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Abstract: A modifi ed domain reduction method (MDRM) that introduces damping terms to the original DRM is presented 
in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical 
test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results 
show that the MDRM signifi cantly improved the computational accuracy of the DRM. Then, the MDRM is compared with 
two existing conventional methods, namely Liao’s transmitting boundary and viscous-spring boundary with Liu’s method. 
The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also 
discusses the infl uence of boundary location on computational accuracy. It can be concluded that smaller models tend to have 
larger errors. By introducing two dimensionless parameters, φ1 and φ2, the rational distance between the observation point and 
the MDRM boundary is suggested. When  1 2   or 2 13  , the relative PGA error can be limited to 5%. In practice, the 
appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.
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1   Introduction

When simulating earthquake ground motion of a site 
with signifi cant topogra  phy by numerical methods such 
as the fi nite element method, a large computation domain 
is usually required to mimic the theoretically infi nite 
soil domain. When using the fi nite element method as a 
simulation approach, the maximum grid size of a fi nite 
element model is proportional to the shear wave velocity 
of the material and inversely proportional to the highest 
relevant frequency of the excitation. This maximum grid 
size is usually small compared to the whole computation 
domain. Given t  hat, a fi nite element model simulating 
seismic wave propagation will need to be meshed into 
numerous elements and nodes. Because of this, the 
analysis of a rational 3D soil-structure interaction fi nite 

element model is still an extremely time consuming 
process, although computational tools have been greatly 
improved in the last half century.

In the past few decades, researchers have made great 
efforts to reduce the computation domain. One way is to 
develop artifi cial boundaries, which prevent unnecessary 
refl ection waves from the edge of the numerical model 
with a fi nite size. 

One of artifi cial boundaries proposed by Lindman 
(Lindman, 1975) is the transmitting boundary, in which 
projection operators are portrayed as an infi nite region. 
Liao et al. (Liao et al., 1984; Liao et al., 1984) proposed 
a simple and practical transmitting boundary that could 
be easily implemented into fi nite elements or fi nite 
differences. Liao’s transmitting boundary is a higher 
order boundary and is convenient for fi nite element 
applications, but it may lead to dynamic instabilities for 
high frequencies (Kausel, 1988). The mechanism of drift 
instability and oscillation instabi  lity and their prevention 
measures aimed at Liao’s transmitting boundary have 
been discussed by many researchers (Liao et al., 1992; 
Guan et al., 1996; Li et al., 1996; Zhou et al., 2001; Liao 
et al., 2002; Jing et al., 2002; Xie et al., 2017).

Another type of artifi cial boundary is the viscous 
boundary (Lysmer et al., 1969), which uses dashpots 
at the boundary instead of the far fi eld. The viscous 
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boundary can be applied directly to solve the internal 
source problems, which means the real excitation is 
located in the computation domain. For external source 
problems like soil-structure interaction (SSI) problems 
and site response analysis, the real excitation is diffi cult 
to model because it is located outside the computation 
domain. In such circumstances, the excitation is usually 
performed as some equivalent forces, by which an 
external source problem can be converted into an 
“internal” source problem so that it can incorporate 
with the viscous boundary. Many researchers focus on 
modelling the real excitation with equivalent forces. 
Joyner et al. (Joyner et al., 1975; Lysmer, 1978) proposed 
a method for one-dimensional (1D) wave propagation 
analysis, in which a horizontal equivalent force time 
history was incorporated with dashpots at the base of 
the soil column to realize the external source excitation. 
The Joyner’s method has been widely used (Liang et al., 
2017, Huang et al., 2018) Yasui et al. (1988) introduced 
angle dependent viscous dashpots and seismic waves 
for inclined wave excitation. Liu et al. (1998) extended 
the range of realizing the equivalent excitation from 1D 
wave propagation to inclined wave and multiple support 
excitation, based on the assumption that the displacement 
wave fi eld and the stress wave fi eld should be equal to 
the original ones.

The domain reduction method (DRM) proposed 
by Bielak et al. (Bielak et al., 2003; Yoshimura et al., 
2003) is a fi   nite element methodology for modeling 
earthquake ground motion in highly heterogeneous 
localized regions with large contrasts in wavelengths. 
It is developed for external source problems and can 
model all realistic seismic waves including body waves 
(SV, SH, P) and surface waves (Rayleigh, Love, etc.) 
(Jeremić et al., 2015). The performance of the DRM 
was assessed in conjunction with two commonly used 
absorbing boundaries, namely, the cone boundary 
(Kellezi, 2000) and the standard viscous boundary, and 
the cone boundary was found to be slightly superior to the 
viscous boundary. (Kontoe et al., 2009). The DRM was 
also extended by Kontoe et al. to deal with the dynamic 
coupled consolidation problems (Kontoe et al., 2008). As 
an advanced simulation method, the DRM signifi cantly 
reduced the computational cost and improved the 
computational effi ciency, and has been widely used in 
recent years. Kontoe et al. studied the seismic response 
of the Bolu highway twin tunnels by using the DRM 
(Kontoe et al., 2008). Jeremić et al. (2009) simulated 
the seismic SSI response for bridge structures on non-
uniform soils. Corigliano et al. (2011) discussed the near 
fault effect of deep tunnels under seismic excitation. 
Kontoe et al. (2012) examined the seismic response of 
a large and complex system comprising a lock chamber 
and three neighboring waver saving basins. Jeremić et 
al. (2013) investigated the seismic response of a massive 
NPP structure due to full 3D, inclined, uncorrelated 
input motions for different and rock profi les. Isbiliroglu 
et al. (2015) analyzed the soil-structure interaction and 

coupling effects of various arrangements of regular 
building clusters during earthquakes. Solberg et al. 
(2016) derived a modifi ed version of the DRM for 
nonlinear time-domain analysis and applied it to the 
seismic response analysis of a notional small modular 
reactor. Poursartip et al. (2017) deployed a simulating 
tool which integrated the perfectly-matched-layers, the 
unstructured spectral elements and the DRM and applied 
in a parametric study of seismic wave amplifi cation by 
topographic features. 

Through the references listed above, the  advantages 
of the DRM in simulating complex wave propagation 
problems are clear; however, it has  some shortcomings. 
First and foremost, to decrease the storage cost of 
computation, this method does not introduce damping 
terms in the computation of equivalent excitation 
forces. The infl uence of ignoring damping terms in 
the derivation has not yet been studied. Moreover, 
there is no basis or discussion for the selection of the 
DRM boundary location. In previous research related 
to the DRM, numerical models with a considerable 
material damping ratio which exceeds 10% are frequent, 
especially when the soil medium is included in the model 
(Kontoe  ., 2008; Kontoe et al., 2012; Isbiliroglu et 
al., 2015; Solberg et al., 2016). In such circumstances, 
the potential error caused by ignoring the  damping terms 
could be large. However in the literature, the DRM that 
neglects the damping terms is used. The potential error 
caused by ignoring the damping terms in the DRM has 
never been discussed. Similarly, the DRM boundary is 
placed arbitrarily in all the applications, which may also 
reduce the accuracy of the results. 

In this study, a modifi ed domain reduction method 
(MDRM) is proposed, which considers damping terms 
on the basis of the DRM. A numerical example is given 
to study the effect of ignoring damping terms on the 
computational accuracy for different material damping 
ratios. The results using the MDRM and the DRM are 
compared. Then the computational accuracy of the 
MDRM is compared with the other two conventional 
methods; the transmitting boundary and the viscous-
spring boundary. Finally, the infl uence of the MDRM 
boundary location on the computational accuracy 
is discussed. Furthermore, suggestions for selecting 
the boundary location are made by showing several 
examples. 

2  Formulation of modifi ed domain reduction 
     method

A semi-infi nite region that takes the earthquake 
source, propagation path, and local site features into 
consideration is shown in Fig.1 (a), where Pe (t) denotes 
the earthquake source. Generally speaking, the location 
of the earthquake source is far away from the local 
site, relative to the size of the local site itself. In order 
to focus on the local site region of interest, a fi ctitious 
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boundary Г is used to divide the semi-infi nite region 
into two parts: Ω and Ω+. Ω contains the local features 
of interest, like topography, foundations and structures 
located above, and Ω+ is assumed as the remaining semi-
infi nite exterior subdomain. The displacement fi eld for 
the exterior domain Ω+, boundary Г and interior domain 
Ω are denoted as ue, ub and ui, respectively. Then, the 
equations of motion for the entire semi-infi nite domain 
system can be written in the fi nite element expression as: 
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where K, C and M denote mass, dampi ng and stiffness 
matrices respectively; i, e, and b refers to nodes in either 
the interior or exterior domain or on their common 
boundary; the superscripts Ω and Ω+ refer to the domains 
over which the various matrices are defi ned.

Equation (1) can be written into the following two 
formulas: 
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Pb are the interaction forces on the local boundary. To 

simplify the problem, a free-fi eld model is considered 
as shown in Fig. 1 (b), where all the local features 
in the interior domain are removed and the exterior 
domain remains unchanged. In this free-fi eld model, the 
displacement fi eld for the exterior domain, boundary 
and interior domain are denoted as 0

eu , 0
bu and 0

iu , 
respectively. Then, Eq. (3)  can be written as:
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The second equation in Eq. (4) can be written as follows:
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Then a transformation of variables is introduced to 
simplify the analysis. The total displacement ue can be 
expressed as the sum of the free fi eld 0

eu and the residual 
fi eld ωe as follows:

0
e e eu u                                   (6)

By substituting Eq. (6) into Eq. (1) and moving 
all the terms that contain the free fi eld to the right side 
results in:
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Fig. 1  (a) large physical domain with the source of load and local feature (b) Simplifi ed large physical domain
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Substituting  Eq. (5)  into  Eq. (7)  results in:
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In Eq. (8) the mass matrix, damping matrix and 
stiffness matrix on the left side are identical to those of 
Eq. (1). Thus, the seismic force Pe in equation  can be 
replaced by the effective nodal forces Peff, given by:
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In Eq. (9), the damping matrix is required to 
compute the effective nodal forces Peff. There is no 
specifi c requirement for  using the damping model in the 
MDRM. Any damping model that is able to formulate the 
damping matrix can be used in the MDRM. If  Eq. (8) is 
solved in the frequency domain, hysteretic damping can 
also be used to calculate the effective nodal forces Peff. 

In Bielak et al. (2003), the effective nodal forces 0
effP

were expressed as follows:
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It can be seen that Peff contains damping terms 
but 

0
effP does not. The modifi cation of  Peff  is how the 

MDRM improves on the DRM.
As in the DRM, the MDRM is a two-step method. 

In step I, a background geological model including 
the original earthquake source is analyzed to obtain 
the displacement fi elds 0

bu  and 0
eu , as shown in Fig. 

1(b). Then Peff is calculated by substituting 0
bu  and 0

eu  
into Eq. (9). Any appropriate numerical and analytical 
approach that calculates the free-fi eld wave fi elds can 
be incorporated in this step. In step II, the effective 
seismic forces Peff act as the excitation on domain Ω. 
By solving Eq. (8), the total wave fi elds ui and ub, and 
the residual wave fi eld ωe are available. Because of the 
existing  residual wave fi eld ωe,  the MDRM has to be 
used with suitable absorbing boundary conditions, as 
in the DRM (Bielak et al., 2003). Kontoe et al. (2009) 
assessed the performance of two commonly used 
absorbing boundaries in conjunction with the DRM and 

showed that the cone boundary was slightly superior to 
the standard viscous boundary. In practice, any local 
transmitting boundaries (Kausel, 1988), such as viscous 
boundary (Lysmer et al., 1969), viscous-spring boundary 
(Liu et al. 1998), transmitting bounudary (Liao et al., 
1984) and PML boundary (Berenger, 1994; Farzanian et 
al., 2016; Poursartip et al., 2017) etc., can be used in 
cooperation with the MDRM.

3  Numerical examples

In this section, to explore the potential error caused 
by ignoring the damping terms in the DRM, the 
performance of the proposed MDRM and the original 
DRM are assessed and compared with different damping 
ratios and input motions. To start with, establishing an 
appropriate verifi cation model is very important. In the 
original DRM (Yoshimura et al., 2003), a two-layer 
elastic half-space model was used, where the excitation 
was a dip-slip double couple. In step I of this verifi cation 
example, the free-fi eld displacements were calculated 
by the Green’s function method. Since the verifi cation 
model did not consider the material damping, the 
lack of damping terms in 0

effP had no infl uence on the 
results. This verifi cation model is not appropriate for 
the MDRM as the damping of material is introduced. In 
step I of the MDRM, the damping employed by Green’s 
function method is frequency-independent. However, 
in step II, the damping is computed in the time domain 
where a frequency-independent damping model is not 
available. As a result, the damping model is different 
in these two steps and the interference caused by this 
difference should be excluded when comparing the 
computational accuracy of the two methods. One way 
to eliminate the interference is to repeat  Yoshimura’s 
model in the time domain in step I, but this approach 
needs a huge computation domain which is extremely 
time consuming. An alternative way is to perform an 
SV wave propagation analysis so that the free-fi eld 
motion in step I can be obtained through a 1D SV 
wave propagation analysis and the consistency between 
the damping model in step I and II can be guaranteed. 
Given the above, the computation accuracy of DRM 
and MDRM in this section are discussed through an SV 
wave propagation problem.

For an SV wave propagation problem, the free-fi eld 
displacements can be achieved by performing a 1D fi nite 
element (FE) analysis in step I of the MDRM and the 
DRM. Here the input method proposed by Joyner et al. 
(Joyner et al., 1975) is selected instead of the widely used 
closed-form solution (Idriss et al., 1968) in the frequency 
domain to simulate an elastic half-space. Thus, both step 
I and step II can be computed in the time domain and 
the consistency in the damping model between step I 
and step II can be guaranteed. The damping model used 
in both step I and step II is Rayleigh damping. In all 
the models in this study, the two frequencies used for 
Rayleigh damping are 0.5 Hz and 0.35 Hz. A 1D soil 
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column model with a depth of 250m is considered in 
this section. Selected input motions are a Ricker wavelet 
(Mavroeidis et al., 2003) and an artifi cial bedrock wave 
of Shanghai. The prevailing frequency of the Ricker 
displacement is 4 Hz. The time history and FFT plots 
of accelerations are shown in Fig. 2 and Fig. 3, and the 
time history and FFT plots of displacements are shown 
in Fig. 4 and Fig. 5. 

 For step II, a 2D fi nite element model with an 
idealized valley is built, as shown in Fig. 6. This model 
has a width of 400 m and a depth of 240 m. In Fig. 6, 
the blue part is the computation domain of  interest 
and the red part is the DRM (MDRM) layer which is 
used to calculate the effective forces Peff ( 0

effP ) in Eq. 
(9) (Eq. (10)). The magenta layer is the exterior layer 

which connects with the viscous-spring elements to 
dissipate the residual wave. The material property of 
the soil is shown in Table 1. A rational mesh size of the 
fi nite element model directly determines the accuracy 
of numerical simulation of wave propagation. In this 
study, 16 nodes per wavelength are required for a given 
frequency. Assuming that the highest frequency of 
interest is 10 Hz, the mesh size h  can be calculated 
as follows: 

max 500 10 3.125
16 16

h 
   

                
 (11)

In this study, a conservative mesh size of 2.5 m is 
used.
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In this study, the Newmark-β method (Newmark, 
1959) is used for time integration in all the analysis. The 
integration parameters of the Newmark-β method are 
set as γ = 0.5 and β = 0.25. No numerical damping is 
introduced in the time integration (Hilber et al., 1977).

In step I, the displacement, velocity and acceleration 
time histories of various depth are calculated through 
a 1D FE soil column model. The results will be used 
to calculate the equivalent forces Peff and 0

effP for the 
DRM and the MDRM. As mentioned above, local 

absorbing boundaries are placed on the 2D model. 
Based on previous research (Kontoe et al., 2009), the 
cone boundary, namely the viscous-spring boundary, 
has a good performance when used in conjunction with 
the DRM. In this study, the viscous-spring boundary is 
used with both the DRM and the MDRM. To verify and 
compare the performance of the DRM and the MDRM, 
an extended meshed 2D FE model with a width of 
5000 m and a depth of 250 m is built. The input method 
(Joyner et al., 1975) used in the 1D model is also used 
here. Since the topography produces vertical motions, 
additional vertical dashpots are also placed at the bottom 
of the model. The results of the extended meshed 
model are treated as the accurate results to calculate the 
computational errors of the DRM and the MDRM.

In this section, the results of the DRM and the 
MDRM are compared through the 2D extended meshed 
model with different input motions and damping ratios. 
Damping ratios are set as 5% and 10%, respectively. The 
observation points can be found in Fig. 6. The analysis 
cases are shown in Table 2.

Figures 7 and 8 plot the horizontal and vertical 
acceleration response at each observation point in case 
1. Figures 9 and 10 plot the horizontal and vertical 
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Fig. 6   Finite element mesh
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  Table 1    Material property

Shear wave velocity (m/s) Density (kg/m3) Poisson’s ratio Damping ratio (%)
Soil 500 2000 0.3 5
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Table 2  Analyze cases

Analyze case Damping ratio (%) Input motion
Case 1 5% Ricker wave
Case 2 10% Ricker wave
Case 3 5% Bedrock wave
Case 4 10% Bedrock wave

acceleration response at each point in case 2. For case 3 
and case 4, since the response has many high frequency 
components, plotting three time histories in a single 
fi gure makes the graph unclear. Thus, for case 3 and case 
4, the extended mesh results and the absolute errors of 
the DRM and the MDRM are presented from Fig.11 to 
Fig.14. The PGA (peak ground acceleration) errors are 
listed from Table 3 to Table 6. As the observation point 
D, located on the axis of symmetry of topography, does 
not generate vertical response, the errors of its vertical 
PGA are not listed.

From case 1 to case 4, the horizontal and vertical 
responses at all the observation points are calculated. In 
all four cases, the accuracy of the horizontal response 
predicted by both the DRM and the MDRM is high. The 
maximum error of the horizontal acceleration associated 
with DRM and MDRM are 2.093% and 0.060%, 
respectively. However, the DRM loses accuracy in the 
vertical direction. For example, the maximum error of 

the vertical acceleration in case 4 of the DRM is as high 
as 32.441%. The relatively high error of the vertical 
response predicted by the DRM was also showed by 
Kontoe et al. (Kontoe et al., 2009). In the meantime, 
the MDRM still remains highly accurate in the vertical 
response; the maximum error in the vertical direction is 
as low as 2.136%. 

The performance of the DRM and the MDRM using 
material with different damping ratios is also presented in 
these four cases. With the increase of the damping ratio, 
the accuracy of the DRM decreases. This phenomena 
can be easily explained by Eq. (9)  and Eq. (10). The 
higher the material damping ratio, the larger the error of 

0
effP in Eq. (10), which results in the larger error of the 

response. As can be seen in case 4, the maximum error of 
the vertical acceleration produced by DRM is 32.441%, 
which is unacceptable in most circumstances.

By comparing Table 3 with Table 5 and Table 4 
with Table 6, it can be seen that the DRM has a larger 
error when the input motion is bedrock motion, whereas 
the MDRM remains accurate. In case 1 and case 2, for 
the extended mesh model and the MDRM, the system 
becomes silent after 1.5 s, whereas at that time, the 
DRM still has residual waves in the system. For simple 
waves with a small quantity of zero crossing times, these 
residual waves have no infl uence on the upcoming peaks 
and valleys of the wave because the appearance time 
between peaks is long. However, when the input motion 
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Table 3  PGA errors comparison of case 1 (%)

Directions Methods A B C D
Horizontal DRM 0.167 -0.359 -0.537 -0.076

MDRM 0.029 0.035 0.048 0.033
Vertical DRM -1.727 4.460 0.980

MDRM -0.057 -0.038 0.008

Table 4  PGA errors comparison of case 2 (%)

Directions Methods A B C D
Horizontal DRM 0.447 -0.562 -1.238 -1.241

MDRM 0.014 0.018 0.035 0.028
Vertical DRM -2.324 9.722 2.887

MDRM -0.166 -0.075 -0.012

Table 5  PGA errors comparison of case 3 (%)

Directions Methods A B C D
Horizontal DRM -1.334 -1.606 -1.395 -1.100

MDRM -0.118 0.130 0.261 0.386
Vertical DRM -6.772 -9.037 -0.897

MDRM 2.136 -1.605 -1.671

Table 6   PGA errors comparison of case 4 (%)

Directions Methods A B C D
Horizontal DRM -1.490 -1.600 -1.703 -2.093

MDRM -0.060 0.003 0.054 0.108
Vertical DRM -22.766 -32.441 -12.821

MDRM 1.638 -0.661 -1.173

has a large number of zero crossing times, for example 
the seismic wave shown in Fig. 3, these residual waves 
will be accumulated on the upcoming peaks and increase 
the computation error. This is the reason that the error 
calculated by bedrock motion is greater than that by 
Ricker wave.

In conclusion, the MDRM has a relatively higher 
accuracy than the DRM. The DRM can produce an error 
of more than 30% in practice. Attention should be paid 
when applying the DRM, and the recommendation is to 
use the MDRM instead if possible.

Table 7   PGA errors comparison (%)

Directions Methods A B C D
Horizontal MDRM -0.118 0.130 0.261 0.386

Transmitting boundary 0.096 0.380 0.598 0.944
Viscous-spring boundary -0.655 -0.725 -0.423 0.136

Vertical MDRM 2.136 -1.605 -1.671
Transmitting boundary 8.745 3.473 -1.526

Viscous-spring boundary -7.557 -1.206 2.330

4   Comparison with two conventional methods

In this section, the performance of MDRM is 
compared with two widely used artifi cial boundaries; 
that is, Liao’s transmitting boundary (Liao et al., 
1984) and the viscous boundary (Lysmer et al., 1969). 
As mentioned above, Liao’s transmitting boundary is 
suitable for both internal and external source problems. 
Though the viscous boundary was originally designed 
for internal source problems, Liu et al. (Liu et al., 1998) 
proposed a method using a viscous-spring boundary with 
equivalent forces to simulate seismic wave input with 
any angle, which makes the viscous-spring available for 
external source problems. The implementation details of 
these two methods can be found in the references (Liao 
et al., 1984; Lysmer et al., 1969; Liu et al., 1998) and 
will not be repeated here.

As mentioned above, the MDRM has to be used with 
suitable absorbing boundary conditions and a viscous-
spring boundary was used in the previous section. To 
clarify, Liao’s transmitting boundary, viscous-spring 
boundary with Liu’s method and the MDRM with 
viscous-spring boundary are compared in this section 
and are denoted as transmitting boundary, viscous-
spring boundary and MDRM, respectively. Case 3 is 
recalculated by these three methods. Likewise, the 
results of the extended meshed model are regarded as 
the accurate results.

Table 7 shows the horizontal and vertical PGA error 
of each method. The results of the extended meshed 
model and the absolute error of the three methods at 
point A are shown in Figs. 15 and 16. Due to space 
constraints, the results at Point B, C and D, similar to 
Point A, are not plotted here.

The results in Fig. 15 and Table 7 demonstrate that 
all three methods have high accuracy in the horizontal 
direction, and it can be seen from Fig. 16 and Table 7 
that the maximum error of the MDRM, the transmitting 
boundary and the viscous-spring boundary in the vertical 
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direction is 2.136% 8.745% and 7.557%, respectively. 
These errors indicate that the MDRM has better accuracy 
than the transmitting boundary and the viscous-spring 
boundary. 

The MDRM has advantages not only in 
computational accuracy, but also in other aspects. It 
is well known that the transmitting boundary has drift 
instability and oscillation instability and its robustness 
needs to be improved. The elimination measures for 
these problems have been discussed (Liao et al., 1992; 
Guan et al., 1996; Li et al., 1996; Zhou et al., 2001; Liao 
et al., 2002; Jing et al., 2002; Xie et al., 2017). When 
using this method, researchers have to be very careful to 
avoid the potential drift and oscillation effects. On the 
other hand, Liu’s method with viscous-spring boundary 
has good accuracy and stability, but can only be used 
in incident seismic wave input problems. The MDRM, 
however, can deal with any type of wave propagation 
with high accuracy and its robustness is very good. 
All in all, the MDRM is more advanced than the two 
conventional methods.

5  Discussion of the location of MDRM 
        boundary 

Based on the results obtained above, the advantage 
of the MDRM in accuracy, effi ciency and stability 
when simulating seismic wave propagation is clear. 
However, using the MDRM in practice needs more 
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Fig. 17  Finite element mesh of min-model

Table 8   PGA errors of min-model (%)

              Directions B C D
Case1 Horizontal -6.766 -7.682 -1.920

Vertical -28.331 -13.107
Case3 Horizontal -2.738 -3.563 -2.403

Vertical -19.323 -3.170

investigation. The DRM is a widely used method, yet 
the appropriateness of placing the DRM boundary layer 
close to the domain of interest has not been discussed, as 
well as the proper location of the MDRM boundary layer. 
When the DRM was fi rst proposed (Bielak et al., 2003; 
Yoshimura et al., 2003), the DRM boundary layer was 
placed right at the edge of the topography. Jeremić et al. 
separated the whole soil domain into four domains for 
each pier of a bridge to save computation cost (Jeremić 
et al., 2009). When using DRM, researchers often 
truncate the computation domain as much as possible 
without verifi cation. In this section, preliminary tests 
are conducted to determine whether the location of the 
MDRM boundary infl uences its computational accuracy.

First, the model in the previous section is truncated 
to study the infl uence of the MDRM boundary layer 
location, as shown in Fig. 17. In this truncated model, 
the MDRM boundary layer is located at the outer edge of 
the local topography. Since this model is the minimum 
model that was able to contain the local topography, it is 
named min-model here. Obviously,  observation point A 
does not exist in the min-model. 

The analysis of case 1 and case 3 is repeated with the 
min-model. The PGA errors of the min-model are shown 
in Table 8. A comparison of the time history for case 1 
is shown in Fig. 18. The extended mesh results and the 
absolute error of the min-model for case 3 are shown in 
Fig. 19. The PGA errors of the min-model in both the 
horizontal and vertical directions are higher than those 
of the original model. It is clearly seen that the smaller 
model tends to have larger errors. The maximum PGA 
error of the min-model is 28.331% as shown in Table 8, 
which is not acceptable for most circumstances. 

To further investigate the infl uence of the MDRM 
boundary layer location, the errors of models with 
different sizes were calculated for case 3. The model 
sizes and the corresponding errors are shown in Table 
9. From the results in Table 9, it can be concluded that 
the error increases as the model size decreases. The 
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Table 9   PGA errors of different model size of case 3

Directions Model size (m) B C D
Horizontal 400×240 -0.130 -0.261 -0.386

300×180 -0.231 0.124 0.589
200×120 -0.726 -0.256 0.329
100×60 0.746 0.414 1.672

65×20 (min-model) -2.738 -3.563 -2.403
Vertical 400×240 1.605 1.671

300×180 -0.673 0.116
200×120 6.913 3.396
100×60 -11.274 -8.715

65×20 (min-model) -19.323 -3.170
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Fig. 18   Comparison of acceleration time history of case 1

results also show that a model that is 300 m×180 m has 
good performance in both accuracy and effi ciency when 
incorporated with the MDRM. 

 Since the observation points are located in different 
positions, it is necessary to defi ne a rational parameter 
to assess the relationship between the computational 
accuracy and the size of the model. Therefore, two 
dimensionless parameters, 1  and 2 , are defi ned by 
the following equations:

A
cc

el
er

at
io

n 
(m

/s
2 )

A
cc

el
er

at
io

n 
(m

/s
2 )

A
cc

el
er

at
io

n 
(m

/s
2 )

A
cc

el
er

at
io

n 
(m

/s
2 )

A
cc

el
er

at
io

n 
(m

/s
2 )

A
cc

el
er

at
io

n 
(m

/s
2 )

b
1

v

=
d
d

      
                            

(12)

b
2

v

=
h
h


                                

(13)

where db denotes the horizontal distance from the 
observation point to the MDRM boundary; dy denotes 
the width of the idealized valley; hb denotes the vertical 
distance from the observation point to the MDRM 
valley; and hy denotes the depth of the idealized valley. 

1  indicates the dimensionless relationship between the 
model size in the horizontal direction and the width of 
the topography; and 2  indicates the dimensionless 
relationship between the model size in the vertical 
direction and the depth of the topography. Since the 
locations of the four observations points are different, 
these observation points have different values of 1  and 

2  even in the same model. The relationship between 
1 ( 2 ) and the absolute value of the PGA error are 

shown in Figs. 20 and 21.
From Figs. 20 and 21, it is seen that the relationship 

between 1 ( 2 ) and PGA error is not linear, but in 
general, the PGA error decreases as 1  and 2  increase. 
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Fig. 19  Comparison of acceleration time history of case 3 
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Fig. 20  Absolute value of horizontal and vertical PGA errors with different 1

When the damping ratio is 5%, the relative horizontal 
PGA error can be limited to 1% when 1 1   or 2 5 
and the relative vertical PGA error can be limited to 5% 
when 1 2   or 2 13  . In practice, the location of the 
MDRM boundary can be set as defi ned above to achieve 
the desired accuracy. 

Other than 1  and 2 , the damping ratio of the 
material may also have an infl uence on the computational 
accuracy. To investigate how the damping ratio infl uences 
the computational accuracy, the errors of models with 
different sizes and material damping were calculated. 
The model sizes, damping ratio and corresponding errors 
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Fig. 21  Absolute value of horizontal and vertical PGA errors with different 2
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Fig. 22  Absolute value of horizontal and vertical PGA errors with different 1  and damping ratio
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Fig. 23  Absolute value of horizontal and vertical PGA errors with different 2  and damping ratio
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are shown in Table 10. The relationship between 1 ( 2 ) and 
the absolute value of the PGA errors are shown in Figs. 
22 and 23.

From the results in Figs. 22 and 23, Table 9 and 

Table 10, it can be concluded that in general, the PGA 
errors increase as the damping ratio decreases, whereas 
the PGA error is much more sensitive to the change in 

1  and 2  than the change of the damping ratio. In 

0              5             10            15            20
                               φ2



Table 10  PGA errors of model with different size and damping ratio

2% 10%
Directions Model size (m)

B C D B C D
Horizontal 400×240 -2.428 -1.573 -1.536 -0.003 -0.054 -0.108

300×180 -1.914 -0.909 0.366 0.047 0.130 0.192
200×120 -1.863 -1.150 0.691 -0.209 -0.158 -0.143
100×60 -1.140 0.381 1.754 0.646 0.117 0.923

65×20 (min-model) -5.619 -4.027 -2.773 -2.420 -3.105 -1.974
Vertical 400×240 3.592 4.968 0.661 1.173

300×180 -0.671 2.724 2.466 0.009
200×120 7.347 1.196 6.976 3.762
100×60 -1.284 -4.466 -13.097 -8.507

65×20 (min-model) -18.299 -1.952 -6.338 8.224

practice, the damping ratio is not a crucial factor for 
PGA errors. Given that the damping ratio of most sites is 
equal to or greater than 2%, in engineering practice the 
relative horizontal PGA error can be limited to 3% when 

1 1   or 2 5  and the relative vertical PGA error can 
be limited to 5% when 1 2   or 2 13  .

The preliminary test results indicate that artifi cial 
boundaries should be used in an appropriate way. 
According to the results above, when performing site 
response analysis in a valley topography using the 
MDRM, the fi nite element model size can be determined 
through two dimensionless parameters, 1  and 2 , to 
achieve the desired computational accuracy. 

6  Conclusions

A MDRM for simulating seismic wave propagation 
was presented by introducing the damping terms to the 
DRM. The computational accuracy of the DRM and the 
MDRM were compared with a SV wave propagation 
model. Both the DRM and the MDRM show high 
accuracy in the response of the horizontal direction. In 
the vertical direction, the accuracy of the DRM decreases 
as the damping ratio increases and zero crossing times 
of input motion. The maximum acceleration error of the 
DRM in the vertical direction can be as high as 32.441% 
while that of the MDRM is only 2.136%. Overall, the 
MDRM shows much higher accuracy than the DRM.

Furthermore, the accuracy of the MDRM was 
compared with Liao’s transmitting boundary and 
viscous-spring boundary with Liu’s method. The results 
show that all three methods have the ability to simulate 
seismic wave propagation but the MDRM was superior in 
terms of accuracy, stability and the range of applications. 

Finally, a preliminary test was performed to 
investigate the infl uence of the boundary location 
on computational accuracy. By analyzing models of 
different sizes, it can be seen that an error that potentially 
exceeds 25% could occur if the MDRM boundary 

layer is located too close to the local topography. Two 
dimensionless parameters, 1  and 2 , are introduced. 
When 1 2   or 2 13  , the PGA errors are limited to 
5%. In practice, researchers and engineers can estimate 
the computational accuracy by 1  and 2 .
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