parameter ΩH is selected to be 
equal to Ω1, and the parameter β  is selected to be 60° 
and 90°. It is seen that in both structure types 3 and 2, the 

(a) (b)
Fig. 14  Maximum response of the modeled structures under harmonic excitation with frequency ratio of ΩH = 1.0 and 
                β = 30̊ : (a) type 3; (b) type 2
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Fig. 15 Maximum response of the modeled structures under harmonic excitation with frequency ratio of ΩH = Ω1 and
               β = 60 ̊ : (a) type 3; (b) type 2

m
ax

 u
Xs

/r

m
ax

 u
Xs

/r

θ 
(r

ad
)

θ 
(r

ad
)

m
ax

 u
Ys

//r

m
ax

 u
Ys

/r

A (m/s2) A (m/s2)



510                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 19

maximum response of the linear and nonlinear models 
are quite different. Unlike Figs. 13 and 14, the maximum 
response of the linear and nonlinear models is different 
even in the low amplitude of excitation.  

3.2  Response to the seismic excitation

In this section, the response of the modeled 
structures is compared under seismic excitations. As 
seen in Fig. 17, two records from the Chi-Chi 1999 
and 1940 El Centro earthquakes are selected to be 
applied to the modeled structures. In this section, the 
parameter β  is selected to be 90° and 0.05 rad (≈ 2.86°). 
If the parameter β  is 0.05 rad (≈ 2.86°), the translational 
mode of the structure is the dominant mode and if β  
is 90°, the first mode of the structure is the dominant 
mode. As  previously mentioned, in most of the modeled 
structures, the response of the linear and nonlinear 
models is identical for low amplitudes of excitation. 
Thus, the maximum ground acceleration is selected in a 
range to show the difference between the response of the 
linear and nonlinear models.

Figure 18 shows the time and frequency response 
of structure type 3 under the Chi-Chi earthquake. 
The earthquake record is scaled, and its maximum 
acceleration is selected to be 0.4 g. β  is selected to be 
90°. It is seen that in the linear model, the response in 
the X direction remains zero throughout the excitation. 
However, in the nonlinear model, the response in the 

X direction is not zero. The maximum response in the 
Y direction and θ  is greater in the linear model. The 
frequency content of the X displacement shows two peak 
points in the nonlinear model. One of the peak points 
is observed at the frequency ratio, Ω = 0, which means 
that the floor center of mass has pure translation in the X 
direction. In the nonlinear model, it is observed that the 
energy transfers from the mode with a frequency ratio of 
Ω1 to the mode with a frequency ratio of Ω = 1.0. 

In Fig. 19, the response of structure type 2 under El 
Centro excitation is shown. The parameter β  is selected 
to be 90˚ and the maximum ground acceleration is 0.4 g. 
Again the energy transfer between modes is observed. In 
the frequency response of the X displacement, the main 
peak point occurs at a frequency ratio of 2Ω1 for the 
nonlinear model. Another peak is seen in the frequency 
ratio of Ω = 1.0. Moreover, one peak point is observed at 
the frequency ratio of Ω = 0.

The response of structure type 3 under the El 
Centro earthquake is shown in Fig. 20. In this figure, 
the parameter β  is 0.05 rad (2.86°). The maximum 
acceleration of the earthquake is selected to be 0.6 g. The 
response of the structure in the Y direction and θ  is quite 
different in the linear and nonlinear models. However, the 
response of the linear and nonlinear models is very close 
to each other in the X direction. The frequency content of 
the Y displacement and θ shows that the main peak point 
occurs at a frequency ratio of Ω1. In the nonlinear model, 
these peaks are greater than in the linear model.

(a) (b)
Fig. 16 Maximum response of the modeled structures under harmonic excitation with frequency ratio of ΩH = Ω1 and
               β = 90 ̊ : (a) type 3; (b) type 2
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Fig. 17    Selected earthquakes accelerograms: (a) 1940 El Centro; (b) 1999 Chi-Chi
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(a) (b)

Fig. 20   Response of the structure type 3 under El Centro earthquake, β = 0.05 rad ≈ 2.86̊ , maximum acceleration of the ground 
               is 0.6 g: (a) time history; (b) frequency content

(a) (b)
Fig. 18   Response of structure type 3 under Chi-Chi earthquake, β = 90̊ , maximum acceleration of the ground is 0.4 g : (a) time 
               history; (b) frequency content
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Fig. 19   Response of structure type 2 under El Centro earthquake, β = 90̊ ,  maximum acceleration of the ground is 0.4 g (a) time 
               history; (b) frequency content
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The response of structure type 2 under the Chi-Chi 
earthquake excitation is shown in Fig. 21. In this figure, 
the parameter β  is 0.05 rad (2.86°). The maximum 
acceleration of the earthquake is selected to be 0.6 g. It 
is seen that the response of the linear model is very close 
to the response of the nonlinear model and the difference 
between these two models can be ignored.

4  Summary and conclusions

In this study, the effect of nonlinear inertia on the 
dynamic behavior of asymmetric buildings equipped 
with TMDs was studied. The Lagrangian method 
was used to derive the nonlinear equations of motion. 
These nonlinear equations of motion were different 
from conventional linear equations. Three types of 
asymmetric structures were considered. Structure type 1 
had maximum torsional stiffness and structure type 3 had 
minimum torsional stiffness. In the modeled structures, 
the first mode shape was torsional and the second mode 
shape was purely translational. 

In structure type 1, the response of the linear 
and nonlinear models was the same and considering 
nonlinear inertia was not important.

In structure types 2 and 3, if the dominant mode of 
the structure was the torsional mode, the energy transfer 
phenomenon occurred between modes. The energy 
transfer took place even in low amplitudes of excitation. 
When the energy transfer between the modes occurred, 
the response of the linear and nonlinear models was 
different.

In structure types 2 and 3, if the dominant mode of 
the structure was the translational mode, the saturation 
phenomenon could occur. For these structures, if the 
saturation phenomenon occurred, the response of the 
linear and nonlinear models was different. In structure 
type 2, the saturation phenomenon could have only 

occurred in high amplitudes of excitation. 
However, in structure type 3, the saturation 

phenomenon was possible even in low amplitude of 
excitation. For this reason, the response of the linear and 
nonlinear models was different, even in low amplitudes 
of excitation. In structure type 3, the ratio between 
the frequency of the first mode and second mode was 
selected to be 1:2 and structure type 3 was more capable 
of having the saturation phenomenon. 

In structure types 3 and 2, the response of the linear 
and nonlinear models might be quite different even in 
low amplitudes of excitation. In these structures, if the 
nonlinear inertia was considered, phenomena such as 
saturation and energy transfer may take place. Also, if the 
amplitude of the excitation was increased, the difference 
between the response of the linear and nonlinear models 
was greater. 

In structure types 3 and 2, considering the nonlinear 
inertia was essential and the conventional linear approach 
was unable to adequately model the behavior of these 
structures under seismic and harmonic excitations.
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