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Abstract: To predict the maximum earthquake response of an SDOF structure with a Maxwell fl uid damper or supplemental 
brace-viscous damper system using the seismic design response spectrum technique, a new approach is presented to determine 
the fi rst- and second-order equivalent viscous damping and stiffness, the peak responses, and the damper force of the above 
structure. Based on the fact that the dynamic characteristics of a general linear viscoelastically damped structure are fully 
determined by its free vibration properties and the relaxation time constants of a Maxwell fl uid damper and supplemental 
brace-viscous damper system in engineering practice are all small, the method of improved multiple time scales and the 
equivalent criterion in which all free vibration properties are the same are used to obtain the fi rst- and second-order equivalent 
viscous damping and stiffness of the above structure in closed form. The accuracy of the proposed method is higher and 
signifi cantly better than that of the modal strain energy method. Furthermore, in the parametric range of the requirements of 
the Chinese "Code for Seismic Design of Buildings", the error of the proposed second-order equivalent system for the above-
mentioned engineering structure is not more than 0.5%.
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1   Introduction 

Viscoelastic dampers (VED) are highly effective in 
mitigating the dynamic response of building structures 
induced by earthquake actions (Soong and Spencer, 
2002; Spencer and Nagarajaiah, 2003; Takewaki, 2009; 
Tubaldi, 2015) and the response spectrum method is 
widely employed for the seismic analysis and design 
of structures with VED (Zambrano et al., 1996; Soong 
and Dargush, 1997; Christopoulos and Filiatrault, 2006). 
When this technique is applied to estimate the maximum 
earthquake response of a structure with VED, it is 
necessary and important to determine the approximately 
equivalent viscous damping of the viscoelastically 
damped structure (Chang et al., 1995; Zambrano et al., 
1996; Palmeri, 2006).

The linear fl uid orifi ce damper can be represented by 
the Maxwell model (Singh et al., 2003), the linear viscous 
damper in serial arrangement with its supporting brace 
can also be represented by the Maxwell model (Huang, 
2009; Chen and Chai, 2011; Londono et al., 2013). The 
other dampers, such as fl uid dampers with accumulators 
and even viscous shear wall dampers, especially when 
they are installed on deformable braces or dissipation 
assembly, may also be represented by the Maxwell 
model (Singh et al., 2003). Furthermore, the generalized 
Maxwell model can accurately describe the broad-band 
rheological behavior of common viscoelastic dampers 
(Park, 2001; Chang and Singh, 2009). Therefore, the 
dynamic characteristics and response of structures with 
Maxwell dampers have been widely studied (Soong and 
Dargush, 1997; Fu and Kasai, 1998; Singh et al., 2003; 
Palmeri and Ricciardelli, 2003; Yamada, 2008; Huang, 
2009; Chen and Chai, 2011; Londono et al., 2013; Li et 
al., 2016). 

The analytic methods for the dynamic response of 
structures with Maxwell dampers can be divided into 
exact and approximate methods. The exact method is a 
state-space approach (Soong and Dargush, 1997; Singh 
et al., 2003; Palmeri and Ricciardelli, 2003; Yamada, 
2008; Chen and Chai, 2011). Although exact in nature, 
the state-space approach is computationally intensive 
due to its numerous internal variables. Furthermore, 
the physical insights offered by methods in the original 
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space (e. g., the modal analysis) are lost in a state-space 
based approach. Consequently, it is diffi cult to use the 
exact method in combination with the design response 
spectrum to predict the maximum earthquake response 
of a structure. The approximate methods are dominated 
by the modal strain energy (MSE) method (Chang et al., 
1995; Zambrano et al., 1996; Soong and Dargush, 1997; 
Fu and Kasai, 1998; Palmeri, 2006). In addition, the 
forcing decoupling method (Ou et al., 1998), complex 
damping method (Ou et al., 2007), and stochastic 
averaging method (Li et al., 2013) are also proposed 
to determine the equivalent damping and maximum 
response of viscoelastically damped structures.

At present, the MSE method and forcing decoupling 
method in combination with the design response spectrum 
have been applied to the seismic analysis and design of 
structures with viscoelastic dampers. Recently, the MSE 
method in combination with SAP2000 software is also 
used for numerical calculation of the seismic response 
of a twelve-story steel structure with Maxwell model-
based linear Fluid Viscous Dampers (FVD) (Ras and 
Boumechra, 2016). The results show that the use of the 
passive control device FVD in steel structure generates 
a very signifi cant reduction of the structural response 
when compared to the unbraced one.

However, there are two problems regarding the 
approximate methods. The fi rst is that the complex 
modulus model originated from the sinusoidal testing 
of viscoelastic materials, and hence, strictly speaking, 
application of this model is limited to sinusoidal motion. 
The second is that all approximate methods are fi rst-
order approximate ones, which works well only for 
structures with small supplemental damping (Zambrano 
et al., 1996; Palmeri, 2006). Therefore, it is imperative 
to study the second-order approximate method so as to 
make it suitable for arbitrary exterior loadings.

Recently, the systematic design sensitivity analysis 
of structures with viscoelastic dampers has been 
presented (Lewandowski and Lasecka-Plura, 2016), 
and the methods enabling determination of the fi rst- 
and second-order sensitivities of natural frequencies 
and non-dimensional damping ratios with respect to the 
parameters of dampers have been proposed. However, 
the above-mentioned methods for calculation of the 
sensitivities are the algebraically numerical methods, 
and it is diffi cult to use these methods to determine the 
approximately equivalent viscous damping with close 
form expression of the viscoelastically damped structure.

In this study, since the dynamic characteristics of 
a general linear viscoelastically damped structure are 
fully determined by its free vibration properties (Li 
et al., 2015), and the relaxation time constants of the 
Maxwell fl uid damper (Soong and Dargush, 1997; Singh 
et al., 2003) and supplemental brace-viscous damper 
system (Chen and Chai, 2011; Londono et al., 2013) 
in engineering practice are all small, the multiple scale 

method (Nayfeh, 1973) is improved to construct the 
solution for free vibration of the structure. Based on the 
equivalent criterion in which all free vibration properties 
are the same, the analytic methods of fi rst- and second-
order equivalent viscous damping and stiffness in closed 
form of   a single-degree-of freedom (SDOF) structure 
with a Maxwell fl uid damper or supplemental brace-
viscous damper system are proposed.

2  Equations of structure

For the SDOF structure with a Maxwell fl uid damper 
or supplemental brace-viscous damper system, as show 
in Fig. 1, its equations of motion subjected to ground 
excitation can be written as

d gmx cx kx f mx                          (1)

d
d d d

d

c
f f c x

k
                               (2)

where m, c, and k represent the mass, damping, and 
stiffness of the structure, respectively; x is the structural 
displacement, gx is the ground acceleration, fd is the 
force resisted by the Maxwell damper or brace-viscous 
damper system, and cd and kd are the damping and 
stiffness of Maxwell damper or brace-viscous damper 
system, respectively.

Equations (1) and (2) can be simplifi ed as:

2
0 0 0 b g2 ( )x x x f t x                          (3)

b b bf f c x                                 (4)

where λ = cd/kd is the relaxation time constant of Maxwell 
damper or brace-viscous damper system, and

2
0

k
m

  ;  0 02 c
m

   ;  d
b

f
f

m
 ;  d

b 02
c

c
m

                    
(5)

where β is the damping ratio of the Maxwell damper or 
brace-viscous damper system (relative to the structural 
properties).

Fig. 1    Model of SDOF structure with Maxwell fl uid damper or 
            brace-viscous damper system
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In engineering practice, for a linear Maxwell fl uid 
orifi ce damper (Soong and Dargush, 1997; Singh et al., 
2003), its relaxation time constant λ is 0.006 s or 0.014 s, 
which is very small; for a supplemental brace-viscous 
damper system, in order to guarantee that this system 
is effective in mitigating the dynamic response, the 
relaxation time constant λ is also a small parameter (Chen 
and Chai, 2011; Londono et al., 2013). For example, for 
a brace-viscous damper system, the Chinese “Code for 
Seismic Design of Buildings” (GB50011-2010, 2010) 
requires: ω0λ ≤ 1/3. The natural circular frequency ω0 
of a common SDOF structure is generally more than 10 
rad/s; therefore, λ is comparatively small.

Because fb(t) is the disturbing term of Eq. (3), in 
order to reduce disturbance and raise analytical accuracy 
of the equivalent damping, the term fb(t) is represented 
in the following form to separate structural velocity and 
acceleration terms fb(t):

b b b bf c x c x p                            (6)

where pb is a new variable.
Thus, Eqs. (3) and (4) can be then changed into

2
0 0 b n b g(2 )x c x x p x                     (7)
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where γpb is the disturbing term of Eq. (7), ωn is the 
natural frequency of the structural Eq. (7), and:

b
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  ;  2 2
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(9)

From the following analysis, it can be shown that the 
analytic Eqs. (7) and (8) are superior to Eqs. (3) and (4) 
due to ω0λ ≤ 1/3; β ≤ 0.3; 1 < γ = (1-2βω0λ)

-1 ≤ 1.25 in 
engineering practice. Considering Eqs. (3), (4), (7) and 
(8), and using the MSE method (Soong and Dargush, 
1997), 

b bb ( ) ( ) ( )f ff t K x t C x t                      (10)
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where the parameters η1 and η2 represent the disturbing 
quantities produced by fb(t) with respect to Eq. (3), 
and the parameters η3 and η4 represent the disturbing 
quantities produced by γfb(t) with respect to Eq. (7).

  As discussed earlier, ω0λ ≤ 1/3; β ≤ 0.3; 1 < γ = (1-
2βω0λ)

-1 ≤ 1.25; and considering Eqs. (5), (9) and (12)-
(15), 
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Therefore, it can be concluded from Eqs. (16) and 
(17) that the structural analytic Eqs. (7) and (8) are 
superior to structural Eqs. (3) and (4) due to ω0λ ≤ 1/3and 
β ≤ 0.3 in engineering practice.

3   First-order equivalent system of structure

3.1   Analysis of fi rst-order free vibration

Considering γcbλ
2 as a small perturbation parameter, 

let

2
0 bc c     ;  0 0 b(2 )c                (18)

where ε is a small parameter with an order of magnitude 
O(ε) = O(γcbλ

2).
The free vibration equations of the systems of Eqs. 

(7) and (8) can be then given as

2
n 0x x x p                            (19)
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Let

2
1 1 ( )p pp c x k x O     

               
(21)

where cp1 and kp1 are unknown damping and stiffness 
coeffi cients to be determined, respectively.
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The free vibration Eqs. (19) and (20) can be changed 
into

0)()( 11
2
11  xkxcpxxcx ppp  

(22)

3
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d
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(23)

where ω1 respresents the fi rst-order equivalent frequency 
to be determined, and

2 2
1 n 1pk                               (24)

Because of 2
1 1( ) ( )p pp c x k x O    , the fi rst-

order equivalent system of the free vibration Eqs. (22) 
and (23) (e.g., Eqs. (19) and (20)) can be expressed as

0)( 2
11  xxcx p  

           
(25)

The free vibration Eqs. (22) and (23) can be solved 
using the method of multiple scales (Nayfeh, 1973).

The desired functions x(t) and p(t) can be represented 
in terms of a series

2
0 1 ( )x x x O                          (26)

2
0 1 ( )p p p O                          (27)

where x0 and p0 are basically approximate solutions of 
x and p, respectively; x1 and p1 are fi rst-order revised 
solutions of x and p, respectively.

The fi rst, second and third derivatives of time are 
defi ned as follows,
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where Dn = ∂/∂Tn, Tn = εnt ( n = 0, 1, 2, … ).
Substituting the relationships of Eqs. (26), (27) and 

(28) into Eqs. (22) and (23), equating the coeffi cients at 
equal powers of ε, and limiting ourselves to the terms 
of the order of ε, a set of recurrent equations can be 
obtained.

2 2
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It is found from Eqs. (29)‒(31)
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(32)

where T0 = t, T1 = εt, the symbol cc denotes the expression 
to be complex conjugated to the preceding one.

Similarly, the free vibration equation of Eq. (25) can 
also be solved using the method of multiple scales. Thus, 
another solution is obtained

2
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(33)

Comparing Eq. (32) with Eq. (33) and considering 
the relationships of Eq. (18) and (24), 
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Solving Eq. (36), we obtain
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As for a common SDOF engineering structure with 
a Maxwell damper or brace-viscous damper system, 
because of γcbλ < 1 and λ4ωn

4 << 1, the approximate 
solution of the fi rst-order equivalent frequency can be 
obtained from the expression of Eq. (37)
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3.2   First-order equivalent system of structure

The fi rst-order equivalent system of Eq. (25) of the 
free vibration Eqs. (19) and (20) of forced vibration 
systems of Eqs. (7) and (8) can be expressed as

2
1 1 0x c x x                            (39)

where ω1 is the fi rst-order equivalent frequency given in 
Eq. (37), c1 is fi rst-order equivalent damping
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        (40)

Because the dynamic characteristics of a general 
linear viscoelastically damped structure is independent 
of its exterior loadings while fully determined by its 
free vibration properties (Li et al., 2015), the fi rst-order 
equivalent system of the structural forced vibration 
systems of Eqs. (7) and (8) can be expressed as

g
2
11 xxxcx                     

(41)

3.3   First-order equivalent system of Maxwell damper

In order to analyze the maximum earthquake 
response of a Maxwell damper or brace-viscous damper 
system using the response spectrum technique, it is 
necessary to fi nd the fi rst-order equivalent system of the 
Maxwell damper or brace-viscous damper system.

Considering the relationships of Eqs. (7), (19) and 
(21), 

2
b 1 1 ( )p pp p c x k x O       

            
(42)

From Eqs. (6), (34), and (35), the fi rst-order 
equivalent system of the Maxwell damper or brace-
viscous damper system can be expressed as
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where displacement x and velocity x  can be calculated 
from Eq. (41), cf1 and kf1 are the fi rst-order equivalent 
damping and stiffness of the damper system, respectively, 
which can be given as follows:
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4   Second-order equivalent system of structure

4.1   Analysis of second-order free vibration

Representing the term γpb of Eqs. (7) and (8) in the 

following form

3
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where q is a new variable.
Substituting Eq. (45) into Eqs. (7) and (8), 
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Considering the relaxation time constant λ as a small 
perturbation parameter, let
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The free vibration equations of structural forced 
vibration systems of Eqs. (46) and (47) can then be 
written as
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where k2 is the stiffness coeffi cient and ω2 is the second-
order equivalent frequency, which are to be determined. 
The interrelated relation is given as follows

2 2 2
2 n 2k   

 
                          (51)

Let the second-order equivalent system of free 
vibration Eqs. (49) and (50) be in the following form

2 2
1 2 2 0q qx c x c x x       

                 
(52)

where cq1 and cq2 are fi rst- and second-order damping 
coeffi cients to be determined, respectively.

The method of multiple scales is used to construct 
the solutions of Eqs. (49) and (50). The desired functions 
x(t) and q(t) can be represented in terms of a series

2 3
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where x2 and q2 are second-order revised solutions of x 
and q, respectively.

The fi rst, second, third and fourth derivatives of time 
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can then be defi ned as follows, respectively.

2 3
0 1 2

d ( )
d

D D D O
t

         
         

(55a)

2
2 2 2 3
0 0 1 1 0 22

d 2 ( 2 ) ( )
d

D D D D D D O
t

       (55b)

3
3 2 2 2 2 3
0 0 1 0 2 0 13

d 3 3 ( ) ( )
d

D D D D D D D O
t

      
 
(55c)

4
4 3 2 3 2 2 3
0 0 1 0 2 0 14

d 4 2 (2 3 ) ( )
d

D D D D D D D O
t

      
 (55d)

When substituting the relationships of Eqs. (53), 
(54) and (55) into Eqs. (49) and (50) and carrying out 
the procedure described in detail in Section 3.1, 

2 2
0 0 2 0 0D x x                            (56)

2 2 3
0 1 2 1 0 1 0 0 0 0 02D x x D D x D x D x          (57)

4
0 0 0 0 0q D q D x                        (58)

2 2 2
0 2 2 2 0 1 1 0 2 0 1 0

3 2
0 1 1 0 0 1 0 1 0

0 2 0

(2 2 )

( ) ( 3 )

D x x D D x D D x D x

D x D x D x D D x
q k x



 


     

   

 (59)

From Eqs. (56)‒(59),

2 4 2 2
2 2 2 2

0 2 0 1 22 2 2
2 2

2 2
32 2 2

2 22 2 2
2 2

( ) (i )( ) exp i
2 2(1 ) 8

( )(i ) cc O( )
2 2 2(1 )

x t T T T

k T

     


  

   
 

  

           
         

(60)

where T2 = ε2t.
Similarly, it can be obtained from the second-order 

equivalent Eq. (52) using the method of multiple scales

2
1 2 1 2

0 2 0 1 22
2

3

(i )
( ) exp i

2 2 8

cc ( )

q q qc c c
x t T T T

O








         
     

 (61)

Comparing Eq. (60) and Eq. (61) and considering 
relationships of Eqs. (48) and (51), 

2 2 2
1 2 0 0 b 2( ) [2 (1 )]qc c            

       
(62)

4 42 4
2 b 22

2 2 2 2 2
2 21 1q

c
c

   


   
 

 
                    (63)

2
2 2 2 2 2

2 2 2 2 2
2

3 4
2 2 2 2 2b 2

b 2 0 0 b 22 2
2

( )
1

[2 (1 )]
1

k

c
c c


    

 

  
      

 

 
    

    
 (64)

2 2 2
2 n 2k   

                         
  (65)

Substitution of Eq. (64) into Eq. (65) yields

2 2 6 6 2 4
b 2 b 0 0 2

2 2 2 2 2 2 2
n 0 0 b b 2 n

( ) [1 (1 2 )]

[1 ( 2 )] 0

c c

c c

         

       

   

    
  
(66)

The cubic Eq. (66) concerning 
2
2  can be precisely 

solved in closed form (Abramowita and Stegun, 1965). 

As discussed earlier, 2 2 6
b 1c   , thus the approximate 

solution of the second-order equivalent frequency 
2  can be obtained from Eq. (66) using perturbation 

approach (Nayfeh, 1973)

2 6 6 18
2 0 1 2 b( )y y y O c                    (67)

where

2 2
1 1 n 0

0
0

2A A A
y

A
 


                      

(68a)

2 2 6 3
b 0

1
0 0 1

( )c y
y

y A A
 

 
                          

  (68b)

2 2 6 2 2
b 0 1 1 0

2
0 0 1

6( )
2( )
c y y y A

y
y A A

  
 

               
  (68c)

2
0 b 0 02 [1 (1 2 )]A c       

           
  (68d)

2 2 2
1 n b 0 0 b1 [ (2 )]A c c        

        
  (68e)

4.2   Second-order equivalent system of structure

The second-order equivalent system of Eq. (52) 
of the free vibration Eqs. (49) and (50) of the forced 
vibration systems of Eqs. (7) and (8) can be expressed as

2
2 2 0x c x x                               (69)
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where ω2 is second-order equivalent frequency 
calculated from Eq. (66) or Eq. (67), and c2 is second-
order equivalent damping given as

2 b
2 1 2 0 0 2 2

2

2
1q q

c
c c c    

 
 

                
(70)

Similarly, carrying out the procedure described in 
detail in Section 3.2, the second-order equivalent system 
of the structural forced vibration systems of Eqs. (7) and 
(8) can be expressed as

2
2 2 gx c x x x      

                     
(71)

4.3 Second-order equivalent system of Maxwell 
        damper

Considering Eqs. (45), (46), (51) and (71), 

2 2 3
b 2 n b 2 2

2

2 2
2 3b 2

2 2 2
2

1( ) 1 ( )
1

( )
1

p x c x O

c
k x x O

    
 

  
 

 

 
      

  




 (72)

From Eqs. (6), (64) and (72), the second-order 
equivalent system of Maxwell system can be expressed 
as

3d
b 2 2 ( )f f

f
f c x k x O

m
   

             
(73)

where displacement x and velocity x can be calculated 
from Eq. (71), and cf2 and kf2 are the second-order 
equivalent damping and stiffness of damper system, 
respectively, defi ned as follows

b
2 2 2

21f
c

c
 


                        

  (74)

2
2 2 2b 2

2 b 2 0 0 b 22 2
2

( ) [2 (1 )]
1f

c
k c c


        

 
   


(75)

5   Analysis of maximum response of structure

5.1  Maximum response of structure

Structural fi rst- and second-order equivalent system 
equations of Eq. (41) and Eq. (71) can be expressed in a 
uniform form

2
g2 ( 1,2)j j jx x x x j         

       
(76)

where ξ1 and ξ2 are fi   rst- and second-order equivalent 
damping ratios, respectively.

1 2
1 2

1 2

;
2 2
c c

 
 

     
                   

(77)

Let Sd( ωj, ξj ) and Sv( ωj, ξj ) be displacement and 
velocity response spectrum of the oscillators δj(t), 
respectively, thus

2
g2 ( 1,2)j j j j j j x j           

        
(78)

Using the response spectrum technique (Lin and 
Chang, 2003; Cacciola et al., 2004), the maximum 
response of structure can be expressed as:

max d( ) ( , ) ( 1,2)j jx t S j   
           

(79)

max v( ) ( , ) ( 1,2)j jx t S j   

           
(80)

Since the methods of transforming from the 
acceleration response spectrum of the Chinese “Code 
for Seismic Design of Buildings” into displacement and 
velocity response spectrum have been found in Li et al., 
2014a, 2014b, Sd and Sv can be calculated directly from 
the Chinese “Code for Seismic Design of Building”, i.e.,

2
d d( , ) ( , 5%)gj j j jS B      

             
(81)

1
v v( , ) ( , 5%)gj j j jS B      

            
(82)

where j = 1, 2, g is acceleration of gravity, α(ωj, ξ = 5% ) 
is the earthquake-infl uenced coeffi cient of the oscillator 
with a period of Tj = 2π/ωj and damping ratio ξ = 5% 
corresponding to the Chinese acceleration response 
spectrum, and Bd and Bv are displacement and velocity 
damping reduction factors, respectively, given by Lin 
and Chang (2003), i.e.,

d v
d v

d v

( , ) ( , )
; ( 1,2)

( , 5%) ( , 5%)
j j j j

j j

S S
B B j

S S
   

   
  

 
(83)

5.2  Maximum response of Maxwell damper

From Eqs. (43) and (73), the variances of fi rst- and 
second-order equivalent system of the Maxwell damper 
or brace-viscous damper system can be expressed in the 
following forms

2 2 2 2 2
bE[ ( )] E[ ( )] E[ ( )]

2 E[ ( ) ( )] ( 1,2)
fj fj

fj fj

f t c x t k x t

c k x t x t j

  







      
(84)
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where the operator E[•] represents the expectation 
operation of the quantity inside the bracket.

Making the assumption that the input excitation 
)(g tx is a Gaussian stationary process with a zero 

mean value, the response x(t) of a linear equivalent 
system of Eq. (76) subjected to a Gaussian process is 
also Gaussian. The derivative of a Gaussian, )(tx , is 
Gaussian as well and the two processes, x(t) and )(tx , 
are mutually independent. As a result, the term E[x(t) )(tx ] 
disappears due to the independent property (Soong 
and Grigoriu, 1993). Because the maximum value 
of a response is proportional to the root mean square 
of its process (Cacciola et al., 2004), Eq. (84) can be 
represented by the peak response with their respective 
proportional factors as follows

b

2 2
22 2 2 2

b max2 2 2max max

1 ( ) ( ) ( ) ( 1,2)fj fj

f x x

c k
f t x t x t j

  
  





                  (85)
where 

bf
 , x and x are proportional factors 

corresponding to fb(t), ( )x t  and x(t), respectively, and 
are often assumed to have the same value in practice 
(Cacciola et al., 2004). Thus, the above equation can be 
further simplifi ed as

22 2 2 2 2 2
b maxmax max
( ) ( ) ( ) ( 1,2)fj fjf t c x t k x t j   (86)

Substituting the relationships of Eqs. (79) and (80) 
into Eq. (86), 

2 2 2 2
b v dmax
( ) ( , ) ( , ) ( 1,2)fj j j fj j jf t c S k S j      

(87)

6   Accuracy of equivalent system

The fi rst, from the original structure in Eqs. (3) and 
(4), is the exact complex frequency response function 
Hx(iω) of the structural displacement x and can be 
expressed as

3 2 2 2
0 0 0 0 0 b 0

(i )
(i ) 1

(i ) (1 2 )(i ) (2 )(i )

xH

c


 

           






     
(88)

The exact stationary variance 2
x  of the structural 

displacement x, subjected to Gaussian stationary white 
noise g ( )x t  with spectral density function 

g 0( )xS S   , 
can be expressed as

22
0

2 2
0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 b b

(i ) d

(1 2 )
[4 2 (1 ) ]

x xH S

S
c c

  

    
        




 

  
   



   

(89)

The exact nonstationary variance 2 ( )x t  of 
structural displacement x, subjected to several kinds of 
classical amplitude uniformly modulated nonstationary 
Gaussian white noise g ( )x t  with correlation function 

g g 0E[ ( ) ( )] 2 ( ) ( ) ( )x t x t S A t A t         , has been 
obtained in Li et al., 2016,where S0 is the constant 
spectral density, A(t) is the deterministic amplitude 
function, and δ(τ) is the dirac-delta function.

The second, from Eq. (76), is the approximate 
complex frequency response function (i )xjH   

given 
by the fi rst- and second-order equivalent system for the 
original structure in Eqs. (3) and (4) can be expressed as

2 2(i ) ( 1,2)
(i ) 2 (i )xj

j j j

H j
    

  
 

(90)

The corresponding approximate stationary variance 
2
xj  subjected to the same stationary white noise can be 

expressed as

2
2 0

3 ( 1,2)
2xj

j j

S
j




 


 
             

(91)

The corresponding approximate nonstationary 
variance 2 ( )xj t

 
subjected to the same nonstationary 

white noise has also been obtained in the above-
mentioned reference.

The third, the original structure in Eqs. (3) and (4), 
can be approximated  by using the modal strain energy 
(MSE) method

 

2
3 3 3 g2x x x x       

                 
(92)

where

2 2 2 2 22 2
0 b 02 0 b

3 2 2

( 1) 41
2 2

cc       


 
   

 
                   (93)

b
3 3 0 0 2 2

3

2 2
1

c
   

 
 


                   

(94)

The corresponding approximate complex frequency 
response function 3 (i )xH   and approximate stationary 
variance 2

3x  given by the MSE method can be expressed, 
respectively, as follows

3 2 2
3 3 3

1(i )
(i ) 2 (i )xH 
    

 
                

(95)

2 0
3 3

3 32x
S


 



                               

(96)



No.3                                     Li Chuangdi et al.: Equivalent damping of SDOF structure with Maxwell damper                                      635

The corresponding approximate nonstationary 
variance )(2

3 tx can also be found in the reference 
mentioned above.

As a result, the accuracy of the proposed method or the 
MSE method can be investigated through a comparison 
of exact solutions of Eqs. (88) and (89) with approximate 
solutions of Eqs. (90) and (91) or approximate solutions 
of Eqs. (95) and (96). The accuracy can also be reviewed 
through the comparison of exact nonstationary response 
with approximate nonstationary response.

As discussed earlier, as for Maxwell fl uid damper, λ = 
0.014 s; as for brace-viscous damper system, ω0λ ≤ 1/3; 
moreover, the supplemental damping ratio provided by 
the damper system is generally required to be less than 
25%, e. g., corresponding to β ≤ 0.3. Thus the classical 
parameters of calculation are selected as follows: ξ0 = 
0.05; ω0 = 10, 20, 30 rad/s; ω0λ = 1/5, 1/4, 1/3, 2/5; cb = 
2βω0, β = 0.1, 0.15, 0.20, 0.25, 0.30.

Figures 2-6 show the exact and approximate complex 
frequency response functions (FRF) (88), (90) and (92), 
respectively.

As expected, the second-order approximation 
is more accurate than the fi rst-order approximation. 
Moreover, the fi rst- and second-order approximations 
are signifi cantly better than the MSE approximation. 
It can also be observed from Fig. 2 to Fig. 6 that all 

Fig. 2   FRF for case (ξ0 = 0.05; ω0λ = 1/3; β = 0.30; ω0 = 30 rad/s)
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Fig. 3   FRF for case (ξ0 = 0.05; ω0λ = 1/3; β = 0.30; ω0 = 20 rad/s)
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Fig. 4   FRF for case (ξ0 = 0.05; ω0λ = 1/3; β = 0.30; ω0 = 10 rad/s)
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Fig. 5   FRF for case (ξ0 = 0.05; ω0λ = 2/5; β = 0.20; ω0 = 20 rad/s)
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Fig. 6   FRF for case (ξ0 = 0.05; ω0λ = 2/5; β = 0.30; ω0 = 20 rad/s)
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approximations are more accurate for the smaller 
parameters ω0λ or β.

Percentage errors in the root mean square of the 
structural displacement obtained using the fi rst- and 
second-order approximate expression of Eq. (91) and 
MSE approximate expression of Eq. (96) are shown in 
Figs. 7-11.

Figures 12-14 show the exact and approximate 
nonstationary variances of the structural displacement 
under amplitude uniformly modulated nonstationary 
Gaussian white noise ( )gx t  with ( )A t  = unit step function 
and the constant spectral density 2 3

0 0.0306 m /sS  .
Figures 15-17 also show the corresponding 

nonstationary results with respect to nonstationary white 
noise ( )gx t  with A(t) = e-0.6t-e-t and 2 3

0 0.0306 m /sS  .
Apparently, the second-order approximation is 

more accurate than the fi rst-order approximation, and 
the errors in the fi rst- and second-order approximation 
are signifi cantly smaller than the error in the MSE 
approximation, although the errors increase as the 

parameter ω0λ increases. The error in the second-order 
approximation is less than 0.5%, corresponding to the 
range of parameter: ξ0 = 0.05; ω0λ ≤ 1/3; β ≤ 0.3; 

Fig. 7   Percentage error in the root mean square of displacement 
            for case (ξ0 = 0.05; ω0λ = 1/3; ω0 = 30 rad/s)
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Fig. 8   Percentage error in the root mean square of displacement 
            for case (ξ0 = 0.05; ω0λ = 1/3; ω0 = 20 rad/s)
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Fig. 9   Percentage error in the root mean square of displacement 
            for case (ξ0 = 0.05; ω0λ = 1/3; ω0 = 10 rad/s)
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Fig. 10   Percentage error in the root mean square of displacement 
             for case (ξ0 = 0.05; ω0λ = 1/4; ω0 = 20 rad/s)
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Fig. 11   Percentage error in the root mean square of displacement 
             for case (ξ0 = 0.05; ω0λ = 2/5; ω0 = 20 rad/s)
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Fig. 12 Nonstationary variance of displacement for case
       (ξ0 = 0.05; ω0λ = 1/3; β = 0.1, ω0 = 20 rad/s;                 
                A(t) = unit step function)
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Fig. 13  Nonstationary variance of displacement for case
        (ξ0 = 0.05; ω0λ = 1/3; β = 0.2, ω0 = 20 rad/s;                 
                  A(t) = unit step function)
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Fig. 14  Nonstationary variance of displacement for case
        (ξ0 = 0.05; ω0λ = 1/3; β = 0.3, ω0 = 20 rad/s;                 
                  A(t) = unit step function)
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Fig. 15 Nonstationary variance of displacement for case
                           (ξ0 = 0.05; ω0λ = 1/3; β = 0.1; ω0 = 20 rad/s; A(t) = e-0.6t-e-t)
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Fig. 16 Nonstationary variance of displacement for case
                           (ξ0 = 0.05; ω0λ = 1/3; β = 0.2; ω0 = 20 rad/s; A(t) = e-0.6t-e-t)
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Fig. 17 Nonstationary variance of displacement for case
                           (ξ0 = 0.05; ω0λ = 1/3; β = 0.3; ω0 = 20 rad/s; A(t) = e-0.6t-e-t)
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10 ≤ ω0 ≤ 30 rad/s. These results demonstrate that the 
proposed methods are of higher accuracy.

7   Conclusions

To predict the maximum earthquake response of 
an SDOF structure with a Maxwell fl uid damper or 
supplemental brace-viscous damper system using the 
seismic design response spectrum technique, a new 
approach with higher accuracy is presented to (1) 
determine the fi rst- and second-order equivalent damping 
and stiffness of the above structure in closed form using 
the multiple scales method; and (2) predict the peak 
responses of the above structure as well as the damper 
force. The following are a summary and conclusions.

(1) Based on the fact that the dynamic characteristics 
of a general linear viscoelastically damped structure are 
fully determined by its free vibration properties, using 
the equivalent criterion where free vibration properties 
of the structure are same, the equivalent problems of 
forced vibration of a general linear viscoelastically 
damped structure subjected to arbitrary exterior loadings 
can be strictly  simplifi ed as the equivalent problems 
of free vibration of a corresponding structure, which 
can provide the passable analytic approach to high-
order equivalent damping and stiffness of a linear 
viscoelastically damped structure.

(2) The second-order, and even higher-order 
equivalent damping and stiffness of an SDOF structure 
with a Maxwell fl uid damper or brace-viscous damper 
system can be obtained using the method of improved 
multiple time scales.

(3) The structural analytic Eqs. (7) and (8) are superior 
to structural Eqs. (3) and (4) due to the relaxation time 
constant of the damper system ω0λ ≤ 1/3 in engineering 
practice.

(4) The accuracy of the proposed methods is 
higher and signifi cantly better than that of the modal 
strain energy method. In the parametric range of the 
requirements of the Chinese “Code for Seismic Design 
of Buildings”, i.e., ω0λ ≤ 1/3, and supplemental damping 
ratio being less than 25%, the error of the proposed 
second-order equivalent system for a common SDOF 
engineering structure with a Maxwell fl uid damper or 
brace-viscous damper system is less than 0.5%.
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