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Abstract: Soil shear wave velocity has been recognized as a governing parameter in the assessment of the seismic 
response of slopes. The spatial variability of soil shear wave velocity can influence the seismic response of sliding mass and 
seismic displacements. However, most analyses of sliding mass response have been carried out by deterministic models. This 
paper stochastically investigates the effect of random heterogeneity of shear wave velocity of soil on the dynamic response of 
sliding mass using the correlation matrix decomposition method and Monte Carlo simulation (MCS). The software FLAC 7.0 
along with a Matlab code has been utilized for this purpose. The influence of statistical parameters on the seismic response of 
sliding mass and seismic displacements in earth slopes with different inclinations and stiffnesses subject to various earthquake 
shakings was investigated. The results indicated that, in general, the random heterogeneity of soil shear modulus can have 
a notable impact on the sliding mass response and that neglecting this phenomenon could lead to underestimation of sliding 
deformations.
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1  Introduction

Since seismic sliding displacement is a crucial factor 
for evaluating the seismic stability of slopes, assessment 
of this factor has been taken into consideration by various 
researchers and geotechnical professionals over the past 
few decades. If the sliding mass is rigid (i.e., shallow 
and stiff sliding mass), the rigid sliding block analysis 
is appropriate to evaluate the seismic deformation 
(Newmark, 1965). In this case, the natural period of 
the sliding mass Ts is very close to zero, and the slope 
response can be ignored. Thus, the input acceleration 
time history can be used to estimate the displacement 
by numerically integrating it over periods where the 
acceleration is greater than yielding acceleration ky. The 
integration process continues for the episodes where the 
response acceleration drops below ky until the relative 
velocity becomes zero. Alternatively, the seismic 
loading parameters, such as peak ground acceleration 
(PGA), can be utilized to predict sliding displacements 

from empirical models. Yielding acceleration is the 
seismic coefficient corresponding to a unity safety factor 
that represents the minimum acceleration required to 
initiate sliding mass failure. However, if the sliding 
mass is deformable (i.e., deep and soft sliding mass), 
it has a natural period greater than zero, making rigid 
sliding block analysis inappropriate. In this case, the 
seismic response of a deformable sliding mass must be 
evaluated. One of the most used methods for estimating 
the dynamic response of sliding mass is the decoupled 
analysis. In this analysis, seismic response of sliding mass 
is first computed by ignoring the sliding displacements, 
and then this computed response is used in a rigid sliding 
block analysis to estimate displacements (Makdisi 
and Seed, 1978; Bray and Rathje, 1998). The seismic 
coefficient time history k(t) is numerically integrated 
instead of integrating input acceleration time history 
over periods where the seismic coefficient is higher than 
yielding acceleration ky. Alternatively, the maximum 
seismic coefficient kmax is utilized in empirical models 
instead of PGA to evaluate the seismic displacements.

Soil properties vary in space even within homogeneous 
soils. However, most geotechnical analyses have been 
carried out by deterministic models that consider only 
a mean value of soil parameters applied to a given soil 
model (e.g., Hui et al., 2018; Konai et al., 2018; Gu et al., 
2017; Tang et al., 2014, 2016; Gerolymos et al., 2009). 
This simplification leads to the rise of uncertainties 
(Zhang et al., 2019; Jamshidi and Aminzadeh, 2016; 
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Berkane et al., 2014). Indeed, one of the common 
sources of discrepancy between the estimated and the 
actual performance of any geotechnical system is the 
variability of the soil parameters (Phoon and Kulhawy, 
1999). Some statistical parameters that represent spatial 
variability of soil properties include coefficient of 
variation CoV introduced by mean value and variance, 
correlation length δ and probability distribution. In recent 
years, inherent spatial variability and uncertainty of soil 
properties have received considerable attention. Griffiths 
et al. (2002) studied the effects of spatial variability of 
undrained shear strength of soil on bearing capacity of 
rough rigid strip foundations. Haldar and Babu (2008) 
analyzed the pile bearing capacity under horizontal 
load considering the heterogeneity of undrained shear 
strength. In these studies, the Monte Carlo simulation 
was used to generate random fields. Moreover, the 
effects of coefficient of variation of undrained shear 
strength and correlation length on bearing capacity of 
the pile were interpreted.

A large number of studies have dealt with the influence 
of spatial variability of soil properties on slope stability 
and reliability (Hicks and Samy, 2002; Sivakumar Babu 
and Mukesh, 2003; Griffiths and Fenton, 2004; Low et 
al., 2007; Griffiths et al., 2009; Zhang et al., 2010; Tietje 
et al., 2014; Metya and Bhattacharya, 2016; Li and Chu,  
2016; Deng et al., 2017; Liu et al., 2017).

Although extensive deterministic numerical studies 
have been carried out to investigate the dynamic response 
of slopes (e.g., Liu et al., 2019; Huang et al., 2018; Tang 
et al., 2017), only a few stochastic studies have examined 
the uncertainty in evaluating their seismic response. 
Nadi et al. (2014, 2016, 2019) addressed the uncertainty 
in assessing the seismic slope stability and co-seismic 
landslide deformations due to the random behavior of 
soil properties. Lizarraga and Lai (2014) investigated 
the effects of spatial variability of soil properties on the 
seismic response of an embankment dam. They studied 
the impact of the coefficient of variation of cohesion and 
friction angle, along with the effect of correlation length 
on maximum crest displacement of an embankment. 
These researchers concluded that when the aleatory 
uncertainty of soil characteristics is substantial, the 
stochastic response of the dam is considerably different 
from its deterministic response. Michael et al. (2016) 
probed the failure probability in a slope considering 
shear modulus as a spatially random variable. They 
computed the failure probabilities regarding different 
maximum acceleration at the slope toe. Nevertheless, 
the uncertainty in assessing the seismic response of 
sliding mass and seismic displacements due to spatial 
variability of shear wave velocity has not been addressed 
in the literature. 

The sliding mass response (i.e., seismic coefficient k- 
time-history) depends on topographic effects as a result 
of topographic irregularities and stratigraphic effects 
due to the heterogeneity of soil shear wave velocity. 
Considering that stratigraphic effects are connected 

with shear wave velocity Vs, spatial variability of shear 
wave velocity leads to different stratigraphic effects and 
correspondingly different responses of the sliding mass. 

This paper investigates the influence of spatial 
variability of shear wave velocity on the maximum 
seismic coefficient kmax and seismic sliding displacements 
by generating stationary isotropic random fields. The 
correlation matrix decomposition method in conjunction 
with Monte Carlo simulation (MCS) was employed to 
create random fields of initial shear modulus. Afterward, 
the dynamic analyses were conducted to evaluate the 
maximum seismic coefficient kmax corresponding to 
each random field; accordingly, the sliding displacement 
produced by each maximum seismic coefficient was 
estimated using a closed-form solution. 

The slope models with different inclinations and 
stiffnesses were used in seismic analyses to gain insight 
into the way random heterogeneity of shear wave velocity 
in slopes with different topographic irregularities impacts 
the total response of sliding mass as stiffness varies with 
cyclic strain during the earthquake shaking. 

2  Deterministic analysis

2.1  Model description

Two typical 2D slope models with the height H = 20 m 
and inclinations β = 30˚, 60˚ were considered in dynamic 
analyses (Fig. 1). The use of slopes with different 
inclinations gives an insight into the way topographical 
irregularities influence the seismic sliding mass response. 
Finite-difference software FLAC 7.0 was employed for 
performing the dynamic analyses. The model mesh was 
constructed by extending the lateral boundaries of the 
model beyond the desired area so that reflected waves 
would be properly damped, and their influence on the 
seismic response is minimized. According to Rizzitano 
et al. (2010), the results are not affected by the thickness 
B of the half-space (Fig. 1) provided that the length L is 
long enough to produce a geometrical attenuation of the 
waves. A sensitivity analysis confirmed that the length 
L = 8 H and the thickness B = 20 m could be adequate 
for this end. Additionally, free-field boundary conditions 
were applied to the left and right sides of the model to 
reduce the effect of wave reflection. 

If the mesh size is not sufficiently small, high-
frequency components of the waves may be filtered. The 
maximum size of elements was determined by using 
the following expression proposed by Kuhlemeyer and 
Lysmer (1973) to ensure that all frequency contents of 
the input motion propagate through the model without 
compromising the accuracy of the final results.
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where Δl is the maximum length of elements and fmax is 
the highest frequency of the input motion. As discussed 
later, the minimum mean shear wave velocity assigned 
to the model is equal to 250 m/s, and the maximum 
frequency contents of all ground motions applied to 
the slope models do not exceed 12 Hz. Therefore, if 
constructing the model by square elements with 
length Δl = 2 m, the criterion in Eq. (1) is respected by 
all seismic input motions used in the present study. Two 
grids of 177 by 20 zones and 166 by 20 zones (2 m by 2 m 
size) with geometrical features discussed earlier were 
generated to represent the slopes with angles β = 30˚ and 
β = 60˚.

The density ρ = 2000 kg/m3 along with Poisson′s 
ratio ν = 0.3 was assigned to the soil and held constant 
in all analyses. The Mohr-Coulomb constitutive model 
with strength parameters of cohesion c = 25 kPa and 
friction angle ϕ = 35˚ was assigned to the soil. These 
strength parameters were selected so that both slopes 
inclining at β = 30˚ and β = 60˚ would be statically 
stable. These parameters influence the seismic response 
of sliding mass only if the yield stress is reached during 
the earthquake; nonetheless, the soil stiffness (defined 
by shear wave velocity) is the governing soil parameter, 
which has a major influence on results of nonlinear 
time-domain analyses and the dynamic response of 
sliding mass. Spatial variations in shear wave velocity 
lead to the changes in natural period of sliding mass, 
thereby remarkably influencing the maximum seismic 
coefficient when the natural period of sliding mass 
approaches the mean period of input motion (explained 
in section 4.1 in detail). Moreover, spatial variability of 
strength parameters could result in diverse slip surface 
geometries in each random field, thereby making it hard 
to detect the failure mechanism and to determine the 
average response acceleration along the slip surface. 
Therefore, strength parameters were kept constant for 
all models, and the spatial variability of shear modulus 
was simulated using random fields. Two mean initial shear 
moduli G0 = 125 MPa and G0 = 320 MPa related to shear 
wave velocities Vs = 250 m/s and Vs = 400 m/s by the 
following equation were assigned to the soil to study 
the seismic response of sliding masses with different 
stiffnesses. Initial shear modulus and shear wave velocity 
are related by  

	 2
0 sG Vρ=                             (2)

The considered shear wave velocities fall within 

the most common values of this parameter used in the 
literature (for instance, Bray and Rathje, 1998; Michael 
et al., 2016).

The numerical model was verified with an analytical 
solution for assessing the dynamic amplification factor 
A associated with a homogeneous linear-elastic soil 
medium as
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where ω and ξ are the angular frequency of the wave 
and damping ratio. A soil deposit with the height H = 
40 m, length L=354 m and Vs = 250 m/s was modeled 
with the square elements of length Δl = 2 m (grid of 177 
by 20 zones) and subjected to harmonic loads with the 
amplitude of 0.1 g and frequencies (f = ω/2π) varying 
from 0 to 12 Hz. Moreover, the damping ratio ξ  = 3% was 
considered as explained in the next section. Numerically 
computed amplification factors fit very well with those 
resulting from the analytical solution confirming that 
boundary conditions and element sizes are adequately 
determined (see Fig. 5(a)).

2.2  Damping

Fully non-linear codes such as FLAC 7.0 are capable 
of reproducing energy dissipation inherently with elasto-
plastic constitutive models. Since Mohr-Coulomb 
constitutive law is assigned to the soil, damping is 
automatically generated within only the plastic range. 
Anyway, the Mohr-Coulomb model cannot reproduce 
proper energy dissipation and shear modulus reduction in 
elastic range since it has a constant tangent elastic shear 
modulus, and yield stress. Therefore, in conjunction with 
the Mohr-Coulomb model, additional damping must be 
included to account for energy dissipation during the 
elastic range. Typically, hysteretic damping is used to 
simulate strain-dependent shear modulus and damping 
within the elastic range. Using hysteretic damping is 
questionable if large cyclic shear strains occur since it 
leads to a significant shear modulus reduction giving on 
to irrelevant seismic response amplitudes. Preliminary 
dynamic analyses showed that the maximum level of 
cyclic shear strain developed within undamped elastic 
slopes subjected to input motions with high levels of 
PGA was large enough to cause considerable shear 
modulus reductions and unrealistic seismic responses. 
Since one of the principal objectives of this study is 
to assess the dynamic response of slopes subjected to 
a broad range of earthquake shakings, it is not viable 
to use input motions with merely average amplitudes to 
reduce the cyclic shear strain. Therefore, considering 
hysteretic damping for this study is not a wise choice.

Moreover, the presence of soft elements in the random 
fields with low shear modulus gives rise to difficulties 
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Fig. 1  Geometry of slope model (not to scale)
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in using hysteretic damping since a further reduction 
of shear modulus in these elements leads to unrealistic 
seismic responses. Alternatively, the Rayleigh damping 
was used although it is frequency-independent merely 
for a limited span of frequencies. Rayleigh damping 
matrix is composed of the components proportional to 
the mass and stiffness matrices through the coefficients 
α and β. These coefficients could be defined in a way 
to achieve the frequency-independent damping. To 
this end, the center frequency is chosen to lie between 
either natural frequencies of the model or predominant 
frequencies of the input motion. In this study, the critical 
damping ratio ξ = 3% at the mean frequency of input 
motion was considered. This amount of damping ratio is 
deemed to be sufficient to damp the energy and also to 
minimize the possible over-damping occurring beyond 
the range of predominant frequencies. 

2.3  Input motions 

Six significant earthquake records having different 
characteristics occurred in north and east parts of Iran 
(IIEES, International Institute of Earthquake Engineering 
and Seismology) were designated for this study (Table 1). 
Peak ground accelerations (PGA) range from 0.085 g 
to 0.531 g, mean periods Tm (Rathje et al., 1998) range 
from 0.137 s to 0.785 s and effective durations range 
from 4 s to 25 s. Baseline correction was performed 
for all earthquake records. Since frequency contents of 
earthquake records do not exceed 12 Hz that is utterly 
compatible with the smallest size of mesh elements, 
these records were not filtered.  

2.4  Slip surface geometry and yielding acceleration 

The pseudo-static analysis was carried out to 
determine the critical slip surface geometry and the 
yielding acceleration ky. Yielding acceleration is the 
seismic coefficient corresponding to a unity safety factor 
which represents the minimum acceleration required to 
initiate a sliding mass failure. This parameter indicates 
the slope resistance against the horizontal force of an 
earthquake and depends upon the strength parameters 
of soil and slope geometry. It is a crucial parameter for 
assessing the sliding displacements as addressed later. 
Having performed multistep pseudo-static analyses, the 
horizontal acceleration was incrementally increased up 

to the value for which the safety factor reached one, and 
the sliding mass was on the verge of failure. It is worth 
noting that the vertical component of the acceleration 
(vertical force of the earthquake) was not considered 
in these analyses. Yielding accelerations ky = 0.41 and 
ky = 0.13 were estimated for the slopes of interest with 
inclinations β = 30˚ and β = 60˚ respectively. Furthermore, 
detecting the slip surface geometry is required to 
evaluate kmax as explained in section 2.5. To determine 
the slip surface geometry, the coordinates of points at 
which maximum shear strain increment (ssi) was equal 
or more than 70% of the peak strain value were specified 
using a FISH function. Levenberg-Marquardt Least-
Square method was used to fit the best circular curve 
to the stated points. Figure 2 indicates the detected slip 
surface for the slope with inclination β = 30˚.

2.5  Maximum seismic coefficient  

The seismic coefficient time history was evaluated 
by computing the average response acceleration time 
history on the slip surface using a FISH function. The 
sliding mass was divided into blocks with equal widths, 
and the response acceleration at the bottom-center point 
of each block, located on the slip surface, was computed. 
Consequently, seismic coefficient time history k(t) 
was evaluated as a weighted average of the response 
accelerations at these points at each time step as

1
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where ai(t), mi and m are the acceleration time history 
at each bottom-center point i located on slip surface, 
the mass of ith block and total sliding mass. The k-time 
history represents the dynamic response of sliding 
mass whose maximum absolute value is known as the 
maximum seismic coefficient kmax.

2.6  Seismic sliding displacements

Decoupled sliding block analysis can be employed 
to estimate the seismic sliding displacements of a 
deformable sliding mass by integrating k-time history 
over the periods k values exceed ky. This approximation is 

Table 1   Characteristics of input motions
No. Location-station PGA (m/s2) Tm (s) M Effective duration (s)
1 Bandarabas-bandarabas 0.84 0.402 6.1 16
2 Qaen-khezri 0.99 0.785 7.1 15
3 Qaen-bajestan 1.14 0.304 7.1 13
4 Tularud-talesh 2.31 0.242 6 7
5 Kajoor-hasan keyf 4.42 0.357 6.3 4
6 Eslamabad-kariq 5.21 0.137 6 5
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termed ‘decoupled’ since the dynamic response analysis 
is performed decoupled from sliding block analysis. 
Alternatively, kmax can be used in empirical formulae 
for computing sliding displacements. Since this study 
investigates the effect of random heterogeneity of shear 
modulus on the maximum seismic coefficient kmax as a 
seismic loading parameter commonly used in empirical 
formulae, a predictive model has been employed 
for computing the sliding displacements rather than 
integrating the entire seismic coefficient time history 
k(t). Indeed, the main goal was to investigate how the 
deviation of kmax from its deterministic value arising 
from spatial variability of shear wave velocity could 
impact the seismic deformations obtained by empirical 
formulae. It is worth noting that the use of multiple 
ground motions to characterize the earthquake shaking 
and incorporation of various earthquake parameters to 
these predictive models have significantly improved 
their precision (Rathje and Saygili, 2011). Seismic 
sliding displacements in the present study are estimated 
by the following expression suggested by Rathje and 
Saygili (2011).
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where D, M, and Ts are seismic sliding displacement, the 
magnitude of the earthquake and natural period of sliding 
mass, respectively. Parameters a1 to a7 are summarized 
in Table 2. The natural period of sliding mass Ts can be 

estimated by various expressions proposed by different 
researchers. In the present study, Ts is defined by the 
following equation proposed by Makdisi and Seed 
(1978).

s
s
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where y is the maximum depth of sliding mass. Four 
values of Ts are obtained based on soil shear wave 
velocity and the maximum depth of sliding mass as 
reported in Table 3.

3  Stochastic analysis

3.1  Random field model

One of the primary sources of uncertainty in 
geotechnical analyses is the spatial variability of soil 
properties. The characteristics of soil can change from 
one point to another even if the soil is homogeneous. 
Therefore, the effect of spatial variability of soil 
characteristics on the response of soil structures 
must be carefully addressed in order to reduce the 
uncertainty. Since soil stiffness is the most significant 
soil characteristic influencing the seismic response of 
sliding mass, the spatial variability of shear modulus 
was simulated by random field generation while strength 
parameters were kept constant as explained in section 
2.1. The shear wave velocities were related to the initial 
shear moduli using Eq. (2), and the random fields of 
initial shear modulus were generated as described in the 
following. The random variation of initial shear modulus 
G0 was modeled by the lognormal distribution with three 
key parameters: mean μG0, standard deviation σG0 and 
correlation length δ. The reason behind characterizing 

Table 2  Parameters of Eq. (5) (Rathje and Saygili, 2011)

Parameters
a1 4.89
a2 -4.85
a3 -19.64
a4 42.49
a5 -29.06
a6 0.72
a7 0.89

Table 3  Natural periods of sliding masses in different slopes

Slope angle β = 30˚ β = 60˚

Shear wave velocity Vs (m/s) 250 400 250 400

Maximum thickness of sliding mass (m) 11.606 11.606 11.43 11.43

Natural period of sliding mass (s) 0.185 0.116 0.182 0.114

0.00E+00
1.00E-02
2.00E-02
3.00E-02
4.00E-02
5.00E-02
6.00E-02
7.00E-02
8.00E-02 
9.00E-02

Shear strain increment (ssi [-])

Fig. 2  Slip surface geometry and shear strain increment (ssi) 
        contour resulting from pseudo-static analysis for the 
            slope with β = 30˚
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shear modulus by the lognormal distribution is that based 
on experimental studies (Cherubini, 2000; Baecher 
and Christian, 2003), soil properties follow normal 
(Gaussian) or lognormal distributions. Furthermore, 
considering that soil shear modulus cannot be negative, 
the use of lognormal distribution could be appropriate as 
it owns only positive values. 

The correlation length δ indicates the distance over 
which the spatially random values tend to be correlated. 
Correlation length δ is normalized by slope height H, 
and the standard deviation is expressed in terms of the 
coefficient of variation CoVG0= σG0/μG0. Table 4 lists the 
probabilistic parameters used in this study. 

The generated random fields in this study are 
characterized as non-Gaussian isotropic random fields 
since the random shear moduli are produced by the 
(non-Gaussian) lognormal probability distribution and 
horizontal and vertical correlation lengths are deemed to 
be equal (i.e., δh = δv = δ). Besides, these random fields 
are stationary as they have all the following features:

(1) Mean initial shear modulus μG0 and its standard 
deviation σG0 are constant for all depths. 

(2) The spatial correlation of each two points does 
not depend on their absolute locations but the distance 
between them. 

(3) The probability distribution function is 
independent of the absolute locations. 

The use of isotropic stationary random fields 
simplifies the problem, and it is sufficient to study the 
basic stochastic seismic response of sliding mass and 
sliding deformations. The effects of anisotropic or non-
stationary variability of shear wave velocity on the 
dynamic response of sliding mass are left for future 
studies. 

3.2  Random field generation

A correlation matrix C was generated using an 
isotropic Markovian spatial correlation function as

( ) 2exp τρ τ
δ

 = − 
                           

(7)

where ρ, τ and δ are respectively the correlation 
coefficient, the distance between any two consecutive 
points of the desired random field and the correlation 

length. The correlation matrix C represents the inherent 
spatial correlation between the points and has the form
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where the element cij is equal to the correlation 
coefficient ρ corresponding to the points i and j. The 
spatial correlation of each point with itself is equal to 
one; hence, diagonal elements cij are equal to unity. 
Figure 3 depicts a discretization of the finite difference 
grid of the slope model with inclination β = 30˚ based 
on which the correlation matrix C is formed. As 
demonstrated in this figure, dx and dy are the horizontal 
and vertical distances between two adjacent points. 
As model mesh elements are square elements with the 
length Δl = 2 m, dx = dy = 2 m. Accordingly, the distance 
τ between all the points can be computed using dx and 
dy. A code was created in Matlab to generate matrix C 
according to Eq. (8). The matrix C is a symmetrical square 
matrix of dimension n where n is the number of mesh 
elements in the finite-difference model. Grids of 177 by 
20 zones and 166 by 20 zones (2 m by 2 m size) were 
used for dynamic simulations of slopes with inclinations 

Table 4   Ranges of stochastic parameters for initial shear modulus/shear wave velocity

Stochastic parameters Value
Mean shear wave velocity, Vs (m/s) 250, 400

Mean shear modulus, μG0 (MPa) 125, 320
Coefficient of variation, CoVG0 (%) 13, 30

correlation length, δ (m) 4, 8, 16, 40, 100, 200
Normalized correlation length, δ/H 0.2, 0.4, 0.8, 2, 5, 10

886          887         888           889       890           891

709          710           711         712         713         714

532          533         534         535          536         537

355         356         357          358         359         360

178         179         180           181        182          183

 1              2             3             4             5              6

dy

dx

Fig. 3   Discretization of finite difference grid
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β = 30˚ and β = 60˚. Thus, matrix C is a symmetrical 
matrix of size 3540 for the slope model inclined at 30˚ 

and of size 3320 for the slope model inclined at 60˚. The 
correlation coefficient decreases as the distance between 
two points increases indicating that the soil properties 
at every two points of the model become less spatially 
correlated as the distance between them increases. The 
correlation matrix C, which is a positive definite matrix, 
was decomposed into a lower matrix L and its transpose 
using Cholesky decomposition,

T=C LL                               (9)

The normal standard random field G(xi) was formed 
by multiplication of the matrix L by a sequence of 
independent standard random variables with zero mean 
and unit standard deviation. Consequently, a lognormally 
random field of initial shear modulus was generated by 

( ){ }0 0i0 ln lnexp G G iG G xµ σ= + ⋅
          

(10)

where xi is the center position of the ith element at which 
the initial shear modulus G0i is desired.

The parameters μlnG0 and σlnG0 were obtained by 
lognormal distribution transformations given by the 
following equations.

0

0 0

0

2
2 2
ln 2ln 1 l )n(1 CoVG

G G
G

σ
σ

µ

 
= + = +  

           
(11)

0 0

2
ln 0 ln

1ln
2G GGµ σ= −

                   
(12)  

 		
 	  	

3.3  Monte Carlo simulation 

Monte Carlo simulations were performed for each 
set of statistical parameters including CoVG0 and δ/H as 
summarized in Table 4. According to Der Kiureghian 
and Ke (1988), to obtain accurate results, the element 
size in a random field must be one-quarter to one-half of 
the scale of fluctuation (i.e., 2 × correlation length δ). In 
this study, the random field mesh is the same size as the 
finite element mesh (with the same number of elements); 
therefore, the element size in the random field is equal 
to 2 m. According to the stated criterion, if correlation 
length δ = 4 m (i.e., the scale of fluctuation = 8 m) is 
considered as the minimum value of this parameter for 
stochastic analyses, the element size must be 2 m to 4 m 
in order to assure the accuracy of the results which is 
consistent with the element size in the random field 
(the same values were reported by Lizzaraga and Lai 
(2014)). Investigating the effect of the spatial variation 
of shear wave velocity with δ = 2H (i.e., total height 
of slope) is of particular interest since, as reported in 

previous studies (e.g., Griffiths et al., 2002; Haldar 
and Babu, 2008), the structure could be sensitive to the 
fluctuation of soil properties when the correlation length 
lies within the size of structure (in this case, total height 
of slope). The correlation length δ = 10 H was chosen 
to have insight into the variation of maximum seismic 
coefficient when the correlation length increases to large 
values and accordingly, the random field becomes more 
homogeneous. The coefficients of variation CoVG0 were 
chosen to fall within the most typical values reported 
in the literature (e.g., Jamshidi et al., 2012; Kim and 
Santamarina, 2017). 

Monte Carlo simulations were performed 
considering the aforementioned statistical parameters 
for slope models with different initial shear moduli and 
inclinations. To this end, a Matlab script was written and 
the random fields were generated as described earlier. 
Random field meshes of initial shear modulus were 
mapped to the finite difference meshes of slopes by 
assigning each initial shear modulus of the random field to 
its corresponding finite difference element using a FISH 
function embedded in the main FLAC code. For each set 
of statistical parameters, 700 realizations of initial shear 
modulus random field were generated and the dynamic 
analysis corresponding to each random field was carried 
out. Subsequently, the maximum seismic coefficient kmax 
was evaluated in each dynamic simulation and the sliding 
displacement D was estimated using Eq. (5). Despite 
having the same statistical characteristics, realizations 
have entirely different spatial patterns of initial shear 
modulus. Therefore, different values of the maximum 
seismic coefficient kmax and sliding displacement D have 
resulted from each realization. 

As a result of the random nature of realizations, 
estimated values of the maximum seismic coefficient 
kmax fluctuate remarkably, and it accordingly leads to the 
fluctuation of sliding displacements D. Thus, the number 
of generated realizations must be large enough to limit 
the fluctuation of outputs and to obtain stable/accurate 
statistics of kmax and D. Figure 4 illustrates the fluctuation 
of mean and coefficient of variation of kmax and D with 
the number of realizations regarding the dynamic 
analysis with earthquake record No.1, mean initial 
shear modulus μG0 =125 MPa, β = 60˚, CoVG0=13% 
and δ/H = 0.2. This figure shows that the fluctuation 
of statistics of kmax and D significantly decreases as the 
number of realizations escalates and falls in a tolerable 
range with 700 realizations, as considered in this study.  

4  Results and discussions 

4.1  Results of deterministic analyses 

The performance of the numerical model was 
verified with the closed-form solution for computing the 
dynamic amplification factor in a homogeneous linear-
elastic soil medium as discussed earlier. Figure 5(a) 
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compares the numerically and analytically computed 
amplification factors confirming that the numerical 
model consistently simulates the dynamic response of 
the homogeneous linear-elastic soil medium. 

Deterministic seismic analyses were carried out for 
slopes inclined at β = 30˚ and β = 60˚ assigning fixed 
values of initial shear modulus G0 = 125 MPa and 
G0 = 320 MPa to the soil. Figure 5(b) indicates the 
variation of kmax/PGA with period ratio Ts/Tm (i.e., the 
natural period of sliding mass over the mean period of 
input motion) for various levels of PGA. It can be observed 
that kmax/PGA values greater than one correspond to the 
moderate period ratios (i.e., Ts/Tm= 0.1 to 0.8), whereas 
these values are less than one at greater period ratios. In 
other words, dynamic response amplification could occur 
in the range of moderate period ratios while dynamic 
response de-amplification takes place beyond this range. 
Moreover, it can be concluded that kmax/PGA decreases 
as PGA increases. The same results were reported by 
Rathje and Antonakos (2010). 

Table 5 lists the deterministic values of kmax/PGA and 
D regarding the slope models with β = 30˚ and β = 60˚. 

Based on the statistics of this table, the values of kmax/PGA 
are generally higher in slopes with β = 60˚ than those in 
slopes with β = 30˚. The reason for this discrepancy is the 
effect of slope inclination on topographic amplification 
that correspondingly influences the total amplification. 
In general, the topographic amplification influences the 
total dynamic response more significantly as the slope 
inclination increases (Bouckovalas and Papadimitriou 
2005). The other key factor influencing total dynamic 
response is the stratigraphic amplification depending on 
the natural period of sliding mass Ts which is a function 
of shear wave velocity of the soil Vs. According to Eq. (2), an 
increase in Vs leads to a decrease in Ts so that Ts/Tm gets 
closer to intermediate values. Thus, as listed in Table 5, 
for low values of PGA, kmax/PGA escalates as an increase 
in Vs from 250 m/s (μG0 =125 MPa) to 400 m/s (μG0= 
320 MPa). Sliding displacements in slopes with β = 30˚ 
are equal to zero for almost all seismic input motions 
since ky values associated with these slopes are high 
enough to prevent sliding displacements. 

4.2  Results of stochastic analyses 

The range of variation of shear modulus within a 
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random field is defined by CoVG0, the greater the CoVG0, 
the higher the variation of initial shear modulus. 
Figure 6 demonstrates a plot of generated random fields 
with different statistical characteristics. As shown in 
Figs. 6 (a) and (b), when CoVG0=13% and δ/H = 0.2, 
initial shear moduli vary from 90 MPa to 160 MPa while 
for the same δ/H and CoVG0 = 30%, they vary within a 
wider range (i.e., from 50 MPa to 200 MPa). Furthermore, 
it can be observed that an increase in CoVG0 leads to a 
rise in the number of soft elements (with low initial shear 
moduli) in the random field. 

The homogeneity of a random field is represented 
by δ/H. This parameter indicates how homogeneous, or 
erratic, a random field is. If δ/H is small, the initial shear 
modulus varies rapidly from one element to another 
generating an erratic random field (Fig. 6(b)). On the 
contrary, for large δ/H, initial shear modulus changes 
slowly creating a more homogeneous random field 
(Fig. 6(c)). 

Figures 7-10 display the variation of μkmax/PGA with 
δ/H and CoVG0 for various slope models. In general, the 
ratio μkmax/PGA increases with CoVG0. The reason is that 
an increase in CoVG0 results in a higher number of stiff 
elements (with high initial shear moduli) in the random 
field and it correspondingly causes a decrease in the 
natural period of sliding mass Ts according to Eq. (6). 
Consequently, a lower value of Ts (lower Ts/Tm) results in 
a higher value of μkmax/PGA (see Fig. 5(b)). As concluded 
from the results of deterministic analyses, μkmax/PGA 
decreases for higher values of PGA, and it appears that 
even the presence of stiffer elements as a result of higher 
CoVG0 does not increase the ratio μkmax/PGA in these 
cases. For instance, as shown in Figs. 7-10, an increase 

in CoVG0 from 13% to 30% does not lead to a remarkable 
increase in the ratio μkmax/PGA for earthquake records 
No. 5 and No. 6 with high levels of PGA.

The deterministic value of kmax/PGA for the slope 
model with β = 30˚ and μG0 =125 MPa subjected to 
the earthquake shaking No. 1 is about 1.5 while the 
corresponding stochastic μkmax/PGA rises to 2.3 (i.e., 
53% higher than the deterministic one) if the initial shear 
modulus varies with CoVG0= 30% and δ/H = 2 within the 
same slope model (see Fig. 7). If the earthquake shaking 
No. 6 is applied to the same model, the deterministic 
kmax/PGA is estimated as 0.54, whereas the stochastic 
μkmax/PGA is only 12% higher than the deterministic one 
(see Fig. 7). It indicates that the influence of CoVG0 on 
the dynamic response of a sliding mass under seismic 
input motions with high values of PGA is less significant. 
In general, it can be concluded that stiffer elements 
dominate the total seismic response of sliding mass in 
particular for ground shakings with low levels of PGA. 

At lower values of δ/H, the ratio μkmax/PGA is 
noticeably smaller. The reason behind this phenomenon 
is that at low values of δ/H, soft elements are located 
close to the stiffer elements, producing a rapid change in 
shear modulus. This rapid change from stiffer to softer 
elements limits the amplification of acceleration along 
the slip surface, and accordingly, the maximum seismic 
coefficient diminishes, since the seismic coefficient 
is the average of response accelerations along the slip 
surface. It is speculated that softer elements adjacent to 
stiffer ones neutralize the effect of stiffer elements on 
amplification of acceleration. For instance, having a 
closer look at Fig. 7 reveals that for earthquake shaking 
No. 1 and CoVG0 = 30%, μkmax/PGA is about 1.76 (i.e., 
the minimum value of μkmax/PGA for CoVG0= 30%) at 
lowest value of δ/H (i.e., δ/H = 0.2), while it increases 
up to 2.3 as correlation length δ increases to two times 
the slope height H. The explanation lies in the fact that 
when the correlation length increases, the random field 
becomes smoother such that stiffer elements are formed 
further from softer elements. Therefore, it leads to a 
higher amplification of average acceleration along the 
slip surface due to the absence of softer zones adjacent 
to stiffer ones. For δ/H ratios higher than two where 
the random field becomes more homogenous, the rate 
of changes in μkmax/PGA declines noticeably. It can be 
concluded that in almost all cases the highest value 
of μkmax/PGA corresponds to δ/H = 2, which could be 
considered as the critical correlation length. In other 
words, when the correlation length is equal to the total 
height of slope (i.e., H+B = 2H), the seismic response of 
sliding mass is considerably affected by the variation of 
initial shear modulus. 

Figures 11 and 12 illustrate the variation of mean 
sliding displacement with δ/H and CoVG0 for slope 
models with β = 60˚. As discussed earlier, the sliding 
displacements in slopes inclined at β = 30˚ are small/zero 
due to high values of yielding acceleration ky in these 
slopes. Therefore, even high levels of the maximum 
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Fig. 6   A realization of random field with μG0 = 125 MPa and 
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             δ/H = 0.2 (c) CoVG0= 30% and δ/H = 0.8
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Table  5   A summary of results of deterministic analyses 
Slope angle β = 30⸰ β = 60⸰

Deterministic value kmax/PGA D (cm) kmax/PGA D (cm)
μG0 (MPa) 125 320 125 320 125 320 125 320

Earthquake No.1 1.50 2.30 0 0 1.88 2.51 0.091 0.714
Earthquake No.2 1.05 1.43 0 0 1.42 1.95 0.035 1.030
Earthquake No.3 1.31 1.38 0 0 1.54 1.78 0.641 1.420
Earthquake No.4 0.93 0.83 0 0 0.98 1.03 1.217 1.183
Earthquake No.5 1.14 1.19 0.29 0.37 0.80 0.87 9.336 9.966
Earthquake No.6 0.54 0.76 0 0 0.71 0.79 8.549 9.768

seismic coefficient kmax cannot produce large sliding 
displacements compromising the stability/reliability of 
these slopes. 

The sliding displacements in slopes with β = 60˚  
are considerably higher than those in slopes with β = 
30˚ due to their lower values of  ky. Thus, the sliding 
displacements in these slopes are more sensitive to the 
variations of maximum seismic coefficient kmax arising 
from the spatial variations of initial shear modulus. In 
general, the sliding displacement escalates as CoVG0 
increases. Sliding displacements increase significantly 
as the correlation length increases to δ/H = 2, and they 
change slightly at δ/H values higher than 2. For instance, 
deterministic sliding displacement D in the slope with  
β = 60  ̊and μG0 = 320 MPa under earthquake shaking No. 3 
is about 1.5 cm, while mean displacement μD is about 
4 cm if initial shear modulus varies with CoVG0=30% 
and δ/H = 2 within the same slope model (see Fig. 12). 
This discrepancy between deterministic and stochastic 
sliding displacements is considerable and should be 
consistently addressed. Neglecting the spatial variability 
of initial shear modulus could lead to an unconservative 
estimation of sliding displacements especially in 
slopes subjected to ground motions with low values 
of PGA. Nonetheless, a smaller discrepancy between 
deterministic and stochastic sliding displacements can 
be seen in slopes subjected to the earthquake shakings 
with high levels of PGA (see Fig. 12). 

Figures 13 and 14 compare the effects of variation of 
initial shear modulus on the maximum seismic coefficient 
in slopes with β = 30˚ and β = 60˚. In all cases it can be 
observed that the increase in stochastic μkmax compared 
to the deterministic maximum seismic coefficient kmaxd 
is considerably higher for the slopes inclined at β = 30˚ 
than for the slopes with β = 60˚. Although it is difficult 
to perceive this complex phenomenon, this discrepancy 
could be due to the effects of topographic irregularities 
and soil stratigraphy on the dynamic response of slopes 
and the level of contribution of these factors to total 
amplification. According to previous studies in the 
literature (e.g., Ashford et al., 1997; Bouckovalas and 
Papadimitriou, 2005), it is believed that the topographic 
amplification, in general, is more significant in slopes 

inclined at 60˚ than in slopes with β = 30˚ where the 
stratigraphic amplification might play a more important 
role in total dynamic response. Hence, in slopes with 
β = 30˚, the variations in stratigraphic amplification 
arising from the random heterogeneity of shear wave 
velocity might lead to remarkable changes in the total 
dynamic response of sliding mass and to correspondingly 
higher maximum seismic coefficients compared to those 
in slopes with an inclination of 60˚. In most cases, at 
δ/H ratios lower than the critical value (i.e., δ/H = 2), 
μkmax/kmaxd does not change considerably with the slope 
inclination, whereas the variations of μkmax/kmaxd with 
slope angle are significant at δ/H = 2. As an example, 
for the slope model with μG0=320 MPa subjected to 
earthquake shaking No. 3, the ratio μkmax/kmaxd regarding 
CoVG0 = 30% and δ/H = 2 increases from 1.15 to 1.48 if 
β decreases from 60˚ to 30˚ , while the decrease in β does 
not lead to a remarkable change in μkmax/kmaxd at δ/H = 0.2 
(see Fig. 14). 

5  Probabilistic interpretation

Since the seismic sliding displacements play a vital 
role in the stability of slopes, estimating the probability 
that computed sliding displacement resulting from 
each set of probabilistic parameters is greater than 
deterministic sliding displacement is of interest. A 
high likelihood indicates that the spatial variation of 
initial shear modulus within the soil leads to a high 
discrepancy between stochastic and deterministic 
sliding displacement, and accordingly, neglecting the 
spatial variability of initial shear modulus results in an 
unconservative evaluation of sliding displacements. 

Figure 15 compares the actual and lognormal 
cumulative probability distributions of estimated 
displacements. It can be observed that lognormal 
cumulative distribution function (CDF) represents 
the cumulative frequency of computed displacements 
reasonably well. Thus, the probability that computed 
sliding displacement corresponding to a set of statistical 
parameters is higher than the deterministic value can be 
calculated by 
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where Φ is normal cumulative function, and Dd stands 
for the deterministic sliding displacement.

Figures 16 and 17 indicate how the probability 

P[D>Dd] changes with statistical parameters in slopes 
inclined at β = 60˚. It can be observed that P[D>Dd] 
escalates as CoVG0 increases, revealing that the presence 
of stiffer elements within the slope model results in higher 
stochastic displacements compared to deterministic ones 
as a result of higher maximum seismic coefficients. For 
example, in the slope with β = 60˚ and μG0 = 125 MPa 
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Fig. 15   Actual and lognormal cumulative probability distributions of estimated displacement associated with (a) earthquake No.1, 
                 μG0 = 125 MPa, β = 60˚, CoVG0= 30% and δ/H = 0.8  (b) earthquake No.2, μG0 = 320 MPa, β = 60˚, CoVG0= 13% and δ/H = 0.2
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subjected to earthquake shaking No. 2, P[D>Dd] = 0.7 
if CoVG0=13% and δ/H = 2, whereas it increases to 0.91 
at the same value of δ/H if CoVG0 escalates to 30% (see 
Fig. 16). Moreover, P[D>Dd] varies more significantly 
at higher ratios of δ/H (at critical or higher correlation 
lengths). It implies that the presence of stiffer elements 
further from softer ones brings about higher maximum 
seismic coefficients leading to a higher P[D>Dd].

 In general, the probability P[D>Dd] is considerably 
lower for higher levels of PGA. It shows that the spatial 
variability of initial shear modulus in slopes subjected 
to ground motions with higher values of PGA has a 
lower impact on the seismic response of sliding mass, 
and as a result, it has a minimal effect on seismic sliding 
displacements in these slopes. 

6  Conclusion

A numerical study into the effect of spatial variability 
of shear wave velocity on the seismic response of sliding 
mass and seismic sliding displacements has been carried 
out. The random fields of initial shear modulus were 
generated by employing Monte Carlo simulations in 
conjunction with the correlation matrix decomposition 

method. Subsequently, the dynamic analyses were 
performed from which the following conclusions could 
be drawn. 

In general, the maximum seismic coefficients and 
sliding displacements increase with an increase in CoVG0 
and δ/H, since the presence of stiffer elements having 
higher shear modulus within the slope results in higher 
dynamic responses of sliding mass and accordingly 
higher sliding displacements. It indicates that stiffer 
elements dominate the total dynamic response of sliding 
mass. 

The impact of spatial variability of shear wave 
velocity on the seismic response of sliding mass in 
slopes subjected to earthquake shakings with lower 
levels of PGA is more pronounced. In these cases, an 
escalation in δ/H from the values less than the critical 
value to the values equal to or higher than the critical 
value leads to a substantial increase in maximum seismic 
coefficient. Therefore, neglecting the spatial variability 
of shear wave velocity, in these cases, could lead to an 
unconservative estimation of sliding displacements. 

The results reveal the fact that spatial variability 
of shear wave velocity leads to a higher increase in 
maximum seismic coefficients in slopes with the angle 
β = 30˚ compared to those in slopes inclined at β = 60˚.  
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Notation

A = amplification factor 
ai(t) = acceleration time history at each bottom-

center point i located on the slip surface 
B = thickness of the slope’s foundation
C = correlation matrix 
CoVD = coefficient of variation of sliding 

displacement
CoVkmax= coefficient of variation of maximum 

seismic coefficient
CoVG0= coefficient of variation of initial shear 

modulus 
D = sliding displacement
Dd = deterministic sliding displacement 
fmax= maximum frequency of input motion
G0 = initial shear modulus 
G(xi) = normal standard random field of initial shear 

modulus 
G0i= lognormal random field of initial shear modulus. 
H = height of slope
k(t) = seismic coefficient time history
kmax = maximum seismic coefficient 
kmaxd = deterministic maximum seismic coefficient 
ky= yielding acceleration 
mi = mass of ith block in sliding mass
M = magnitude of earthquake
PGA = peak ground acceleration
Ts = natural period of sliding mass
Tm = mean period of input motion
Vs = shear wave velocity 
y = maximum depth of sliding mass
β = inclination of slope
δ = correlation length of initial shear modulus
Δl = maximum length of elements in the finite-

difference mesh 
ξ = Rayleigh damping ratio 
μlnG0 = mean of log initial shear modulus 
μkmax= mean maximum seismic coefficient 
μD= mean sliding displacement
μG0= mean initial shear modulus
ρ = correlation coefficient
σG0= standard deviation of initial shear modulus
σlnG0 = standard deviation of log initial shear modulus
τ = distance between any two points of the desired 

random field
Φ = normal cumulative function
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