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Abstract: The objective of this research is to study the dynamic response characteristics of a three-beam system with 
intermediate elastic connections under a moving load/mass-spring. In this study, the finite Sine-Fourier transform was 
performed for the dynamic partial differential equations of a simply supported three-beam system (SSTBS) under a moving 
load and a moving mass-spring, respectively. The dynamic partial differential equations were transformed into dynamic 
ordinary differential equations relative to the time coordinates, and the equations were solved and the displacement Fourier 
amplitude spectral expressions were obtained. Finally, based on finite Sine-Fourier inverse transform, the expressions for 
dynamic response of SSTBS under the moving load and moving mass-spring were obtained. The proposed method, along with 
ANSYS, was used to calculate the dynamic response of the SSTBS under a moving load/mass-spring at different speeds. The 
results obtained herein were consistent with the ANSYS numerical calculation results, verifying the accuracy of the proposed 
method. The influence of the load/mass-spring’s moving speed on the dynamic deflections of SSTBS were analyzed. SSTBS 
has several critical speeds under a moving load/mass-spring. The vertical acceleration incurred by a change in the vertical 
speed of SSTBS due to the movement of mass-spring and the centrifugal acceleration produced by the movement of mass-
spring on the vertical curve generated by SSTBS vibration could not be neglected.
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1   Introduction

Beam-type structures are widely applied in 
mechanical, civil, and material engineering and many 
other fields; therefore, it is essential to accurately 
predict the vibration responses of these structures for 
engineering applications (Li et al., 2016; Li and Sun, 
2016, 2017; Peng et al., 2017). Currently, studies on 
the vibration responses of beam-type structures under 
a moving load or a moving mass-spring have been 
conducted by researchers and engineers from various 
countries worldwide and encompass a broad field of 
emphasis (Bendine et al., 2016). There are numerous 

studies on the dynamic responses of single-beam 
systems under a moving load (Kumar et al., 2015; Liu et 
al., 2015; Wang and Ren, 2013). An important extension 
of the concept of a single-beam system is a double-beam 
system. Studies have also been reported on the vibration 
responses of double-beam, and a series of representative 
study methods have emerged as well (Rezaiee Pajand 
and Hozhabrossadati, 2014). 

Shamalta and Metrikine (2003) investigated the 
steady-state dynamic response of an embedded railway 
track to a moving train theoretically, and developed a 
series of analytical formulas. Oniszczuk (2003) analyzed 
the undamped forced transverse vibrations of a double-
beam system. The classical modal expansion method was 
used to determine the dynamic responses of beams due 
to arbitrarily distributed continuous loads. The action of 
moving forces was considered. Abu-hilal (2006) studied 
the dynamic response of a double-beam system traversed 
by a constant moving load. The dynamic deflections of 
both the beams were given in analytical closed forms. 
Using Fourier integral transforms, Zhang et al. (2008) 
studied two different loading conditions, a uniformly 
distributed harmonic load and a concentrated harmonic 
force applied at the midspan of the beam. Rusin et al. 
(2011) studied the dynamic behavior of a double-string 
system traversed by a constant or harmonically oscillating 
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moving force, and the dynamic behavior of the double-
string system traversed by a constant or harmonically 
oscillating moving force were given in closed solutions. 
In a recent study, Şimşek (2011) reported an analytical 
method to determine the forced vibration of an elastically 
connected double-carbon nanotube system carrying a 
moving nanoparticle based on the nonlocal elasticity 
theory. Then, Şimşek and Cansız (2012) studied the 
dynamic responses of an elastically connected double- 
functionally graded beam system carrying a moving 
harmonic load at a constant speed using the Euler-
Bernoulli beam theory. Using the Adomian modified 
decomposition method, the researchers investigated the 
vibration problem of a cantilever double-beam system, 
stepped beams, and multi-stepped beams (Mao, 2011, 
2015). Wu and Gao (2015) investigated the dynamic 
response of a simply supported viscously damped 
double-beam system under moving harmonic loads. Two 
coupled governing equations describing the vibration 
of the two beams were decoupled by a simple change 
of variables, achieving the analytical solutions for the 
dynamic deflections of both the beams. 

Studies have also been carried out on the dynamic 
responses of double-beam systems under a moving mass-
spring. The dynamic response of double-beam under 
a moving mass-spring was investigated by different 
methods. A suitable single-step scheme was provided for 
the numerical integration of the equations of motion, and 
dimensional analysis was applied in order to define the 
dimensionless combinations of the design parameters 
that dictate the responses of the beam and moving mass-
spring (Muscolino and Palmeri, 2007). Using Laplace 
and Fourier transformations, Zheng (2000) developed an 
analytical method which can analyze a rail modeled as 
an infinite beam on a viscoelastic foundation, subjected 
to a moving vehicle modeled as a mass-spring-damper 
system. Using the method of modal superposition, Yang 
and Lin (2005) discussed the influence of the driving 
frequency of the moving structure and the natural 
frequencies of the beam upon the dynamic response. 
Based on the nonlocal elasticity theory, Şimşek (2010) 
developed an analytical method for the forced vibration 
of an elastically connected double-carbon nanotube 
system carrying a moving mass-spring. And the problem 
was also solved numerically by using the Galerkin 
method and the time integration method of Newmark to 
verify the reliability of the analytical method (Şimşek, 
2015). The coupled equations governing the vibration of 
double-beam system under a moving mass-spring have 
been decoupled by a simple change. Then, a state-space 
equation governing the vibration of the two beams and a 
moving mass-spring has been established by introducing 
some state variables, and solved by a single-step scheme 
(Wu and Gao, 2016). Dimitrovová (2017) developed 
a new semi-analytical solution for the moving mass 
problem on infinite beams and it was derived in the form 
of an analytical closed form formula for a loading point 

displacement. 
However, due to the complexity of the three-beam, 

previous studies on the vibration problems of three-beam 
under a moving load/mass-spring were mostly aimed at 
its vibration characteristics. As an early fundamental 
work, Abu-Hilal (2007) analyzed the free vibrational 
behavior of an undamped three-beam system. The 
natural frequencies and mode shapes of the system have 
been determined and discussed in detail. Also, the effects 
of layer stiffnesses and the masses per unit length of the 
beams on the natural frequencies and mode shapes of the 
system have been explored. Li et al. (2008) developed 
a dynamic stiffness method for a three-beam system. 
The dynamic stiffness matrix has been formulated from 
the analytical closed-form solutions of the differential 
equations of motion of the three-beam element in 
free transverse vibration. An exact dynamic stiffness 
method is developed for predicting the free vibration 
characteristics of a three-beam system, which is 
composed of three non-identical uniform beams of equal 
length connected by innumerable coupling springs and 
dashpots (Li and Hua, 2008). To sum up, the methods 
for studying the dynamic responses of SSTBS under a 
moving load/mass-spring mostly suffer from complex 
deductions, numerous restrictions, and low calculation 
efficiency. The dynamic responses of SSTBS have been 
rarely studied. 

In this study, the finite Sine-Fourier transform was 
performed for the dynamic partial differential equations 
of SSTBS under a moving load and a moving mass-
spring, respectively, the dynamic partial differential 
equations were transformed into dynamic ordinary 
differential equations relative to the time coordinates, and 
furthermore the equations had been solved and obtained 
the displacement Fourier amplitude spectral expressions. 
Finally, based on finite Sine-Fourier inverse transform, 
the expressions for dynamic response of SSTBS under 
the moving load and moving mass-spring were obtained, 
respectively. The proposed method along with ANSYS 
were used to calculate the dynamic response of SSTBS 
under a moving load/mass-spring at different speeds, 
the results obtained in this study were consistent with 
the ANSYS numerical calculation results, verifying the 
accuracy of the proposed method. Compared with the 
numerical simulation analysis, the analytic method can 
incarnate the key influence factors and their influence 
laws affecting the dynamic response of structures more 
intuitively, provide a theoretical basis for deriving a 
practical formula for engineering calculation and make 
up the deficiency of numerical simulation analysis, for 
example, numerical simulations cannot account for the 
effects of the latter two terms. The proposed method in 
this paper can be apply in mechanical, civil, traffic and 
material engineering and many other fields. For example, 
the dynamic behavior of the bridge-track system of 
railway (maglev) under the train load can be studied by 
using the proposed method.
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2  Mathematical model and governing equations

2.1 Dynamic response of SSTBS under a moving load

2.1.1 Coupled partial differential equations
In this study, the physical model of a three-beam 

system is composed of the first layer beam (layer-Ⅰ), 
second layer beam (layer-Ⅱ) and third layer beam 
(layer-Ⅲ) joined by intermediate elastic connections, 
and the physical model of a SSTBS is shown in Fig. 1 
(Şimşek, 2010, 2015). All the beams are homogeneous, 
prismatic, and have the same length L , but can have 
different mass or flexural rigidity, which makes the 
model more realistic.

The vertical vibration of the three-beam system 
shown in Fig. 1 is governed by the following three 
coupled partial differential equations (Ni and Zhang, 
2018; Sun et al., 2015).
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where ( ) ( ) ( )1 2 3, , , , ,y x t y x t y x t ; 1 2 3, ,E E E ; 1 2 3, ,I I I ;
1 2 3, ,m m m  denote the vertical deflections, elastic 

modulus, horizontal moments of inertia, and per-unit-
length beam masses of layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ, 
respectively; 1 2,k k , 1 2,c c denote the spring stiffness and 
damping value of the Winkler layer between layer-Ⅰ and 
layer-Ⅱ beams and that of the Winkler layer between 
layer-Ⅱ and layer-Ⅲ, respectively (Wu and Gao, 2016; 

Zhai and Cai, 2011); δ  denotes the Dirac function; v  
denotes the load moving speed; and ( ) ( )0δ= −P t P x vt ,

0P  denotes the moving load intensity.
2.1.2 Finite Sine-Fourier transform

To solve the above-mentioned partial differential 
equations of vibration, a finite Sine-Fourier transform 
for space coordinate x  is used, and for 0 x L≤ ≤ , it is 
defined as follows: 
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where, although k  is between1 ~ ∞ , taking 30N ≥
items can generally meet the accuracy requirement of 
engineering calculations (Ba et al., 2018). Next, Eqs. (7)-
(9) can be simplified as follows
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Fig. 1  Physical model of SSTBS under a moving load
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Under minor deformation conditions, the boundary 
condition of a simply supported beam can be written as 
follows (Luo et al., 2017): 

1 0, 1 0,( , ) 0, ( , ) 0x L x Ly x t EIy x t= =′′= =           (14)

2 0, 2 0,( , ) 0, ( , ) 0x L x Ly x t EIy x t= =′′= =          (15)

3 0, 3 0,( , ) 0, ( , ) 0x L x Ly x t EIy x t= =′′= =          (16)

According to the boundary condition, the finite Sine-
Fourier transform of the fourth-order derivative of the 
displacement function relative to coordinate x  can be 
obtained as follows: 
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By performing finite Sine-Fourier transform for both 
sides of Eqs. (1)-(3) relative to coordinate x ,
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Equations (20)-(22) can be further expressed as 
follows (Zhang et al., 2016): 
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By providing the coordinates canonical 
transformation for Fourier amplitude spectrum Uk, 
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where, ϕk denotes the generalized eigenvector matrix 
of matrix Kk relative to matrix Mk; and qk denotes the 
generalized coordinate vector.

By substituting Eq. (28) into Eq. (23),

2
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By pre-multiplying both sides of Eq. (31) with T
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Using classical damping, Ck, Kk and Mk are all 
symmetric positive definite matrices; considering the 
weighted orthogonality of the generalized eigenvector 
relative to Ck, Kk and Mk, Eq. (32)  can be simplified as 
follows (Sun et al., 2015): 

( ) ( )
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where, ( )s
,n kq t  denotes the solution of Eq. (33), and 

( )0
,n kq t  denotes the homogeneous solution of Eq. (33).

Through Duhamel integral (Sun et al., 2016) the 
particular solution of Eq. (33) with zero initial conditions 
can be obtained as follows: 
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2.1.3  Solving the equation
Using Eqs. (4)-(6), 
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By multiplying the left side of Eqs. (46)-(47) with 
T

k n kMφ  and using weighted orthogonality, 
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Using Eqs. (48)-(49), the homogeneous solution 
of Eq. (33) can be obtained by considering the initial 
conditions (Ni and Zhang, 2018; Zhang et al., 2014):
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By substituting Eqs. (50) and (43) into (34),
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When SSTBS has zero initial conditions,
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Equation  (51) can be simplified as follows: 
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(54)
    
By simultaneously solvig Eqs. (9), (28), (29), and 

(51), 

1

2 sin
N

k k k
k

x
L

ξ
=

= ∑y qφ                      (55)

where ( )T
1 2 3, ,y y y=y .

2.2 Dynamic response of SSTBS under a moving 
       mass-spring

2.2.1 Coupled partial differential equations
The physical model of SSTBS under a moving 

mass-spring is shown in Fig. 2. All of the beams are 
homogeneous, prismatic, and the same length L , but 
they can have different mass or flexural rigidity, which 
me actual engineering projects.

According to the d′Alembert principle, the dynamic 

equilibrium equation of a mass-spring can be expressed 
as (Sun et al., 2015)

( ) ( ) ( )
( ) ( )

2
1

2 0 0 12

,
, 0

Z t y x tZ t
M c k Z t y x t

t t
∂ − ∂  + + − =  ∂ ∂

(56)
                        

where 2M  represents the sprung mass; ( )Z t represents 
the dynamic displacement of the sprung mass; 0c  
represents the damping coefficient of the mass-spring 
system (Li, 2018); and 0k  represents the spring 
coefficient of the mass-spring system.

According to the d′Alembert principle, thedynamic 
equilibrium equations system of a SSTBS and mass-
spring can be expressed as (Ni and Zhang, 2018; Sun et 
al., 2015; Yan and Ren, 2013): 
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Fig. 2   Physical model of SSTBS under a moving mass-spring
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The external loads along the direction of the 
displacement degree of freedom can be expressed as 
(Wu , 2016):

( ) ( )

( ) ( )( )

2 2 2
21 1 1

0 1 2 1 2 2

1 1
0 0 1

( ) g 2y y yP t x vt M M M v v
t x t x

y yc Z t v k Z t y
t t x

δ
  ∂ ∂ ∂

= − + − + + +  ∂ ∂ ∂ ∂ 
∂ ∂ ∂ − − + −  ∂ ∂ ∂  

 (60)  

where 1M  represents the unsprung mass; v  represents 
the moving speed of the mass-spring; ( )0P t  represents 
the external force; g represents the acceleration of 
gravity.
2.2.2 Finite Sine-Fourier transform

To solve the above vibration artial differential 
equations system, the first step is to provide finite Sine-
Fourier transform on the space coordinate x , and for 
0 x L≤ ≤ , finite Sine-Fourier transform can be defined 
as Eqs. (4)-(9). Under minor deformation conditions, 
the boundary condition of the SSTBS can be written as 
Eqs. (14)-(16). Based on the boundary conditions, the 
finite Sine-Fourier transform of the fourth derivative of 
the displacement function is the same as Eqs. (17)-(19). 
By performing finite Sine-Fourier transform for both 
sides of Eqs. (1)-(60) relative to coordinate x , to both 
sides of Eqs. (56)-(60), the dynamic ordinary differential 
equations of the SSTBS with respect to time coordinates 
can be expressed as

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )( )

( )

2
4

1 1 1, 1 1, 1 1, 1 2, 1 1,2

2

1 2, 1 1,i2
1

1 1,i
1

22
1 1,i 0

1

0 1,i
1

2sin sin

2sin 2 cos

2sin sin sin

2 sin

k k k k k k

N

k k i
i

N

k i i
i
N

k i i k
i

N

i
i

E I U t m U t k U t k U t c U t
t t

c U t M vt U t vt
t L t

M vt v U t vt
L t

M vt v U t vt k Z t vt
L

k U t v
L

ξ

ξ ξ

ξ ξ ξ

ξ ξ ξ ξ

ξ

=

=

=

=

∂ ∂
+ + − + −

∂ ∂
∂ ∂

+ +
∂ ∂

∂
−

∂

− +

∑

∑

∑

∑ ( )

( )

( ) ( )

0

0 1,i
1

0 1,i 1 2
1

sin sin

2 sin sin

2 sin cos gsin

k k

N

k i
i

N

k i i k
i

t vt c Z t vt
t

c vt U t vt
L t

c v vt U t vt M M vt
L

ξ ξ

ξ ξ

ξ ξ ξ ξ

=

=

∂ − + ∂ 
∂

+
∂

= +

∑

∑ (61)
    
             

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

2
4

2 2 2,k 2 2,k 1 1,k 2,k2

2 2,k 3,k 1 1,k 2,k

2 2,k 3,k 0

ξ ∂ ∂
+ − − +

∂ ∂
∂

− − − +
∂

− =

kE I U t m U t c U t U t
t t

c U t U t k U t U t
t

k U t U t (62)
        

( ) ( )

( ) ( )( ) ( ) ( )( )

2
4

3 3 3,k 3 3,k2

2 3,k 2,k 2 3,k 2,k 0

ξ ∂
+ +

∂
∂

− + − =
∂

kE I U t m U t
t

c U t U t k U t U t
t

 (63)

( ) ( ) ( )

( ) ( ) ( )

2

2 0 0 1,i2
1

0 0 1,i 0 1,i
1 1

sin
2 2

sin cos 0

ξ

ξ ξ ξ

=

= =

∂
+ − +

∂
∂ ∂

− − =
∂ ∂

∑

∑ ∑

N

i
i

N N

i i i
i i

L LM Z t k Z t k U t vt
t

c Z t c U t vt c v U t vt
t t

 (64)

Equations (61)-(64) can be further epressed as 
(Zhang et al., 2016):
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where sini iD vtξ= , sink kH vtξ= , = cosi iG vtξ , M11, 
M22, M33, K11, K22, K33, K12, K23, K21, K32, C11, C22, C33, 
C12, C23, C21, C32 are all N N×  matrices; K14, C14, F1 are 

1N ×  matrices; and K41, C41 are 1 N×  matrices. 

1 1 1
1 1 1 1 2 1

1 1 1
2 1 1 2 2 2

11

1 1 1
1 2 1

2 2 2

2 2 2

2 2 2

N

N

N N N N

M M Mm D H D H D H
L L L

M M MD H m D H D H
L L L

M M MD H D H m D H
L L L

 + 
 
 + =
 
 
 

+ 
 

M





   



2

2
23 32 33

2

0 0
0 0

0 0

c
c

c

 
 
 = = =
 
  
 

C C C





   



, 44 02
LC c= ,

2

2
23 32

2

0 0
0 0

0 0

k
k

k

 
 
 = =
 
  
 

K K





   



, 44 02
LK k= ,

 

T
0 1

0 2
41

0 N

k D
k D

k D

 
 
 =
 
 
 

K


,

0 1

0 2
14

0 N

k H
k H

k H

 
 
 =
 
 
 

K


, 

0 1

0 2
14

0 N

c H
c H

c H

 
 
 =
 
 
 

C


, 

44 22
LM M= , 



384                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 19

[ ]41 0 1 0 1 1 0 2 0 2 2 0 0 ,i N Nk D c v G k D c v G k D c v Gξ ξ ξ= + + ⋅ ⋅ ⋅ +K

[ ]41 0 1 0 2 0 Nc D c D c D= ⋅ ⋅ ⋅C ,

4
2 1 3 3

4
2 2 3 3

33

4
2 3 3

0 0
0 0

0 0 N

k E I
k E I

k E I

ξ
ξ

ξ

 +
 

+ =  
  + 

K





   



,

( )
( )

( )

1 2 1

1 2 2
1

1 2

+
+

+ N

M M gH
M M gH

M M gH

 
 
 =  
  
 

F


, 

3

3
33

3

0 0
0 0

0 0

m
m

m

 
 
 =
 
 
 

M





   



,

1

1
12 21

1

0 0
0 0

0 0

k
k

k

 
 
 = =
 
  
 

K K





   



,

1

1
12 21

1

0 0
0 0

0 0

c
c

c

 
 
 = =
 
  
 

C C





   



, 

2

2
22

2

0 0
0 0

0 0

m
m

m

 
 
 =
 
 
 

M





   



,

1 2

1 2
22

1 2

0 0
0 0

0 0

c c
c c

c c

+ 
 + =
 
  + 

C





   



,

4
1 2 1 2 2

4
1 2 2 2 2

22

4
1 2 2 2

0 0
0 0

,

0 0 N

k k E I
k k E I

k k E I

ξ
ξ

ξ

 + +
 

+ + =  
  + + 

K





   



0 0 01 1 1
1 1 1 1 1 1 1 1 2 1 2 1 1 1

0 0 01 1 1
2 2 1 2 1 1 2 2 2 2 2 2 2 2

11

0 0 01 1 1
1 1 2 2 1

2 2 24 4 4

2 2 24 4 4

2 2 24 4 4

N N

N N

N N N N N N N N N N N

c c cM M Mc v G H D H v G H D H v G H D H
L L L L L L

c c cM M Mv G H D H c v G H D H v G H D H
L L L L L L

c c cM M Mv G H D H v G H D H c v G H D H
L L L L L L

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

+ + + +

+ + + +
=

+ + + +

C





   



 
 
 
 
 
 
 
 
 
 

( ) ( ) ( )

( ) ( )

2 2 24 1 1 1
1 1 1 1 1 1 1 1 1 2 1 1

0 0 0 0 0 0
1 1 1 1 1 1 2 1 1 2 1 1 1

2 241 1 1
2 2 1 1 1 2 1 2 2 2

0 0 0 0
2 1 2 2 1 2 2 2 2 2

11

2 2 2

2 2 2 2 2 2

2 2 2

2 2 2 2

N

N N

M M ME I k v D H v D H v D H
L L L

k c k c k cD H v G H D H v G H D H v G H
L L L L L L

M M Mv D H E I k v D H
L L

k c k cD H v G H D H v G H
L L L L

ξ ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ

+ − − −

+ + + + + +

− + − −

+ + + +
=K





( )

( ) ( )
( )

2
2 2

0 0
2 2 2

24 1
1 1

2 21 1
1 2

0
1

0 0 0 0
1 1 2 2

0

2 2

2
2 2

2
2 2 2 2

2

N

N N

N N N N

N N N N

N N

N N N N N N

N N N

v D H
L

k cD H v G H
L L

ME I v D H
M M Lv D H v D H kL L D H k

k c k c LD H v G H D H v G H cL L L L v G H
L

ξ

ξ

ξ ξ
ξ ξ

ξ ξ
ξ

 
 
 
 
 
 
 
 
 
 + +
 
 
 
 − 
 − −
 + + 
+ + + + 

 +
  

   



Further, according to the Eqs. (61)-(64), the ordinary 
differential equations of can be expressed as 
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2.2.3  Solving the equation
Using Eqs. (4)-(6), the following can be obtained
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When the SSTBS have zero initial conditions (Ni 
and Zhang, 2018; Zhang et al., 2014): 
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Equation (66) is solved by using the initial conditions 
and substituting the expression of  U into Eqs. (7)-(9), 
the dynamic response of the SSTBS can be obtained as 
follows.
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Table 1  Comparison of calculation results for dynamic responses of SSTBS under a moving load (C = 0)

Parameter
Speed (m/s)

32 76 100 200
LIa (mm) -1.07167 -1.09808 -1.17161 -1.12126
LIm (mm) -1.06379 -1.08264 -1.16877 -1.13122
LIIa (mm) -0.20908 -0.23271 -0.29848 -0.28792
LIIm (mm) -0.20918 -0.23177 -0.29805 -0.27666
LIIIa (mm) -0.17491 -0.20325 -0.23962 -0.27992
LIIIm (mm) -0.17519 -0.20286 -0.23889 -0.27822

EI (%) -1.20173 -1.40952 -0.24192 0.88825
EII (%) 0.04772 -0.39654 -0.14345 -3.91253
EIII (%) 0.16350 -0.19109 -0.30721 -0.60662

Table 2   Comparison of calculation results for dynamic responses of SSTBS under a moving load (C ≠ 0)

Parameter
Speed (m/s)

32 76 100 200
LIa (mm) -1.06340 -1.08350 -1.15141 -1.06700 
LIm (mm) -1.06205 -1.07772 -1.14916 -1.06633 
LIIa (mm) -0.20848 -0.23308 -0.30065 -0.28082 
LIIm (mm) -0.20883 -0.23069 -0.29906 -0.27840 
LIIIa (mm) -0.17487 -0.20318 -0.23962 -0.27990 
LIIIm (mm) -0.17517 -0.20283 -0.23896 -0.27822 

EI (%) -0.12658 -0.53383 -0.19538 -0.06233 
EII (%) 0.16962 -1.02621 -0.52836 -0.86160 
EIII (%) 0.16874 -0.16818 -0.27683 -0.60141 

3  Verifications

3.1  Verifications of proposed method for calculating 
           dynamic response of SSTBS under a moving load

To validate the proposed method for calculating the 
ses of SSTBS under ang load, the proposed method was 
compiled in MATLAB R2016a (MATLAB, 2016), and 
both the proposed method and ANSYS numerical method 
calculated the dynamic responses of SSTBS at fous 
with/without considering damping (i.e., 32 m/s, 76 m/s, 
100 m/s, and 200 m/s)(Yan and Ren, 2015). They were 
compared in terms of the time-history curves of dynamic 
responses and dynamic response peaks of midspan 
deflections. The finite lysis was conducted by using 
ANSYS. The COMBIN14 element was used to model 
the spring and damping, and the spring damper element 
had longitudinal capability in 1D, 2D or 3D applications. 
The longitudinal spring-damper option is a uniaxial 
tension or compression element. BEAM3 was used to 
model layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ beam. The BEAM3 
was a uniaxial element with tension, compression, and 
bending capabilities (Jiang et al., 2018). The material 
properties and geometric parameters of SSTBS in the 

proposed method and ANSYS numerical method are as 
follows: L = 32 m, 2

1
112.06 10= N/mE × ,

4
1

53.217= 10 mI −× , 10 2
2 =3.5 10 N/mE × ,

-3 4
2 =1.7 10 mI × , 2

3
103.45 10= N/mE × , 4

3 =10.42 mI ,
1=60 kg/mm , 2 =1275 kg/mm , 3 m3600= 0 kg/m ,

2
1

76 10= N/mk × , 8 2
2 9 10= N/mk × , 

4 2
1=9.625 10 N s/mc × ⋅ , 2

2
49.3 10= N s/mc × ⋅ (Sun et 

al., 2016; Zhan et al., 2014).
Comparisons between the calculation results of the 

proposed method and the ANSYS numerical method 
are shown in Tables 1-2 and Fig. 3. In Tables 1-2, IaL ,

IIaL  and IIIaL , respectively represent the calculation 
results of ANSYS for the peak dynamic responses of 
layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ midspan deflections. ImL ,

IImL  and IIImL , respectively, represent the calculation 
results of the proposed method for the peak dynamic 
responses of layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ midspan 
deflections. IE , IIE  and IIIE , respectively, represent the 
errors between the calculation results of the proposed 
method and ANSYS numerical method for the midspan 
deflections peak dynamic responses of layer-Ⅰ, layer-Ⅱ, 
and layer-Ⅲ. In Fig. 3, -M sdΙ , -M sdΙΙ  -M sdΙΙΙ represent 
midspan deflection of layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ, 
respectively. 0C =  and 0C ≠  represent the calculation 
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without or with considering damping, respectively.
ANS  and MAT  represent the calculation results of the 
proposed method and ANSYS, respectively.

Tables 1-2 show a comparison of the calculation 
results for dynamic response peaks of the midspan 
deflections of layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ in SSTBS 
at four different speeds under a moving load without 
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Fig. 3   Calculation result comparison for the time-history curves of the dynamic response of SSTBS at four different speeds under 
             a moving load

or with considering damping. As shown in Tables 1-2, 
the calculation results of the proposed method for the 
dynamic response peaks of the midspan deflections of 
layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ shows good agreement 
with those of ANSYS; the maximum error is less than 
4%, thus validating the analytic method proposed in this 
study. 

t (s) t (s)

t (s) t (s)
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Table 3  Comparison of calculation results for dynamic responses of SSTBS under a moving mass-spring (C = 0) 

Parameter
Speeds (m/s)

32 80 160 200
LIa (mm) -0.5650 -0.6303 -0.9140 -0.8230
LIm (mm) -0.5569 -0.6505 -0.8945 -0.8007
LIIa (mm) -0.1053 -0.1230 -0.1550 -0.1550
LIIm (mm) -0.1064 -0.1232 -0.1541 -0.1531
LIIIa (mm) -0.1061 -0.1150 -0.1523 -0.1530
LIIIm (mm) -0.1063 -0.1153 -0.1531 -0.1517

EI (%) -1.4250 3.2056 -2.1303 -2.7090
EII (%) 1.3257 0.1911 -0.5935 -1.2013
EIII (%) 0.1635 0.2635 0.7224 -0.8333

Table 4   Comparison of calculation results for dynamic responses of SSTBS under a moving mass-spring (C ≠ 0)

Parameter
Speeds (m/s)

32 80 160 200
LIa (mm) -0.5518 -0.5569 -0.5951 -0.5637 
LIm (mm) -0.5523 -0.5558 -0.5960 -0.5631 
LIIa (mm) -0.1037 -0.1240 -0.1470 -0.1489 
LIIm (mm) -0.1042 -0.1239 -0.1482 -0.1482 
LIIIa (mm) -0.1042 -0.1123 -0.1468 -0.1485 
LIIIm (mm) -0.1045 -0.1126 -0.1479 -0.1479 

EI (%) 0.0963 -0.1914 0.1537 -0.1121 
EII (%) 0.4768 -0.0746 0.8192 -0.4658 
EIII (%) 0.2662 0.2293 0.7568 -0.4243 

Figure 3 shows a comparison of the proposed 
method and ANSYS numerical calculation results for the 
dynamic response time–history curves of the midspan 
deflections of layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ in SSTBS at 
different speeds under a moving load. As shown in Fig. 
3, the proposed method calculation results are consistent 
with the ANSYS numerical calculation results, further 
validating the method proposed in this study. 

3.2   Verifications of proposed method for calculating 
    dynamic response of SSTBS under a moving 
        mass-spring

To verify the correctness of the proposed method 
for calculating the dynamic response of SSTBS under 
a moving mass-spring, and the dynamic responses of 
SSTBS at four moving speeds (i.e., 32 m/s, 80 m/s, 
160 m/s and 200 m/s) were calculated by both the 
proposed method and ANSYS numerical method. The 
calculation results were obtained by the two methods 
for the time-history curves of dynamic responses and 
the dynamic responses peak of midspan deflections 
were then compared. The finite element analysis was 
also conducted by using ANSYS. The element type, 

geometric parameters and material properties are 
the same as in Section 3.1. In addition, the MASS21 
element, which was a point element having up to six 
degrees of freedom, was used to model the mass. In 
addition, k0 = 3.5×106 N/m , c0 = 2.41×103 N.s/m2,

1 = 1000 kgM  and 2 = 3500  kgM  (Lei and Wang, 2014).
Comparisons between the calculation results of the 

proposed method and ANSYS numerical method are 
shown in Tables 3-4 and Fig. 4. Tables 3-4 and Fig. 4 
provide comparisons of the results for the dynamic 
responses of midspan deflection peak of layer-Ⅰ, layer-Ⅱ, 
and layer-Ⅲ under a moving mass-spring at four different 
speeds. As seen from Tables 3-4, calculation results of the 
proposed method for the dynamic response peaks of the 
midspan deflections of these layers are consistent with 
those from ANSYS; the maximum error is less than 4% 
without or with considering damping, thus validating the 
analytic method proposed in this study. According to the 
Fig. 4, with regard to the dynamic time-history curves 
of midspan deflections of layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ, 
the calculation results of the proposed method are in a 
good agreement with those from the ANSYS numerical 
method, which further demonstrates the accuracy of the 
proposed method.
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Fig. 4   Calculation result comparison for the time-history curves of the dynamic response of SSTBS at four different speeds under 
             a moving mass-spring
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3.3  Damping effect

In order to ascertain the effect of damping on the 
dynamic responses of SSTBS under a moving load or 
a moving mass-spring, the effects of damping were 
obtained from Tables 1-4 and listed in Tables 5-6, where 

ImC , IImC  and IIImC  represent the effect of damping on 
the dynamic responses of layer-Ⅰ, layer-Ⅱ, and layer-Ⅲ, 
respectively. 

As seen from Tables 5-6 and Figs. 3-4, the method 
proposed herein is consistent with the results calculated 
by the ANSYS numerical method under a moving load 
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Table 5  Effect of damping on dynamic responses of SSTBS under a moving load

Parameter
Speeds (m/s)

32 76 100 200
CIm (%) 0.16 0.46 1.71 6.09
CIIm (%) 0.17 0.47 -0.34 -0.63
CIIIm (%) 0.01 0.01 -0.03 0.00

Table 6   Effect of damping on dynamic responses of SSTBS under a moving mass-spring

Parameter
Speeds (m/s)

32 80 160 200
CIm (%) 0.83 17.04 50.08 42.20
CIIm (%) 2.11 -0.55 3.99 3.33
CIIIm (%) 1.73 2.43 3.49 2.56
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Fig. 5   Deflection responses of SSTBS at different speeds under a moving load
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or a mass-spring considering the effect of damping; the 
errors are less than -1.03% (under a moving load) and 
0.82% (under a moving mass-spring), validating the 
analytic method proposed in this study. From Tables 3-4 
and Figs. 3-4, it can be seen that the damping has the 
greatest effect on layer-Ⅰ, then layer-Ⅱ, and has a smaller 
effect on layer-Ⅲ under a moving load or a mass-
spring. The effect of damping on three layers of beams 
all increase as the moving speed increases. Under the 
moving load, the effect of damping is relatively small, 
with a maximum of 6%. However, the effect of damping 
under the moving mass-spring is very large and the 
maximal value reaches 50%.

4   Applications

Figures 5-6 depict the change of the midspan 
deflections of three layers without or with considering 
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Fig. 6   Deflection responses of SSTBS at different speeds under a moving mass-spring

0.2

0

-0.2

0.4

-0.6

-0.8

0.08

0

-0.08

-0.16

-0.24

0.08

0

-0.08

-0.16

-0.24

0.08

0

-0.08

-0.16

-0.24

damping when the load/mass-spring was traveling along 
the beam at low speeds (8 m/s, 16 m/s), medium speeds 
(32 m/s, 64 m/s) and high speeds (128 m/s, 200 m/s), 
where ξ represents the location coordinates of the load/
mass-spring on the beam.

As seen from Figs. 5-6, when the moving speed of 
load/mass-spring increases from 8 m/s to 200 m/s, the 
peaks of the dynamic responses of SSTBS all increase 
initially and then subsequently decrease, which shows 
that for the SSTBS, there is a critical speed. The maximum 
dynamic deflection always occurs near the midspan of 
layer-Ⅰ, and the excitation effect of the load/mass-spring 
only has a significant effect on the first order frequency. 
Hence, the investigation of the maximum dynamic 
deflection of layer-Ⅰ can be achieved by analyzing the 
maximum dynamic deflection at the midspan only. 
However, the shapes of the dynamic deflection curves 
of layer-Ⅱ and layer-Ⅲ vary with the load/mass-spring 
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 Fig. 7   Relationship curves between the midspan deflections of SSTBS and load moving speeds
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Fig. 8   Relationship curve between the midspan deflection of SSTBS and mass-spring moving speeds
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Fig. 9 Midspan deflection and mass-spring moving speed 
     curves of layer-Ⅰ with or without considering the
             latter two terms

speed, the dynamic response frequency increases as the 
load/mass-spring speed increases, and the position of the 
maximum dynamic deflection shifts from the midspan 
to the traveling direction of the load/mass-spring as the 
load/mass-spring speed increases. 

To study the effect of the load/mass-spring moving 
speed on the dynamic responses of SSTBS without 
or with considering damping, the relationship curves 
between the midspan deflections of layer-Ⅰ, layer-Ⅱ, 
and layer-Ⅲ and load/mass-spring moving speed were 
calculated, as shown in Figs. 7-8 where, IPd , IIPd ,

IIIPd  represent peak deflection of layer-Ⅰ, layer-Ⅱ, and 
layer-Ⅲ, respectively.

As seen from Figs. 7-8, the relationship curves 
between the midspan deflections of SSTBS and moving 
speed of the load/mass-spring has several “abrupt 
increases”, suggesting that there is no simple linear 
relationship between the dynamic responses of the 
midspan deflections of STTBS and the moving speed of 
load/mass-spring. This is because when the load/mass-
spring travels along a SSTBS, as the speed changes, the 
loading frequency of the load/mass-spring on the SSTBS 
changes as well, and when the loading frequency of the 
load/mass-spring approaches the natural frequency of 
a certain order of the SSTBS, the structural response 
reaches its maximum. Thus, the moving speed at which 
the load/mass-spring causes the SSTBS to experience 
extreme dynamic responses is not continuous; instead, 
it occurs at several discontinuous speed points (Zhang 
et al., 2014). Also, the midspan deflections of SSTBS 

significantly decreased under a moving load/mass-
spring when the effect of damping was considered. The 
main reason for this is that the addition of damping 
dissipates a large amount of kinetic energy and reduces 
the dynamic responses of the SSTBS. 

The method proposed herein can be applied to 
engineering practice. On the right side of Eq. (60) , the 
first term 2 2

1 /y t∂ ∂ represents the vertical acceleration 
of SSTBS at the position where the mass was located 
during vibration; the second term ( )2

12 /v y x t∂ ∂ ∂  
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represents the vertical acceleration incurred by the 
change in the vertical speed of the SSTBS due to mass 
movement; and the third term ( )2 2 2

1 /v y x∂ ∂  represents 
the centrifugal acceleration produced by mass movement 
on the vertical curve due to the curvature generated by 
the SSTBS during vibration (Jia et al., 2013). Currently, 
most studies on dynamic responses neglect the second 
and third terms, because many believe that considering 
the terms makes the decoupling of the equations very 
difficult. For this reason, it is necessary to explore the 
influence of theso terms on the vibration of the SSTBS. 
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Based on the proposed method, this study investigated 
the influence of these terms on the dynamic responses of 
the three layers, as shown in Figs. 9-12. tcL , tnL represent 
midspan deflection with and without consideringrthe 
two terms, respectively. tcfL , tcsL  represent midspan 
deflection considering only the first term and only the 
second term, respectively. In order to clearly reflect the 
effects of these terms, 1M  and 2M  are modified into 
2000 kg and 11500 kg , and the other material properties 
and geometric parameters are the same as Section 3.2.

As seen from Figs. 9-12, when the moving speed 



of the mass-spring is medium or low, the calculation 
errors of the midspan deflection of the SSTBS met the 
requirement for engineering precision whether or not 
the latter two terms were considered. The calculation 
errors are generally negligible whenr two terms are 
not employed at low and medium speeds. However, 
as the moving speed increases, both the midspan 
deflection amplitude and vibration frequency became 
higher. Without considering one of the two terms, the 
midspan deflection calculation errors of the SSTBS were 
obviously on the rise. When the speed exceeded 120 m/s, 
the increase of the calculation error was almost linear, 
which clearly show thae both terms need to be included 
in the calculations.

As seen from Fig. 13, the midspan deflections of the 
SSTBS become significantly small under a moving load/
mass-spring after considering the effect of damping, 
because the structural damping dissipated a large amount 
of kinetic energy of the SSTBS and reduces the dynamic 
responses of the SSTBS.

5  Conclusions

(1) Based on finitn Sine-Fourier inverse transform, 
this study constructed an expression of the dynamic 
response of the SSTBS under a moving load and a 
moving mass-spring, respectively, and calculated the 
dynamic responses of the SSTBS at different speeds. 
The calculation results obtained in this study show good 
agreement with the calculation results of the ANSYS 
numerical method, so the accuracy of the calculation 
method proposed in this paper was demonstrated. 
Moreover, due to its clearly defined concept and 
convenient manual calculation, the calculation method 
proposed in this study provide a theoretical foundation 
for further engineering applications of SSTBS under a 
moving load/mass-spring.

(2) The SSTBS has several critical speeds under the 
moving load/mass-spring, and the dynamic deflection of 
layer-Ⅰ in the SSTBS reaches a maximum value near the 
midspan at each critical speed. 

(3) When the moving speed of the mass-spring was 
relatively high, neither the vertical acceleration incurred 
by a change in the vertical speed of the SSTBS due to 
the movement of the mass-spring nor the centrifugal 
acceleration produced by the movement of the mass-
spring on the vertical curve generated by the SSTBS 
vibration could be neglected.

(4) The effect of damping on the SSTBS under the 
moving load is relatively small, and can be neglected 
in engineering practice. However, the effect of damping 
under the moving mass-spring is very large and cannot 
be neglected in engineering practice, especially its effect 
on layer-Ⅰ.
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