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Theory and application of equivalent transformation relationships 
between plane wave and spherical wave
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Abstract: Based on the governing equations and the equivalent models, we propose an equivalent transformation 
relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially 
inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic 
issues  in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent 
relationships between the geometry and the material properties. It  indicates that the spherical wave problem in globular 
geometry can be transformed into the plane wave problem in the bar with variable property fi elds , and its inverse transformation 
is valid as well. Four different examples of wave motion problems in the inhomogeneous media  are solved based on the 
presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the 
refl ection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which 
can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated 
problem easier.
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1   Introduction

The spherical wave is a common type of wave 
motion in a homogeneous medium. In general, the 
spherical wave can be caused by the spherical source, 
such as a spherical cavity subjected to a time-varying 
uniform internal pressure. In the homogeneous medium, 
the plane traveling wave’s amplitude remains constant, 
but the spherical wave’s amplitude decreases with the 
traveling distance. Then, the group velocity of the elastic 
wave in the homogeneous medium is constant, thus the 
wave travels the same distance in the equal time interval.

The situations are usually different in the 
inhomogeneous medium. The functionally graded 

material is a classical inhomogeneous medium. In 
the process of material production, the ratios of the 
components are controlled to be distributed continuously. 
Thus, the macroscopic material properties are graded. 
Therefore, the amplitude and group velocity of the 
traveling wave may both vary in the process of traveling.

The wave motion in inhomogeneous media is a 
classical topic in the theoretical research of elastic, 
seismic, acoustic, and electromagnetic waves. 
Many naturally occurring soils, such as fl occulated 
clays, varved silts, or sands, are typically deposited 
via sedimentation over long periods. The effects 
of deposition, overburdening, and desiccation can 
cause soil media to exhibit both anisotropic and 
inhomogeneous deformability (Wang et al., 2010). 
Because of the material’s natural inhomogeneity, when 
the old concepts, theories, algorithms, and experimental 
measures are introduced and developed for homogeneous 
materials, they meet great diffi culty. A lot of them are 
no longer suitable for inhomogeneous media, thus 
further work should be done for developing several 
better research methods. The wave motion problem in 
the inhomogeneous medium is commonly solved by the 
numerical techniques. Usually, the models for numerical 
simulating have to be simplifi ed by some operations, 
such as the discretely layered model. For example, 
the model of a vertically inhomogeneous medium is 
simplifi ed into several discretely homogeneous layers. 
The reverberation matrix method can be applied to solve 
the wave motion problem in the layered model where 
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the layers in the model are all homogeneous. The result 
can be close to the exact solution when the layers are 
thin enough. This idea is often used for the asymptotic 
approach as well. The graded element method (or 
inhomogeneous element method) is a valuable 
numerical scheme for the problems in inhomogeneous 
media since the material property fi elds don’t have to be 
simplifi ed. Kim and Paulino (2002) presented the graded 
fi nite elements for the continuously nonhomogeneous 
isotropic and orthotropic materials within the framework 
of a generalized isoparametric formulation. In 2013, 
Wang et al. proposed the dynamic inhomogeneous fi nite 
element method for simulating the dynamic response in 
the inhomogeneous media, where the material properties 
(such as elastic modulus, Poisson ratio, and density) in 
the element are all graded, thus the error of discretization 
and the scale of calculation can be reduced greatly (Yang 
et al., 2013; Wang et al., 2013).

The mathematical background behind wave motion 
in inhomogeneous media involves the solution of 
partial differential equations with variable coeffi cients 
(Rangelov et al., 2005). There is great diffi culty to 
analytically study the wave motion in the inhomogeneous 
medium with arbitrary material property distributions, 
especially to obtain the exact solutions of the original 
partial differential equation (Hook, 1962; Watanabe and 
Takeuchi, 2003). Thus far, only the cases with a few 
special material property distributions have been solved 
analytically. The material property fi elds in most existing 
research can be categorized into three types: exponential 
function and associated forms (Wilson, 1942; Vrettos, 
1990a, 1990b, 1990c, 1991a, 1991b); power function 
and associated forms (Hook, 1962; Hudson, 1962; 
Deresiewicz, 1962; Gazetas, 1980; Watanabe, 1982; 
Manolis and Bagtzoglou, 1992; Manolis and Shaw, 
1992; Manolis et al., 2002, 2004; Dey et al., 1996a, 
1996b), including linear elastic modulus distribution 
(Stoneley, 1934; Awojobi, 1972, 1973; Chattopadhya 
et al., 2012; Vardoulakis and Vrettos, 1988; Muravskii, 
1997, 2000); and trigonometric functions and associated 
forms (Pekeris, 1935; Dey et al., 2000). Many 
methodologies can be applied to analytically solve the 
wave propagation in the inhomogeneous media. The 
geometrical optics method is able to solve the problems 
with high frequencies and large wave numbers, 
since the effect of inhomogeneity on the propagating 
wave is considerably diminished (Bahar, 1967; Zhu 
et al., 1995). The analytical solution of the wave 
propagation in continuously inhomogeneous media 
can be obtained by the complex function method. For 
example, the conformal mapping method and algebraic 
transformation technology can be employed to study the 
general solutions of the elastic wave propagation in the 
inhomogeneous medium (Manolis et al., 1999).

There are many interesting theories and techniques 
in the research about the inhomogeneous medium’s 
behaviors, such as the homogenization theory (Boutin 
and Auriault, 1993; Nicolas, 2010; Chen and Fish, 2001; 

Fish et al., 2012) and wave cloak techniques (Pendry 
et al., 2006; McManus et al., 2014; Zhou et al., 2008). 
Homogenization aims at deriving a homogenized 
description (governing partial differential equations and 
constitutive law) for the medium, based on the assumption 
that a statistically homogeneous medium represented by 
a representative volume element (RVE), or a material 
with periodic structure represented by a repeated unit cell 
(RUC), can be defi ned. Mathematical homogenization 
provides a rigorous defi nition of the homogenization 
process and the homogenized equations. It consists 
of setting the problem as a sequence of equations 
describing the heterogeneous material (Charalambakis, 
2010). Using the freedom of design that metamaterials 
provide, wave fi elds can be redirected and can suggest 
a design strategy. Metamaterials which owe their 
properties to subwavelength details of structure rather 
than to their chemical composition can be impossible 
to fi nd in nature (Pendry et al., 2006). Based on this 
technique, the properties of the materials and structures 
can be designed based on the engineer’s purposes. 
The theory and technique mentioned above show that 
there are some equivalent transformation relationships 
between the microstructure and properties of material. 
These equivalent transformation relationships are of 
great signifi cance and value in the theoretical study and 
engineering applications.

In this study, we investigate the equivalent 
transformation relationships between the plane wave in 
the one-dimensional medium and the spherical wave in 
the globular geometry with radial inhomogeneity. These 
equivalent relationships can make the analytical solving 
of the elastodynamic problem in inhomogeneous media 
easier. Based on these equivalent relationships, four 
basic examples are solved.

2   Governing equations

The equivalent relationships presented in this paper 
are obtained based on the governing equations.

2.1   Governing equation of spherical wave in radially 
        inhomogeneous medium

The coordinate system shown in Fig. 1 is established 
for the spherical wave propagation. The undamped 
dynamic equilibrium equation can be written as follows 
for the spherical wave in the medium with spherically 
symmetrical material properties (the material properties 
are only dependent on radial coordinate r):

2
2

1 ( )ur D u
r r r

 


 
                         (1)                 

where 2D     denotes the elastic coeffi cient of the 
medium; ρ denotes the density of the medium; and   
and   are the Lamé coeffi cients.

If the elastic coeffi cient D is constant, the dynamic 
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equilibrium equation (Eq. (1)) is simplifi ed into the 
following form:

2
2 2

L

1 1( ) 


 
ur u

r r r c


                        
(2)

where the longitudinal wave velocity cL can be computed 
by the following expression.

1
L  c D                                    (3)

2.2  Governing equation of plane wave in bar with 
        variable cross-section area

Consider a model (as shown in Fig. 2(a)) of the 
1D isotropic bar with variable cross-section area and 
constant material properties. Figure 2(b) shows the 
infi nitesimal body of this model.

The elastic wave in this bar model is governed by the 
following wave equation (Wang, 2006). As we know, the 
wavefront area in this model equals to the cross-section 
area of the bar.

 
b

1   







A

A x
u

                          
(4)

where   is the stress; b  is the density of this model; 
and A is the wave front area (in bar model, it also 
represents the section area).

The spherical wavefront area in the bar is associated 
with the radial coordinate r (see Eq. (5)).

24 A r                                    (5)

Consider the bar with the section area function as 
the same form of Eq. (5), where the variable r in Eq. 
(5) is replaced with coordinate variable x (variable r is 
independent with variable x in this operation). Substitute 
this section area function into wave equation (Eq. (4)), 
then

2
b b2

1       

ux D
x x x

u
                   

(6)

where Db (elastic coeffi cient) represents Eb (Young’s 
modulus) when the wave is in P mode; and Db represents 
Gb (shear modulus) when the wave is in S mode.

Equations (6) and (1) have the same form. Based on 
the above derivation, this shows that the spherical elastic 
wave equation can be equivalent to the wave equation 
for the one-dimensional bar with section area variation. 
When the value of Db equals to D (elastic coeffi cient 
mentioned in Section 2.1), the dynamic equilibrium 
equations (Eqs. (6) and (1)) are identical.

2.3  Governing equation of plane wave in bar with 
        inhomogeneous material

Consider another model (as shown in Fig. 3(a)) of 
the 1D isotropic bar with the variable material properties 
and the constant cross-section area. Figure 3(b) exhibits 
the infi nitesimal body of this model. The following wave 
equation is the governing equation for the wave motion 
in this model:

* *
b b

      

uD u
x x

    
                       

(7)

where *
bD  (elastic coeffi cient) represents *

bE  (Young’s 
modulus) when the wave is in P mode; *

bD  represents  
*
bG  (shear modulus) when the wave is in S mode; and  
*
b  represents the density of this model.

Let
* 2 2
b 0 b  

D x x D

   
          =                            

* 2 2
b 0 b  x x                               (8)

where unit length x0 is used for dimensionless of the 
coordinate x.

Fig. 1   Coordinate system of spherical wave propagation

θ
O
φ

O x σ

A A + dx∂x
∂A

σ + dx∂x
∂σ

(a) Coordinate system                           (b) Infi nitesimal body

Fig. 2   Bar model with variable cross-section area
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Substituting Eq. (8) into Eq. (7), the wave equation 
Eq. (7) is transformed into Eq. (6). This shows that the 
wave equation of this model (Eq. (7)) can be equivalent 
to the wave equation Eq. (6) when their material property 
fi elds satisfy Eq. (8). In consequence, the wave equation 
of this model (Eq. (7)) can also be equivalent to the 
spherical wave equation Eq. (1).

3   Equivalent transformation theory

Based on the above derivation, the equivalent 
spherical wave equation and plane wave equation have 
different material property profi les, but the forms of 
their wave velocity functions are the same. Thus, the 
necessary condition of the equivalent transformation 
is that the media have the same form of wave velocity 
profi le.

              
3.1 Description of equivalent dynamic models

Consider three different models that satisfy the 
following material property fi elds:

(1) Model I: Globular model

 
 

constant
constant

D r
r




                            (9)

(2) Model II: Bar model with variable section area

   
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(10)

(3) Model III: Bar model with variable material 
properties

   
   

 
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* 2 2 2 2
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 

 

 
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
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(11)

where bA  and *
bA  are the section area functions of model 

II and III; 0A  is a non-zero constant; and α and β are the 
undetermined coeffi cients.

3.2  Equivalent stiffness coeffi cient and lumped mass

In order to obtain the equivalent stiffness coeffi cient 
and the lumped mass, the equivalent dynamic models 
in Fig. 4(a) (one end of each model is fi xed) are all 
simplifi ed to the dynamic system shown in Fig. 4(b) 
which contains one spring component with an equivalent 
stiffness coeffi cient and one mass component with a 
lumped mass. The variable f denotes the equivalent load. 
These three models have the same form of wave velocity 
function.

Equations (12)‒(14) are the formulations for 
calculating the lumped mass of each model.

34d
3
 

 V
rm V                              (12)

3
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 
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m A x                        (13)

3
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d
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 
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x x A
m A x

x                     
(14)

where m , bm , and *
bm  are the lumped mass of Models 

I, II, and III.
Equations (15)‒(17) are the formulations for 

computing the equivalent compliance coeffi cient of each 
model.
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where s , bs , and *
bs  denote the equivalent compliance 

coeffi cients of Models I, II, and III; and ε denotes an 
arbitrary positive number which is close to zero.

Then, the equivalent stiffness coeffi cient of each 
model can be obtained as follows.

eq 1 4 



 


D rk

s r                            
(18)

O x

A

σ

A + dx∂x
∂A

σ + dx∂x
∂σ

(a)  Coordinate system                           (b) Infi nitesimal body

Fig. 3   Bar model with material property fi elds



No.4      Wang Yao et al.: Theory and application of equivalent transformation relationships between plane wave and spherical wave       777

eq
b

b

1  

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
D xk

s x                               
(19) 
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eq* 0
b * 2

b 0

1  

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

DA x
k
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(20) 

where eqk , eq
bk , and eq*

bk  represent the equivalent 
stiffness coeffi cients of Models I, II, and III.

3.3  Determination of unknown coeffi cients

Through the equivalent property technique, we are 
able to determine α and β.

Let
2

0 0

*
b b

eq eq eq*
b b




 
 

A x
x r

m m m
k k k

               

            

(21)

Then, the undetermined coeffi cients α and β can be 
obtained as follows.

4
  

4


 
                                  

(22)

Therefore, two equivalent relationships can be given, 
where Eq. (23) denotes the equivalent transformation 
from Model I to II, and Eq. (24) denotes the equivalent 
transformation from Model I to III.

 
 
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  2
b

( )
= 4




 
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(24)

Their inverse transformations are valid as well. For 
example, the equivalent transformation from Model III 
to I is shown as Eq. (25).

 
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       
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4
 

4

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



          
      

D x D r r A r D r
x

r r A r rA x
   

(25)

These formulations (Eqs. (23)‒(25)) are useful 
for fi nding the solution of the wave propagation in 
inhomogeneous media.

3.4   Unifi ed model description

In order to present the physical and mathematical 
explanation on the equivalent transformations, a unifi ed 
model is constructed in this section.

The following two functions are introduced to 
replace the material property fi elds and section area 
functions (or wavefront area functions) of the equivalent 
models.

     
   
   

2

b
* *
b b

4
( )

 

  
 



b

D q A q q D q
g q D q A q

D q A q

Model I
Model II
Model III (26)

     
   
   

2

b b
* *
b b

4 Model I
( ) Model II

Model III

 



  
 



q A q q q
h q q A q

q A q

       

(27)

where the variable q is the coordinate of the unifi ed 
model.

Then, the wave equations of the equivalent dynamic 
models can be written as a general form (Eq. (28)) for 
the unifi ed descriptions.

 ( ) 0g q h q
q q

 
  

    
                  (28)

In order to study the harmonic wave motion, let

( , ) ( )exp( i )q t W q t                      (29)

Fig. 4   Equivalent dynamic models

Model I

Model II

Model III

f

f

f

Spring

Lumped mass

f

(a) Diagrams of models                         (b) Simplifi ed dynamic system
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where i is square root of -1; ω denotes frequency; and t 
denotes time.

Then, we have

2( ) ( ) 0Wg q h q W
q q


  

    
            (30)

The above wave equations (Eqs. (28) and (30)) both 
govern the one-dimensional wave motion. The functions 
(Eqs. (26) and (27)) have the specifi c physical meaning. 
The function g(q) denotes the stiffness distribution 
normal to the wavefront; the function h(q) denotes the 
linear density distribution normal to the wavefront. The 
wave speed profi le can be obtained by Eq. (31).

1gc h                              (31)

In Models II and III, the wavefront is fl at, thus 
the distributions are along the direction of wave 
propagation; in Model I, the wavefront is spherical, 
thus the distributions must be radial (or spherically 
symmetrical). When the models are equivalent, the 
stiffness distribution (Eq. (26)) and linear density 
distribution (Eq. (27)) of each model are the same. Then, 
the equivalent formulations (Eqs. (23)‒(25)) can be 
proved tenable.

The stiffness distribution (Eq. (26)) and density 
distribution (Eq. (27)) include both the wavefront area 
and the material properties. The same distributions 
of stiffness coeffi cient and linear density lead to the 
same dynamic behavior and solution form. Therefore, 
the physical essence of the equivalent transformation 
relationships presented in this paper is the equivalent 
relationships between the geometry (such as the area of 
wavefront) and the material properties.

4   Application examples

Based on the equivalent relationships, the analytical 
approaches can be given easily.

4.1   Example I (From Model III to I)

Consider a semi-infi nite bar with the unit cross-
section area as shown in Fig. 3(a), where the material 
property fi elds are denoted as follows.

* 2 2
b 0
* 2 2
b 0

 , 0
 


 









D x x

x
x x                        

(32)

where   and   are both constant. 
The general solution of the spherical wave motion 

in an infi nite homogeneous medium is written as Eq. 
(33) (Achenbach, 1973), when the original point of this 
medium is subjected to a harmonic load.

 1 exp i
4

W kR
R




              
             

(33)

where R denotes the distance to the original point. The 
wave number k can be expressed as follows.

1 2k                                   (34)

Based on the inverse transformation from III to I (Eq. 
(25)), the corresponding solution of the bar model can be 
given directly as Eq. (35), where the bar is subjected to 
an equivalent harmonic load.

1  exp(i )


W kx
x                           

(35)

Equation (35) serves as a basic solution form in this 
paper. Its detail application is discussed in Example III.

4.2   Example II (From model I to III)

We focus on an infi nite radially inhomogeneous 
medium with the globular geometry as shown in Fig. 5(a). 
The material property distributions are defi ned as the 
following forms.

2 2
0
2 2

0 
D r r

r r


 








                               (36)

where unit length r0 is used for dimensionless of the 
coordinate r.

Based on the equivalent transformation relationship 
(Eq. (24)), the equivalent material property fi elds (Eq. 
(37)) are determined for the equivalent Model III.

*
b
*
b

4
 

4


 
 
 

D
  

                               
(37)

Observing Eq. (37), the equivalent material 
properties are homogeneous. We assume a harmonic 
spherical wave exp(−iωt) propagating from r1 to +∞. 
Then, the analytical approach of the displacement fi eld 
can be given as Eq. (38):

1exp(i ( ))W k r r                             (38)
where

1 2k                                  (39)

Equation (38) serves as a basic solution form in this 
paper, too. Its detail application is discussed in Example 
IV.

4.3  Example III (From Model III to I)

Next we pay attention to an inhomogeneous elastic 
half-space as shown in Fig. 5(b). The material property 
distributions as follow depend on the depth z.
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 2
1 1 0

2
2 2 0

0
, , 1,2

0( )
i

i

aD a z b z i
ba z b z

     
       (40)

where z0 is unit length of z-axis; a1, a2, b1, and b2 are all 
constant; and a1b2 = a2b1.

A plane harmonic SH wave is propagating in this 
medium, where the incident angle is θ. The incident 
wave fi eld satisfi es the following condition:

 ( )

0
exp i sini

z
W kx 


                     (41)

where the wave numbers satisfy the following 
relationships.

2 2 1
1 2sin cos

x z
x z

k k k k k b b
c
 

 
     

   
 (42)

                       
The wave equation of this example can be written 

as follows.

2
2

2 0W WD D W
z z x

           
          (43)

We set the solution of incident wave as the following 
formulation (Eq. (44)):

     exp i x
iW z k x                      (44)

where η(z) is a undetermined function only associated 
with the coordinate z. The function η(z) satisfi es the 
following condition.

 0 1                                 (45)

Substitute Eq. (44) into Eq. (43), then we have

2( cos ) 0D
z z

          
            (46)

If ai  > 0, apply the coordinate transformation z= z 
+ b1z0 / a1. Then, the material property fi elds become the 
following forms.

 
 

2 2
1
2 2
2

D z a z
z a z
 
 

                         (47)

Then, the solution of Eq. (46) can be given as Eq. 
(48) based on the basic solution form Eq. (35) and the 
condition Eq. (45).

   1 0

1 1 0

exp i z
b z

z k z
a z b z

  


                (48)

If ai = 0, Eq. (48) can also serve as the exact solution 
satisfying the wave equation Eq. (46) and the condition 
Eq. (45). Thus, the solution of incident wave fi eld is 
obtained as Eq. (49).

( ) 1 0

1 1 0

exp(i( ))i
x z

b z
W k x k z

a z b z
 

         
  (49)

The surface of half space is traction-free. This 
boundary condition can be written as follows.

   

 
0

( ) exp i 0
i r

yz z o
z

W W t
z

 




 
 


    

(50)                 

According to Snell’s law, we set the refl ected wave 
fi eld as the following expression.

    1 0

1 1 0

exp ir
x z

b z
W k x k z

a z b z


 


        (51)

Then, the refl ection coeffi cient γ can be determined as 
the following form based on the traction-free boundary 
condition (Eq. (50)). Seeing Eq. (52), the refl ection 
coeffi cient γ is dependent on the vertical wave number 
kz.

1 1

1 1







z

z

ib k a
ib k a

    
                            

(52)

Therefore, the surface’s displacement fi eld can be 
expressed as Eq. (53). A similar case can be seen in the 
work of Wuttke et al., where the z axis in that work is 
in the opposite direction and the range of ai is different 
(Wuttke et al., 2015).

 1
0

1 1

2i exp i
i

z
xz

z

b kW k x
b k a




                (53)

Fig. 5   Models

O
r1 r

(a) Example II                              (b) Example III

W(i)

θ θ
x

W(r)

Z



780                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.16

Observing Eq. (53), the surface displacement fi eld 
can be viewed as a wave propagating in the x direction 
with apparent wave number ksinθ and apparent phase 
velocity c/sinθ. Except for the case of grazing incidence, 
the apparent phase velocity exceeds c. The amplitude of 
surface displacement fi eld can be given as follows.

1 1
0 2 2 2 2

1 1 1 1c

2i 2 cos
i os




 

 
z

z
z

b k b kW
b k a b k a         

(54)

Viewing Eq. (54), the surface displacement amplitude 
is dependent on the wave number k, the incident angle θ 
and the ratio i ia b . When k decreases or i ia b increases, 
the amplitude decreases; when θ decreases, the amplitude 
increases. The possible range of the amplitude is from 0 to 
2. Figure 6(a) exhibits the surface displacement amplitude 
at different k and 1 1a b ; Figure 6(b) denotes the surface 
displacement amplitude at different k and θ. These two 
fi gures show the following: the effect of 1 1a b  and θ can 
be almost ignored when k is small enough; the effect of 
θ on displacement amplitude becomes obvious when θ 
is close to π/2; and the effect of 1 1a b  on displacement 
amplitude is not very obvious.

4.4   Example IV (From Model I to III)

Now we consider an infi nite globular geometry with 
the radial inhomogeneity as shown in Fig. 5(a). The 
material property fi elds are defi ned by the following 
expressions (Eq. (55)):

 
 

22
0 1 1 0

22
0 2 2 0

D r a r b r

r a r b r





 

 
, 

0
 

0
i

i

a
b







, 1,2i        (55)

where a1b2 = a2 b1.
A harmonic spherical wave exp(−iωt) propagates 

from r1 to +∞.
(1) When 0ia   and 0ib  , the medium is 

homogeneous. Thus, the displacement fi eld can be 

written as Eq. (56):

  1
1exp irW k r r

r
                        (56)

where

       1
1 2k b b                                 (57)

(2) When ai ≠ 0 , apply the coordinate transformation 
1 0 1r r b r a   . Then, we have

 
 

2 2 2
1 0

2 2 2
2 0 

D r a r r
r a r r

 

 

 
 

                         (58)

Since Eq. (58) is similar to Eq. (36), the equivalent 
material parameters of the equivalent Model III can be 
determined as constant. Then, the analytic solution can 
be given as Eq. (59) based on the basic solution form 
Eq. (38).

  1exp iW k r r                       (59)

where
1

2 1  k a a                             (60)

In consequence, there are two possible types of 
displacement fi elds in this example. The one case is that 
the amplitude of the spherical wave decreases with the 
factor 1  r  (see Eq. (56)). Another one is an interesting 
case: the amplitude remains constant (see Eq. (59)), even 
if ai is extremely close to zero.

5   Conclusions

Through the description of the previous sections, 
several conclusions can be obtained.

In this paper, we present the equivalent transformation 
relationships between the plane wave in one-dimensional 
media and the spherical wave in globular geometry with 
the radial inhomogeneity to make the analytical solving 

Fig. 6   Surface displacement amplitude (a) at different wave number k and ratio a 1/b 1 (incident angle θ = π/4) (b)  at different 
              wave number k and incident angle θ (ratio a1/b1 = 0.02)
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easier. By the theoretical derivations, it’s proved that 
the spherical wave problem in this study is able to be 
equivalent to the plane wave problem in bar, and the 
inverse transformations are valid as well. The unknown 
analytical solutions can be given directly based on the 
known analytical solutions of the associated equivalent 
models.

We solve four different examples of wave motion 
problems in the inhomogeneous media based on the 
presented equivalent relationships. We obtain two basic 
analytical solution forms in Examples I and II; investigate 
the wave refl ection on the traction-free surface of 
inhomogeneous half-space in Example III; and exhibit a 
special material property fi elds in Example IV which can 
keep the traveling spherical wave in constant amplitude.

The physical essence of presented equivalent 
transformations is the equivalent relationships between 
the geometry and the material properties. The fi ndings in 
this study can potentially contribute to the development 
of the acoustic, electromagnetic, elastic wave theories in 
inhomogeneous medium.

Acknowledgement

This work is supported by the Scientifi c Research 
Fund of Institute of Engineering Mechanics, China 
Earthquake Administration (Grant No. 2017QJGJ06), 
the National Science and Technology Pillar Program 
(Grant No. 2015BAK17B06), the Earthquake Industry 
Special Science Research Foundation Project (Grant 
No. 201508026-02), the Fundamental Research Funds 
for the Central Universities (Grant No. HEUCF170202) 
and the program for Innovative Research Team in China 
Earthquake Administration.

References

Achenbach JD (1973), “Wave Propagation in Elastic 
Solids,” London: North-Holland.
Awojobi AO (1972), “Vertical Vibration of a Rigid 
Circular Foundation on Gibson Soil,” Géotechnique,  
22(2): 333‒343.
Awojobi AO (1973), “Vibration of Rigid Bodies on Non-
Homogeneous Semi-Infi nite Elastic Media,” Quarterly 
Journal of Mechanics and Applied Mathematics, 26(4): 
483‒498.
Bahar L (1967), “Generalized WKB Method 
with Application to Problems of Propagation in 
Inhomogeneous Media,” Journal of Mathematical 
Physics, 8: 1735.
Boutin C and Auriault JL (1993), “Rayleigh Scattering 
in Elastic Composite Materials,” International Journal 
of Engineering Science, 31(12): 1669‒1689.
Chattopadhyay A, Gupta S and et al. (2012), “Torsional 
Surface Wave in a Self-Reinforced Medium over a 
Heterogeneous Half Space”, International Journal of 

Geomechanics, 12(2): 193‒197.
Chen W and Fish J (2001), “A Dispersive Model for 
Wave Propagation in Periodic Heterogeneous Media 
Based on Homogenization with Multiple Spatial and 
Temporal Scales,” Journal of Applied Mechanics, 68(2): 
153‒161.
Deresiewicz H (1962), “A Note on Love Waves in a 
Homogeneous Crust Overlying an Inhomogeneous 
Substratum,” Bulletin of the Seismological Society of 
America, 52(3): 639‒645.
Dey S, Gupta AK and Gupta S (1996a), “Propagation 
of Rayleigh Waves in a Heterogeneous Incompressible 
Substratum over a Homogeneous Incompressible 
Half-Space,” International Journal for Numerical and 
Analytical Methods in Geomechanics, 20(5): 365‒375.
Dey S, Gupta AK and Gupta S (1996b), “Torsional 
Surface Waves in Nonhomogeneous and Anisotropic 
Medium,” Journal of the Acoustical Society of America, 
99: 2737‒2741.
Dey S, Gupta AK and et al. (2000), “Torsional Surface 
Waves in Nonhomogeneous Anisotropic Medium under 
Initial Stress,” Journal of Engineering Mechanics, 
126(11): 1120‒1123.
Fish J, Filonova V and Kuznetsov S (2012), “Micro-
inertia Effects in Nonlinear Heterogeneous Media,” 
International Journal for Numerical Methods in 
Engineering, 91(13): 1406‒1426.
Gazetas G (1980), “Static and Dynamic Displacements 
of Foundations on Heterogeneous Multi-Layered Soils,” 
Géotechnique, 30(2): 159‒177. 
Hudson JA (1962), “Love Waves in a Heterogeneous 
Medium,” Geophysical Journal International, 6(2): 
131‒147.
Hook JF (1962), “Green’s Functions for Axially 
Symmetric Elastic Waves in Unbounded Inhomogeneous 
Media Having Constant Velocity Gradients,” Journal of 
Applied Mechanics, 29(2): 293‒298.
Kim JH and Paulino GH (2002), “Isoparametric Graded 
Finite Elements for Nonhomogeneous Isotropic and 
Orthotropic Materials,” Journal of Applied Mechanics, 
69(4): 502‒514.
Manolis GD and Bagtzoglou AC (1992), “A 
Numerical Comparative Study of Wave Propagation in 
Inhomogeneous and Random Media,” Computational 
Mechanics, 10(6): 397‒413.
Manolis GD and Shaw RP (1992), “Green’s Function 
for the Vector Wave Equation in a Mildly Heterogeneous 
Continuum,” Wave Motion, 24(1): 59‒83.
Manolis GD, Shaw RP and Pavlou S (1999), “Elastic 
Waves in Nonhomogeneous Media under 2D 
Conditions: I. Fundamental Solutions,” Soil Dynamics 
and Earthquake Engineering, 18(1): 19‒30.
Manolis GD, Rangelov TV and Shaw RP (2002), 
“Conformal Mapping Methods for Variable Parameter 
Elastodynamics,” Wave Motion, 36(2): 185‒202.



782                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.16

Manolis GD, Dineva PS and Rangelov TV (2004), “Wave 
Scattering by Cracks in Inhomogeneous Continua Using 
BIEM,” International Journal of Solids and Structures, 
41(14): 3905‒3927.
McManus TM, Valiente-Kroon JA and et al. (2014), 
“Illusions and Cloaks for Surface Waves,” Scientifi c 
Reports, 4: 5977.
Charalambakis N (2010), “Homogenization Techniques 
and Micromechanics: A Survey and Perspectives,” 
Applied Mechanics Reviews, 63(3): 030803.
Pekeris CL (1935), “The Propagation of Rayleigh Waves 
in Heterogeneous Media,” Journal of Applied Physics, 
6: 133‒138.
Pendry JB, Schurig D and Smith DR (2006), “Controlling 
Electromagnetic Fields,” Science, 312(5781): 
1780‒1782.
Rangelov TV, Manolis GD and Dineva PS (2005), 
“Elastodynamic Fundamental Solutions for Certain 
Families of 2D Inhomogeneous Anisotropic Domains: 
Basic Derivations,” European Journal of Mechanics A/
Solid, 24(5): 820‒836.
Stoneley R (1934), “The Transmission of Rayleigh 
Waves in a Heterogeneous Medium,” Monthly Notices 
of the Royal Astronomical Society Geophysical, 3(S6): 
222‒232.
Vardoulakis I and Vrettos C (1988), “Dispersion Law 
of Rayleigh-Type Waves in a Compressible Gibson 
Half-space,” International Journal for Numerical and 
Analytical Methods in Geomechanics, 12(6): 639‒655.
Vrettos C (1990a), “In-Plane Vibrations of Soil Deposits 
with Variable Shear Modulus: I. Surface waves,” 
International Journal for Numerical and Analytical 
Methods in Geomechanics, 14(3): 209‒222.
Vrettos C (1990b), “In-Plane Vibrations of Soil 
Deposits with Variable Shear Modulus: II. Line load,” 
International Journal for Numerical and Analytical 
Methods in Geomechanics, 14(9): 649‒662.
Vrettos C (1990c), “Dispersive SH-Surface Waves in Soil 
Deposits of Variable Shear Modulus,” Soil Dynamics 
and Earthquake Engineering, 9(5): 255‒264.
Vrettos C (1991a), “Time-Harmonic Boussinesq 
Problem for a Continuously Nonhomogeneous Soil,” 
Earthquake Engineering and Structural Dynamics,  
20(10): 961‒977.

Vrettos C (1991b), “Forced Anti-Plane Vibrations at the 
surface of an inhomogeneous half-Space,” Soil Dynamics 
and Earthquake Engineering, 10(5): 230‒235.
Wang Chengder, Lin Yating and et al. (2010), “Wave 
Propagation in an Inhomogeneous Cross-Anisotropic 
Medium,” International Journal for Numerical and 
Analytical Methods in Geomechanics, 34(7): 711‒732.
Wang Lili (2006), Foundations of Stress Waves, 
Amsterdam: Elsevier Science Ltd. (in Chinese)
Wang Yao, Yang Zailin and Hei Baoping (2013), “An 
Investigation on the Displacement Response in One-
Dimension Inhomogeneous Media under Different 
Loading Speeds,” Journal of Northeastern University, 
34(S2): 18‒21. (in Chinese)
Watanabe K (1982), “Transient Response of an 
Inhomogeneous Elastic Solid to an Impulsive SH-
Source (Variable SH-Wave Velocity),” Bulletin of the 
JSME, 25(201): 315‒320.
Watanabe K and Takeuchi T (2003), “Green’s Function for 
Two-Dimensional Waves in a Radially Inhomogeneous 
Elastic Solid,” Proceedings of IUTAM Symposium on 
Dynamics of Advanced Materials and Smart Structures, 
Vol. 106, Yonezawa, Japan, 459‒468. 
Wilson JT (1942), “Surface Waves in a Heterogeneous 
Medium,” Bulletin of the Seismological Society of 
America, 32(4): 297‒304.
Wuttke F, Fontara IK and et al. (2015), “SH-Wave 
Propagation in a Continuously Inhomogeneous Half-
Plane with Free-surface Relief by BIEM,” ZAMM, 
95(7): 714‒729.
Yang Zailin, Wang Yao and Hei Baoping (2013), 
“Transient Analysis of 1D Inhomogeneous Media by 
Dynamic Inhomogeneous Finite Element Method,” 
Earthquake Engineering and Engineering Vibration, 
12(4): 569‒576.
Zhou XM, Hu GK and Lu TJ (2008), “Elastic 
Wave Transparency of a Solid Sphere Coated with 
Metamaterials,” Physical Review B, 77(2): 024101. (in 
Chinese)
Zhu J, Shah AH and Datta SK (1995), “Modal 
Representation of Two-Dimensional Elastodynamic 
Green’s Function,” Journal of Engineering Mechanics, 
121(1): 26‒36.


