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Abstract: The goal of this study is to provide a stochastic method to investigate the eff ects of the randomness of soil 
properties due to their natural spatial variability on the response spectra spatial variation at sites with varying conditions. For 
this purpose, Monte Carlo Simulations are used to include the variability of both incident ground motion and soil parameters 
in the response spectra by mean of an appropriate coherency loss function and a site-dependent transfer function, respectively. 
The approach is built on the assumption of vertical propagation of SH type waves in soil strata with uncertain parameters. 
The response spectra are obtained by numerical integration of the governing equation of a single-degree-of-freedom (SDOF) 
system under non-stationary site-dependent and spatially varying ground motion accelerations simulated with non-uniform 
spectral densities and coherency loss functions. Numerical examples showed that randomness of soil properties signifi cantly 
aff ects the amplitudes of the response spectra, indicating that as the heterogeneity induced by the randomness of the parameters 
of the medium increases, the spectral ordinates attenuate.
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1   Introduction

Previous studies highlighted the signifi cant eff ects 
of the ground motion spatial variation on the seismic 
response of long structures (Zerva, 1992; Saxena et al., 
2000; Lin et al., 2004; Chouw and Hao, 2005, 2008). This 
spatial variation is usually related to the eff ects of local 
soil conditions, wave passage and incoherency (Mwafy 
et al., 2011). The fi rst one expresses the eff ect of local 
soil conditions at a site (Hao et al., 1989). The second 
one translates the phase diff erence in seismic waves at 
various structure support points, while the third source is 
attributed to the scattering in the heterogeneous ground. 
Various methods were extensively used by several 
researchers to study the response of long structures 
excited by motions varying in space and time (Hao, 
1998; Yang et al., 2002; Lou and Zerva, 2005; Konakli 
and Der Kiureghian, 2011; Davoodi et al., 2013; Zhang 
et al., 2013, 2014; Alam and Kim, 2014, Adanur et al., 
2016).

The response spectrum method satisfactorily 

describes the seismic ground motion features (Djilali 
Berkane et al., 2014, 2018) and is still an attractive 
methods for the engineering community over the past 
few decades. 

On other hand, analyses and design of relevant 
structures require in many cases the use of both recorded 
and artifi cial time-histories ground motion. However, 
it is not often possible to suffi  ciently record seismic 
motions in a specifi ed site, particularly in areas with low 
seismicity levels. Thus, artifi cial simulation of ground 
motions is inevitable for structural design. Nevertheless, 
the occurrence of an earthquake generates waves which 
propagate in several directions, the most important 
of which for this type of study is towards the ground 
surface of a given site. However, this wave path may 
be altered by soil conditions and source patterns. An 
adequate accounting of the subsequent actions and 
rigorous modelling of the ground motion may be only 
aff orded in a probabilistic framework, especially since 
the earthquake itself is of a random nature (Cacciola and 
D’Amico, 2015; He, 2015). 

Since the SMART-1 array installation, the spatial 
variation of seismic ground motions has been modelled 
by many researchers and several models have been 
proposed (Zerva and Zervas, 2002). Two functions are 
commonly used to model the spatial variation of seismic 
ground motions: spectral density and loss of coherence. 
(Harichandran and Vanmarke, 1986; Loh and Lin, 1990; 
Der Kiureghian, 1996). Cacciola and Deodatis (2011) 



498                                          EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol. 18

have off ered a methodology using spectral-representation 
to generate multiple surface non-stationary and spectrum-
compatible ground motions taking advantage of the 
Monte Carlo powerful methods. Bi and Hao (2012) have 
suggested a procedure for modelling and simulation 
of time-history accelerations at several locations on 
irregular ground surfaces using a deterministic 1-D 
wave propagation theory and incoherence function 
to derive the surface motions spectral densities at an 
uneven site. Li et al. (2018) presented an approach to 
model and simulate the multi-support depth-varying 
seismic motions within heterogeneous off shore and 
onshore sites based on 1D wave propagation theory and 
considering the eff ects of seawater and porous soils on 
the propagation of seismic P waves. Yazdani and Takada 
(2011) used simulated (or artifi cial) time-histories 
instead of recorded accelerograms to calculate the 
response spectrum based on Fourier Amplitude Spectra 
(FAS), which showed that uncertainties that may aff ect 
response spectra are mainly due to the variability of the 
soil conditions. 

The natural spatial variability of soil properties 
may be a source of uncertainty (Phoon and Kulhawy, 
1999; Elkateb et al., 2002; Popescu et al., 2005). This 
kind of uncertainty, also referred to as inherent random 
variability, may strongly alter the behavior of loaded 
soils (Popescu, 2008). Several researchers studied the 
infl uence of the uncertainties of soil properties on the 
earthquake response of soil deposits (Gao et al., 2008; 
Hacıefendioğlu, 2010; Badaoui et al., 2010; Li and 
Assimaki, 2010; Bi and Hao, 2011; Sadouki et al., 2012; 
Sadouki et al., 2018).

In this paper, a methodology for simulation of site-
dependent and spatially varying response spectra is 
proposed. The incident motion is assumed to have the 
same base rock spectral density at selected locations and 
is modelled by the Clough and Penzien (1993) fi lter and 
its spatial variation is described by a coherency function. 
The vertical dependence of ground motions on the soil 
conditions through multiple layers of soil profi les is 
obtained under the assumption of one dimensional 
propagation of SH-type waves (Wolf, 1985). The 
contribution of the soil layers brought by the inherent 
randomness of the variability of the soil properties 
in the spatial variation of seismic response spectra is 
considered by means of the amplifi cation function and 
power spectral density function (PSD) by assuming the 
characteristics of the soil profi les as random variables. 
Gaussian variables of these parameters are sampled 
many times using the Monte Carlo method. The obtained 
site dependent amplifi cation functions and power 
spectral density functions are used to generate ground 
accelerations varying in space. Then, ground surface 
response spectra are obtained by numerically solving 
the governing equation of a single-degree-of-freedom 
oscillator subjected to the generated non-stationary 
accelerations. 

2 Simulation of spatially varying ground 
     motions

The base rock incident motion is commonly supposed 
as a stationary random process having the same spectral 
density (PSD) function at diff erent locations (Fig. 1) 
and is modelled by the fi lter of the Clough and Penzien 
(1993) PSD function 

 
   
 

   

4

g 2 22 2
f f f

24
g g g

02 22 2
g g g

.
2

2

2

S

S


    

   

    


 




 

            (1)

where S0 is the white noise base rock excitation spectral 
density. ωg and ξg are the natural frequency and damping, 
respectively, of the soil deposit modelled by the Clough 
and Penzien (1993) fi lter and ωf and ξf are those of the 
second fi lter (in Eq. (1)). This assumption is realistic 
when the site is suffi  ciently distant from the earthquake 
focus than to the others sites.

The cross PSD matrix at (n) bedrock locations can be 
derived as (Hao et al., 1989):

     ' ' ' ' ' 'i , ij k g j k j kS S d    ;   jʹ, kʹ = 1,  n ;   jʹ≠ kʹ   (2)

where  ' ' ' ' , ij k j kd  is the base rock incoherency, i the 
complex number (i² = - 1), w the excitation frequency 
and dj’k’ is the separation distance between two base rock 
positions, j’ and k’.

The cross-PSD matrix of the ground surface motions, 
considering the eff ects of local soil conditions, is given 
by Eq. (3), stating the cross-PSD functions between the 
spatial (n) bedrock points (j’, k’) and corresponding (n) 
ground surface (j, k) points as

       *
' 'jk j k j ki H i H i S i   S ;  j, k, j’, k’ = 1, n 

(3)

In Eq. (3),  ijH   and  ikH   are the amplifi cation 
functions of profi les j-j′ and k-k′ (Fig. 1), respectively. 

The Cholesky decomposition method may be used to 
write the cross-PSD matrix (i )jk S (Eq. (3)) as follows: 

H(i ) (i ) (i )jk   S L L
                       

(4)

where L(iω) and LH(iω) are the lower triangular and 
Hermitian matrix, respectively.

The Fast Fourier transform process may be followed 
to simulate stationary frequency-histories (Hao et al., 
1989)
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n( )jm  are the amplitudes of the generated motions 
and ( )jm   is their phase angles. φmn  is the phase angle 
randomly created in the interval [0, 2π] according to 
the uniform distribution function. Nf is the total number 
of discrete frequencies ( n fi    where if is the 
frequency number sampling if = 1, Nf and u f/ N   ) 
(Deodatis, 1996; Hao et al., 1989). u  represents an 
upper cut-off  frequency.

The Inverse Fast Fourier Transform of (i )jY   leads 
to the corresponding time-histories ( )j ty .

In this study, multiple locations of non-stationary 
seismic accelerations result by multiplying ( )j ty  by a 
deterministic modulation function A(t) according to 
Eq. (7) (Shrikhande and Gupta, 1998): 

( ) ( ) ( )j ju t A t y t
                        (7)

üj(t) is called a zero-mean nonstationary random process 
of separable kind (Giaralis and Spanos, 2012) and
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Here T is the duration of motion. The quantities t0 and 
tn are any portions of the total duration (Clough and 
Penzien, 1993).

3   Site dependent ground motions

Under the assumptions of vertical SH wave 
propagation and horizontally stratifi ed soil deposits, the 
locations 1, 2 and 3 are expected to be suffi  ciently distant 
(Harichane et al., 2005). The governing equation in each 
linear elastic layer l (l = 1, NC where NC is the layers 
number in a soil column j-j’) of each nonhomogeneous 
soil deposit (Fig. 1) is 
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where slV  is the velocity in the lth layer. The solution 
of Eq. (9) may be obtained for a harmonic motion in the 
form of Eqs. (A1)-(A2) in the appendix.

The amplifi cation (or transfer) function H(iω) for 
each site is the ratio of the displacement amplitude at 
the free surface of the soil deposit (l = 1 and zl = 0 in 
Eq. (A2) to that at the interface between the soil and the 
bedrock (l = Nc+1 and zNc+1 = 0 in):
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(10)

where 1A  and 1NcA   are the amplitudes of the incident 
waves at free surface and at bedrock, respectively, and 

c 1'NA   is that of the refl ected wave at bedrock (Eqs. 
(A3)-(A4)). 

4  Methodology for Monte Carlo simulations

Due to the inherent variability of soil properties 
commonly treated by stochastic or probabilistic methods, 

Fig. 1   Schematic view of the soil profi les of the sites
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the randomness of soil properties cannot be neglected. 
Many methods are used to consider the randomness 
of soil properties. However, the most powerful and 
practical methods are the Monte Carlo methods (MCMs) 
(Elkateb et al., 2002; Cho, 2007; Popescu, 2008; Guellil 
et al., 2017). Referring to several research papers and 
textbooks, it is stated that for analysis purposes, the 
inherent spatial variation of soil properties is usually 
accounted for by an average value and fl uctuations 
around the average value (coeffi  cient of variation Cv). 
The relevant parameters that govern the amplifi cation 
function are the thickness, velocity, damping and mass 
density of each layer. However the randomness of 
mass density in terms of Cv up to 20% does not exert a 
signifi cant eff ect on the amplifi cation function (Sadouki 
et al., 2012). Thus, the three remaining parameters are 
treated in the present study as statistically dependent or 
independent Gaussian variables with mean values and 
Cv.

With Monte Carlo methods, a deterministic problem 
may be solved several times by randomly generating 
several thousand samples of each soil parameter 
(Sadouki et al., 2018; Djilali Berkane et al., 2019). 
For every generated sample of each soil parameter, 
the amplifi cation function (Eq. (10)) and the PSD 
(Eq. (3)) are computed according to a predefi ned 
probability distribution function. For a satisfactory 
number of samples of each one of the three variables, 
the mean transfer function and cross-PSD function 
amplitudes are obtained. The process is repeated many 
times in the frequency domain and the generation of 

spatially varying ground motions is performed. Then, 
the accelerations time-histories are obtained using the 
Fast Fourier transform technique. Finally, the ground 
surface site dependent and spatially varying response 
spectra are obtained by numerical integration of the 
governing equation of the SDOF oscillator (Eqs. (A5)–
(A7)) in appendix) subjected to non-stationary ground 
acceleration. This procedure is transcribed numerically 
as shown in the algorithm in Fig. 2.

5  Results and discussions

5.1  Stochastic amplifi cation functions

The assumption of vertical propagation of shear 
waves is expected to be satisfi ed because the waves are 
refracted to a near-vertical direction due to the decrease 
in velocities of the surface deposits. 

Inhomogeneous soil profi les of sites (Fig. 1) are 
arbitrary established by varying soil conditions in both the 
horizontal and vertical directions. The soil profi les under 
points 1, 2, and 3 are assumed to consist of four layers, 
two layers and three layers, respectively, overlaying 
bedrock. The layers are numbered 1(top layer) to Nc+1 
(half space) where each l layer is characterized by its 
thickness hl, shear wave velocity Vsl, damping ratio ξl 
and mass density ρl as shown in Table 1. 

The mean amplifi cation function is fi rst computed 
taking into account the randomness of the three above 
parameters with the help of Monte Carlo methods. Mean 

Fig. 2   Algorithm of the stochastic approach for simulating ground motion response

Cv
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values of the soil parameters are shown in Table 1 for 
each one of the layers composing the site soil profi les 
in Fig. 1. The randomness of the soil properties is 
taken into account by several coeffi  cients of variation 
Cv (0%, 10%, 15% and 20%), 0% corresponds to the 
deterministic case.

Figure 3 shows the infl uence of randomness of the 

wave velocity, thickness and damping ratio of each layer 
on the amplifi cation function of each one of the three 
sites shown in Fig. 1. This fi gure reveals that when the 
fl uctuation sizes in (Cv) of the velocity and thickness 
increase, the amplifi cation function amplitudes decrease 
with an enlargement of the frequency contents (Figs. 
3(a)-3(b)). 20% Cv of the wave velocity reduces the 
amplifi cation function amplitudes of 66.7%, 71.2% and 
68.2%, compared to the deterministic solution, for sites 
1, 2 and 3, respectively, at the fundamental frequencies 
(Figs. 3(a), 3(b) and 3(c)). While for 20% Cv of the layer’s 
thickness, the same amplifi cation function amplitudes 
are reduced by 61.3%, 67.4%, 71.6% for sites 1, 2 and 
3, respectively, at the fundamental frequencies with a 
light shift of the natural frequency to the left for site 1 
(Figs. 3(d), 3(e), 3(f)). However, the random variations 
of the damping ratio do not exert any infl uence (Figs. 
3(g), 3(h), 3(i)). A comparison between the amplifi cation 
functions of sites 1, 2, 3 shows their sensitivity to the 
spatial variation of the soil conditions.

Table 1  Mean values of soil layers parameters

Layer’s 
number

layer’s 
thickness 

h (m)

Wave 
velocity 
VS (m/s)

Mass 
density ρ 
(kg/m3)

Damping 
ratio ζ 
(%)

1 05 150 1900 5
2 10 220 2000 5
3 10 50 2100 5
4 15 500 2200 5

Bedrock - 884 2300 5

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3  Mean amplifi cation function for diff erent soil conditions: (a), (b), (c) eff ect of random wave velocity, (d), (e), (f) eff ect of 
             random thickness, (g), (h), (i) eff ect of random damping ratio

Cv = 0
Cv = 0.10
Cv = 0.15
Cv = 0.20

Cv = 0
Cv = 0.10
Cv = 0.15
Cv = 0.20

Cv = 0

Cv = 0.10
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Thus, since the randomness of the damping ratio 
does not infl uence the amplifi cation function, only the 
random variations of correlated velocity and thickness 
are deeply examined. First, Figure 4 depicts the mean 
amplifi cation functions due to the randomness and 
correlation (ρVsd) between the wave velocity Vs and 
the thickness (h). No signifi cant diff erences appear 
between the curves of Figs. 4(a), 4(b), 4(c) and Figs. 

4(d), 4(e), 4(f) due to the low correlation between the 
two parameters; however, for higher coeffi  cients of 
correlation, the amplifi cation function amplitudes are 
more infl uenced by the random variations of the soil 
parameters (Figs. 4(g)-4(l)). In particular, for completely 
correlated parameters (ρVsh = 1), variability eff ects of the 
soil conditions are more apparent (Figs. 4(j)-4(k)). In 
fact, for soil profi le number 1, when the wave velocity 

(a) (b) (c)

(d) (e) (f)

(h)(g) (i)

(j) (k) (l)

Fig. 4   Mean amplifi cation function for Gaussian velocity and thickness: (a), (b), (c) uncorrelated, (d), (e), (f) correlated with ρVsh = 
             0.3, (g), (h), (i) correlated with ρVsh = 0.6, (j), (k), (l) correlated with ρVsh = 1

Cv = 0
Cv = 0.10
Cv = 0.15

Cv = 0
Cv = 0.1
Cv = 0.2

Cv = 0
Cv = 0.1
Cv = 0.2

Cv = 0
Cv = 0.1
Cv = 0.2
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and thickness are assumed to be completely correlated, 
the amplifi cation function amplitudes show less of a 
decrease than in the uncorrelated case (Figs. 3(a)-3(f)) 
and the higher natural frequencies are shifted to the left, 
meaning that the soil becomes softer as the randomness 
of the medium increases. The same observations may be 
made for soil profi le number 2 but due to the shift of the 
natural frequencies to the right, the soil deposit becomes 
harder. Soil deposit number 3 remains insensitive to 
random velocity and thickness. These diff erent behaviors 
of the three diff erent soil deposits explain the eff ects of 
the random and spatial variations of the soil conditions 
on the amplifi cation of ground motions and encourage 
the need to take them into consideration in any site 
response analysis.

5.2   Stochastic surface ground motions

In the following application, under the assumption 
of correlated random velocity and thickness, stochastic 
spatial PSD is computed and the stochastic spatially 
varying ground acceleration and response spectra at 
the three diff erent ground surface locations (Fig. 1) are 
computed. The incident base rock motions are assumed 
to have the same intensities and are displayed by the 
fi ltered Clough and Penzien (1993) PSD function. In a 
simplifi ed way, the auto- and cross-PSD functions are 
calculated (Eq. (3)) based on the mean amplifi cation 
functions according to the algorithm in Fig. 2. Figure 
5 shows the auto-PSD functions for the three soil 
conditions at the studied sites. It is clear that the mean 
auto-PSD magnitudes change in similar way as the mean 
amplifi cation function magnitudes.

2048 frequency samples are used to obtain the 
mean cross-PSD and to generate the spatially varying 
frequency-histories using the above scheme. The 
duration is T = 20 s and the parameters of the Clough and 
Penzien (1993) fi lter are assumed as f 0.5  π, ωg = 6 π, 
ξg = ξf = 0.6 and S0 = 0.0565 m2/s3. Two examples are 
carried out to distinguish the infl uence of the coherency 
model in simulating spatially varying ground motion. 
The separation distances between points 1 & 2 and 1 & 
3 in Fig. 1 are 100 m and 200 m, respectively.

Example 1
In order to study the incoherency between base rock 

accelerations at locations j’ and k’ (j’, k’ = 1, 3), the 
Sobczyk (1991) model (Eqs. (11)) is selected in the fi rst 
example:

      ' ' ' ' ' ' appi = i exp i cos/ j k j k j kd V    

or
     2

' ' app ' ' app' 'i = exp - / exp -i cos/j k kk jjd V d V     
(11)

in which b is a parameter controlling the incoherency 
and is taken as equal to 0.002 (Bi and Hao, 2012). The 
incident angle of SH wave a is assumed to be 0° here. 
The apparent wave velocity app V  is taken as equal to 

2500 m/s.
As shown in Fig. 6, the coherency values for the 

Sobczyk (1991) model decrease rapidly versus frequency 
as the separation distance between sites increases due to 
the exponential variation (Eq. (11)).

Stochastically simulated base rock and ground 
surface acceleration time-histories are depicted in Figs. 
7 and 8, respectively, for the same Cv of the velocity (Vsl) 
and thickness (hl) as in the preceding example (0%, 10% 
and 20%). The peak ground accelerations (PGAs) at the 
ground surface positions of 1, 2 and 3 are, respectively, 
5.98, 7.55 and 7.13 m/s² in the determinist case (Cv = 0.0), 
which are much greater than base rock PGAs (1.80, 2.29 
and 6.06 m/s²) for locations 1ʹ, 2ʹ and 3ʹ because of the 
amplifi cation due to the variation of the soil conditions 
in the vertical direction. As the coeffi  cients of variation 

2.0

1.5

1.0
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2.0

1.5
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Fig. 5  Mean spectral densities on ground surface

Cv = 0
Cv = 0.1
Cv = 0.2
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increase (10% and 20%) for the three sites, the ground 
surface PGAs decrease in accordance with the infl uence 
of fl uctuations around the velocity and thickness on 
the amplitudes of the amplifi cation function and PSD 
function. This result is similar to that obtained by 
Sadouki et al. (2012) that considered the shear modulus 
as a random parameter and concluded that this trend is 
due to medium randomness, which created multiples 
refl ections and refractions of the incident wave. Thus, it 
may be concluded that simulated ground motions at the 
surface of media with random parameters with the aid 
of Monte Carlo methods present similar trends as those 
obtained by rigorous analytical methods.

Stochastic spatially varying response spectra are 
obtained at the three ground locations (1, 2, 3) (Fig. 
1) as shown in Fig. 9 for coeffi  cients of variation (Cv) 
of the wave velocity and thickness equal to 0, 10% 
and 20%. This fi gure shows that the spectral ordinates 
decrease as the Cv increases, meaning that as the random 
heterogeneity of the medium becomes more important, 
the spectral ordinates attenuate (Figs. 9(a)-9(b)) but the 
spectral shape is preserved for a same site. Response 
spectra at site 3 remains insensitive to the randomness of 
the soil properties (Fig. 9(c)).

Therefore, the randomness of the soil properties 
signifi cantly aff ects ground surface response spectra. 
The site most aff ected by this randomness is the fi rst 
one because it is deeper than the other two sites and 
consequently the soil parameters’ randomness has more 
infl uence. This conservative result could aff ect the 
seismic response of multi-support and/or underground 
structures, which may be excited by such response 
spectra during their seismic resistant analysis and design.

Example 2 
The Sobczyk (1991) coherency model is 

appropriate for short separation distances. For longer 
separation distances and higher frequencies, the 
model of Harichandran and Vanmarcke (1986) is more 
appropriate to represent the incoherency. However, for 
comparative purposes, the short separation distances in 
the fi rst example are maintained. The Harichandran and 
Vanmarcke (1986) model takes the form:

1.0

0.8

0.6

0.4

0.2

0
0                5                10              15               20

Fig. 6   Site coherency via the Sobczyk (1991) model

2.5

0

-2.5

(a)

(b)

(c)

Fig. 7   Simulated bedrock acceleration time-histories using the 
            Sobczyk (1991) model coherency

(a)

(b)
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Fig. 8  Simulated ground surface acceleration time-histories 
     using the Sobczyk (1991) coherency model with 
              correlated Gaussian velocity and thickness (ρVsh = 1)
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where 

     1/2B
01 /f k f f


 

                
(13)

such that f is the frequency (Hz). The model parameters 
values (A = 0.636, B = 2.95A, α = 0.0186, f0 = 1.51 Hz 
and k = 31200) are defi ned based on an analysis of 
the SMART-1 array records. The Harichandran and 
Vanmarcke (1986) site coherency is plotted in Fig. 10 
where similar values are obtained at low frequencies 

(less than 5 Hz) compared to the Sobczyk (1991) model, 
where the coherency approaches to zero faster (Eq. (11) 
and Fig. 6) while the coherency in Fig. 10 decays slowly 
with frequency (Eq. (12)).

The simulated base rock accelerations time-histories 
are depicted in Fig. 11. PGAs obtained by this model 
are 1.48, 1.36 and 1.62 m/s² at the locations 1ʹ, 2ʹ and 3ʹ, 
respectively. They are smaller than those obtained by the 
fi rst model. Note that this model evaluates the coherency 
directly from the data recorded so that the variability 
due to the lagged coherency estimates could be clearly 
observed.

Figure 12 shows the simulated ground surface 
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Fig. 9 Stochastic spatially varying response spectra using 
             Sobczyk (1991) coherency model
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Fig. 10   Site coherency via the Harichandran and Vanmarcke 
               (1986) model

(a)

(b)

(c)

Fig. 11  Simulated bedrock acceleration time-histories using 
           the Harichandran and Vanmarcke (1986) coherency 
               model
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accelerations. The PGAs at locat ions 1, 2 and 3 are, 
respectively, 7.70, 4.57, 4.66 m/s² (in the determinist 
case) which are diff erent from those obtained by the fi rst 
coherency model (5.98, 7.55, 7.13 m/s²), but as in the 
previous example the ground surface PGAs decrease 
when the coeffi  cients of variation increase (10% and 
20%) for the diff erent sites.

The response spectra obtained using the 
Harichandran and Vanmarcke (1986) model are plotted 
in Fig. 13. The stochastic response spectra obtained by 
the Sobczyk (1991) model (Fig. 9) and those obtained 
by the Harichandran and Vanmarcke (1986) model (Fig. 
13) show a similar trend but the spectral ordinates could 
not be compared because coeffi  cients defi ning the two 
models are obtained diff erently.

6  Conclusions

This study investigated the eff ects of the randomness 
of soil layers on the ground surface accelerations and 
response spectra using Monte Carlo methods. These 
eff ects on the amplifi cation of the surface ground 
motions are studied considering the soil parameters that 
infl uence the ground response (thicknesses, velocities 
and damping of the layers) as Gaussian (or normal) 
random variables generated many times via Monte Carlo 
methods. In order to obtain spatially varying seismic 

ground surface motions at multiple locations due to 
surface irregularities, a reasonable procedure based on 
the one dimensional SH wave propagation together with 
the defi nition of cross spectral densities was followed. 
The incident motion is assumed as having the same 
spectral density at the base rock and the eff ects of the 
loss of coherence were described using the Sobczyk 
(1991) and the Harichandran and Vanmarcke (1986) 
models. Stochastic and site dependent spatially varying 
ground surface motions were predicted by means of the 
spectral representation method and the corresponding 
surface response spectra were obtained by solving the 
equation of motion of a linear SDOF system under a 

(a)

(b)

(c)
Fig. 12  Simulated ground surface acceleration time-histories 
     using the Harichandran and Vanmarcke (1986) 
         coherency model with correlated Gaussian velocity 
               and thickness (ρVsh = 1)
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Fig. 13     Stochastic spatially varying response spectra using the 
     Harichandran and Vanmarcke (1986) coherency 
               model
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nonstationary stochastic process.
The results indicate that the random variations of the 

soil properties (velocities and thicknesses of layers in the 
present study) aff ect the magnitudes of the amplifi cation 
function and the PSD and consequently the simulated 
ground movements. 

Clearly, response spectra are very sensitive to the 
inherent spatial variation of soil properties and soil 
conditions variation in vertical as well as horizontal 
directions. Also, both the Sobczyk (1991) model and 
Harichandran and Vanmarcke (1986) model successfully 
help simulate ground motions for short separation 
distances. The simulated response spectra may serve 
as inputs in the seismic resistant analysis and design 
of multi-supported and underground structures. The 
variations in response spectra due to the randomness 
of the soil layers may signifi cantly alter the response of 
multi-supported structures that were eventually excited 
by such data than by uniform ground motions.
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Appendix

Solution of wave equation 
The solution of Eq. (9), for a harmonic motion in 

each layer l (l = 1, NC , Fig. 1) is:

    i, e t
l l l lu z t U z                       (A1)

considering a coordinate system lz  for each layer in 
a vertically downward direction with the origin at the 
top of the layer 0 l lz h   where lh is the thickness 
of the lth layer) and   l lU z  is the depth-dependent 
displacement taking the equation: 

i -i( , ) e ' el l l lP z P z
l l l lu z t A A              (A2)

with 
s

cos l
l

l
p

V
 

 . The incident and refl ected wave 

amplitudes (Al and Aʹl) in each layer l are obtained from 
the boundary conditions (Harichane et al., 2005) leading 
to:
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1 11 e (1 ) e
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l l l lp h p h
l l l l lA A q A q 
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(A3)
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1 11 e (1 ) e
2 2

l l l lp h p h
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(A4)

where 1 1 1( . / . ).(cos / cos )l l l l l l lq G G     
Gl and ρl are the shear modulus and mass density 

of the lth layer of a soil deposit (Fig. 1) related by
2

s .l l lG V 

The hysteretic damping ξl may be introduced 
by the complex velocity of the SH wave in the form 
( *

s s 1 2il l lV V   ). Therefore, all the above equations 
hold by replacing Vsl by Vsl

*.

Response spectrum evaluation

Numerical integration, according to the Nigam and 
Jenning (1969) technique, of the governing equation of 
a SDOF system:

       2
n n g2x t x t x t u t      

          (A5)

where ζ is the critical viscous damping, ωn is the natural 
frequency, and üg(t) is the ground motion (Eq. (7)), 
allows the relative displacement response spectrum 
Sd(ωn, ζ), to be obtained formally as

   n , max ( )dS x t                       (A6)

And the pseudo response spectrum is:

   2
n n, ,a dS S                       (A7)


