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Abstract: This study proposes a Green’s function, an essential representation of water-saturated ground under moving 
excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic 
medium are derived by means of integral transform. Secondly, the transmission and refl ection matrix approach is used to 
formulate the relationship between displacement and stress of the stratifi ed ground, which results in the matrix of the Green’s 
function. Then the Green’s function is combined into a train-track-ground model, and is verifi ed by typical examples and a 
fi eld test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the 
track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement 
and pore pressure. The variation of vibration intensity with the depth of ground is signifi cantly infl uenced by the layering of 
the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated 
wave fi eld. The proposed Green’s function is an appropriate representation for a layered ground with shallow ground water 
table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.
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1   Introduction

Due to processes of tran sportation and deposition, 
a natural ground commonly consists of horizontal 
layers, beneath which is a fi rm strata or bedrock. This 
feature makes the multi-layered half-space (i.e., an 
underlying half-space overlaid by several horizontal 
layers, as shown in Fig. 1) an adequate mechanical 
model for subgrade or ground of engineering structures. 
Displacement responses of a multi-layered half-space 
to a unit time-harmonic load acting on the surface 
are sometimes referred to as the Green’s functions in 

the frequency domain (Sheng et al., 1999a, b). For an 
arbitrarily distributed time-harmonic load on the ground 
surface, the displacement response can be calculated 
by the convolution of the Green’s function. If the 
excitation is non-harmonic, the Fourier series method 
can be employed to decompose the excitation into a 
number of harmonic components, and the response to 
each harmonic can be carried out one by one based on 
the same Green’s function, and the total response can be 
obtained by superposition.

For linear systems, the Green’s function based 
approach plays a fundamental role in dealing with the 
problem of arbitrarily distributed load, even moving 
load, and the problem of dynamic interaction between 
soil and structures. The train-induced ground vibration 
problem involves both moving excitation and dynamic 
interaction of train-track-ground systems.

During a train running on a track, there are always 
complicated interactions between the train, the track and 
the ground. Coupled vibrations of the three subsystems 
have been modeled in some past studies (e. g., Sheng 
et al., 2003; 2004; Lombaert et al., 2006; Lombaert 
and Degrande, 2009), in which the soil is commonly 
simplifi ed to be a single-phase viscoelastic medium 
governed by Navier’s elastodynamic equation, and the 
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Green’s function of ground is derived with the propagator 
matrix method (Thomson, 1950; Haskell, 1953). By 
taking account of the compatibility at wheel-rail contacts 
in a moving Cartesian coordinate system, the wheel-
rail forces can be worked out and therefore the ground 
vibration is obtained. The single-phase continuum based 
soil model is somewhat straightforward to study the 
dynamics of ground. However, geotechnical material 
is more like a multi-phase medium. For water-saturated 
soil, the relatively incompressible pore water undertakes 
part of stress transfer, and may also be moving relative 
to soil skeleton, creating friction between the fl uid and 
the solid phases. In many cases, the infl uence of the 
groundwater has been so large that the single-phase 
model is incapable of producing reasonable results 
(Beskou and Theodorakopoulos, 2011; Cai et al., 2009). 

Alternatively, the homogeneous poroelastic half-
space has been presented (Jin et al., 2004; Lu and Jeng, 
2007; Lefeuve-Mesgouez and Mesgouez, 2008; Sun et 
al., 2010; Cao et al., 2011) as a more refi ned model of 
ground subjected to moving loads. The homogeneous 
hypothesis has an intrinsic limitation concerning the 
fact of soil layering, which inhibits the consideration 
of invariant soil properties along the depth of ground, 
preventing the application of these models in the study 
of special wave phenomena such as refl ection and 
refraction at interfaces of soil layers. 

Clearly, the multi-layered poroelastic half-space is 
a more realistic representation of natural ground than 
the homogeneous one. The origin of theoretical studies 
on the stratifi ed media, though of single-phase, can be 
traced back to the propagator matrix method (Thomson, 
1950; Haskell, 1953). This approach was often subject to 
numerical diffi culties (overfl ow) in case of thick layers or 
very high wave number due to mismatched exponential 
terms presented in the propagator matrices. Improvements 
have been achieved (Lowe, 1995; Rokhlin and Wang, 
2002; Apsel and Luco, 1983; Luco and Apsel, 1983) by 
decomposing the wave fi eld into downward transmitting 

and upward refl ected parts, which is commonly known 
as the transmission and refl ection matrix (TRM) method. 
Theoretical studies on the layered poroelastic media 
under time-varying moving load can also be found in 
the literature (Siddharthan et al., 1993a, b; Mesgouez 
and Lefeuve-Mesgouez, 2009; Lefeuve-Mesgouez 
and Mesgouez, 2012; Lu et al., 2009; Xu et al., 2007, 
2008; Wang et al., 2015), but the Green’s function were 
usually not presented explicitly. In the case of non-
moving excitation, a dynamic Green’s function has been 
proposed by Zheng et al. (2013), where the excitations 
are buried inside layered media and can be useful in 
modeling vibration from underground facilities.

The objectives of the this research are to: (1) develop 
a theoretical dynamic Green’s function for multi-
layered poroelastic half-space under moving load, (2) 
incorporate the Green’s function into a sophisticated 
train-track-ground model (Sheng et al., 2003, 2004), 
and (3) simulate train-induced ground vibrations with 
groundwater effects included.

To this end, the Fourier integral transforms are 
applied to the three-dimensional Biot’s equation to get its 
exact general solutions, then the TRM approach is used 
to derive the Green’s function for the poroelatstic multi-
layered half-space, and thereafter, the derived Green’s 
function is combined into the coupled train-track-ground 
model. The proposed approach is verifi ed by two typical 
numerical examples in the literature and observed data 
from an in situ test. Simulated vertical displacements, 
excess pore pressures and total stresses are selected to 
demonstrate the features of ground vibration and the 
effect of soil layering.

2    Solutions to governing equation of poroelastic 
    medium in Fourier transformed domain

Consider a fl uid-saturated poroelastic medium in the 
Cartesian coordinate system, and let Ui and wi (i=x,y,z) 
represent the displacements of the solid skeleton and the 
infi ltration displacements of the pore fl uid, respectively. 
The motions of the two phases can be formulated as 
(Biot, 1962),

, c , , f
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where ρ and ρf denote the mass densities of the bulk 
material and the fl uid; m is a density-like parameter, and 
m = τρf/φ, with φ the porosity and τ the void tortuosity; 
b represents the viscous coupling between the solid and 
the fl uid, b = γf /k, with γf the unit weight of fl uid and k 
the coeffi cient of permeability; M and α are known as 
the fi rst and second Biot’s parameters accounting for the 
relative compressibility of the two phases; and λc = λ+α2M, λ 
and μ are the drained Lamé constants for the viscoelastic 
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Fig. 1   Layered half-space model for ground
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porous media. Hysteretic damping of the solid phase can 
be involved by representing the two Lamé constants as 
(Lefeuve-Mesgouez and Mesgouez, 2008; Mesgouez 
and Lefeuve-Mesgouez, 2009; Sheng et al., 1999b),

λ = λ0 [1+2iηsgn(ω)]                        (2a)

μ = μ0 [1+2iηsgn(ω)]                        (2b)

where λ0 and μ0 are the two corresponding undamped 
constants, η is the loss factor and ω is the angular 
frequency of vibration, respectively.

The constitutive relationships have the form of

, , f

f

( )ij ij i j j i ije U U P

P M Me

    

 

   

  

         (3)

where σij is the stress tensor of the bulk medium, Pf  is the 
excess pore pressure and δij is the Kronecker delta. The 
volume of fl uid fl owing out from the unit volume of bulk 
material is given by ε = wi,i, and the dilatation of the solid 
skeleton is e = Ui,i.

In the case of harmonic vibration with an angular 
frequency of ω, all the displacements, stresses and 
strains are of the harmonic form, e. g., the displacements 
are given by,

i( , , , ) ( , , )e t
i iU x y z t U x y z                  (4)

in which the function with a tilde overhead denotes 
the complex amplitude of the time-harmonic quantity. 
Substituting these harmonic expressions into Eq. (1) 
yields,
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Multiplying both sides by gradient operator  , the 
dot products give the equations in terms of volume strain,

2 2 2
c f

2 2 2 2
f

( 2 ) ( )

(i )

e M e

M e M e b m

       

      

       


      

  
  

   (6)

Applying the Fourier transform pairs
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to Eq. (6) to transform from the space domain (x, y) into 
the angular wave number domain (β, γ) yields,
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in which the double prime stands for the second 
derivative with respect to z, and r2 = β2 + γ2. Equation (9) is 
a homogeneous second-order linear ordinary differential 
equation of dilatations. The general solution can be 
written as,
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where A1, B1, A2 and B2 are arbitrary functions depending 
on boundary conditions, and

2 2 2
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Here Vp1, Vp2 and Vs are the phase velocities of P1, 
P2 and S waves of the poroelastic medium, and can be 
obtained by solving the equations
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Note that the P1 wave always propagates faster 
than the P2 wave, so the complex values of Vp1 and 
Vp2 obtained by Eq. (14) should always be chosen to 
guarantee the inequality Re(Vp1) > Re(Vp2). It is also 
worth noticing in Eqs. (13, 14) that in the case of b≠0 
(or k≠∞), all velocities of the three kinds of waves 
are frequency-dependent, i.e., body waves in the two-
phase medium are of frequency dispersion except in the 
extreme condition of totally free fl owing.

By applying the Fourier transform of Eq. (7) on Eq. (5) 
and introducing the volume strain solutions of Eq. (10), 
the displacement solutions are derived as follows, 
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where A3, B3, A4 and B4 are the other four arbitrary 
functions. Considering the constitutive relationships of 
Eq. (3), all stress components can then be obtained as,
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The displacements in Eq. (15) and stresses in Eq. (16) 
may be written as the combined form of matrix,
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positive exponent matrix E+=diag( p1e z , p 2e z ,  e z , e z ),
and negative exponent matrix E-= (E+)

-1=diag( p1e z , 
p 2e z ,  e z , e z ). The parameters d1, d2, t1, t2, g1, g2, b0, 

b1, b2, tb1, tb2, tc1 and tc2 in Eqs. (10)‒(17), and the elements 
in the matrices of Cu+, Cu- Cσ+ and Cσ- are detailed in the 
Appendix. On the right side of Eq. (17), the exponent 
matrices E- and E+ depend on the vertical coordinate z, 
while other terms are independent of z.

3  Formulation of the Green’s function matrix

The n layers in Fig. 1 are numbered successively 
from top to bottom, with the special (n+1)th ‘layer’ 
representing the underlying half-space. The thickness of 
the jth layer is denoted by h(j), and for the underlying 
half-space, h(n+1)=∞. All layers and the underlying half-
space are of poroelastic materials. Within each layer 
the properties are homogeneous, and defi ned by a set 
of material parameters. Each layer has a local Cartesian 
coordinate system with the origin located on its top, and 
the oxyz stands for a global coordinate system with the 
origin on the top surface of the fi rst layer. In the local 
coordinate system, the vertical location z(j) =0 for the 
upper face, and z(j)= h(j) for the lower face of the layer. 
Introducing the superscript j to the quantities, Eq. (17) 
can be rewritten for each of the layers,
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Because at the ground surface z(1) = 0, j
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become identity matrices, and therefore,
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where 1
0u  and 1

0  denote the displacement and stress 
vector of the ground surface.

At the interface of the jth and the (j+1)th layers, the 
displacements and stresses of the upper layer equal those 
of the lower layer. This condition can be written in terms 
of Eq. (18) as,

1 1 1
+ -

1 1 1
+ -

,+ -

,+ -

0
0

j j j
u u
j j j

jj j j
hu u

jj j j
h

 

 

  

  





   
  

  
    
    
      

C C B
C C A

EC C B
EC C A

, j =1, n,         (20)

where  
,

j
hE  and ,

j
hE  denote the exponent matrices j

E  
and j

E  at the bottom of jth layer, respectively. Eq. (20) 
can be rewritten as,

1
,11 12

1
,21 22

1,
0

,
0

jj jj j
h

jj jj j
h

j n







     
      

       


ET TB B
ET TA A   

(21)
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in which the 8 × 8 matrix,

11 1
+ - + -11 12

1 1
+ - + -21 22

j j j jj j
u u u u
j j j jj j
   

 

 

    
     

     

C C C CT T
C C C CT T ,  j =1, n (22)

Introducing a matrix Rj to represent the relationship 
between the vectors Bj and Aj, i.e.,

Bj = RjAj                                (23)

and substituting the relationship of Eq. (23) into Eq. (21) 
yields,

1 1 1
, 11 21 12 22 ,( ) ( )j j j j j j j j j
h h

  
    R E T R T T R T E ,   j =1, n 

(24a)

In the case of the underlying half-space, the 
displacements in Eq. (15) and (16) must approach 0 while 
z goes to infi nity. It can therefore be concluded that any 
coeffi cients of positive exponent terms must equal zero, 
i.e., Bn+1 must be a zero vector. As a result, Eq. (23) of 
the underlying half-space becomes Rn+1An+1=0. Since the 
displacements and stresses in the underlying half-space 
cannot be all zeros, An+1 must not be a zero vector, which 
indicates that,

Rn+1 = 0                        (24b)
must hold. 

Equtions (24a, b) have formulated an iterative 
procedure for calculating the matrix Rj from the 
underlying half-space to the fi rst layer.

Substituting the expression B1 = R1A1 into Eq. (19) 
gives,

1 1
0 0u                               (25)

in which the matrix

1 1 1 1 1 1 1
+ - + -( )( )u u


   C R C C R C          (26)

relates the stresses 1
0  to the displacements 1

0u  of the 
ground surface, and is termed as the dynamic receptance 
matrix, or the Green’s function matrix in the transformed 
domain.

The vertical vibration of ground surface is commonly 
the predominant component; therefore, in most cases of 
modeling ground vibration from trains (e.g. Sheng et al., 
1999a, b, 2003, 2004; Lombaert and Degrande, 2009; 
Lombaert et al., 2006), only the vertical excitation needs 
to be taken into account, and the effect of the two shear 
stresses on the ground surface can be neglected. Then 
for the permeable ground surface, f 0xz yzP        ,
i.e., 1 T

0 =(0,0,0, )zz   in Eq. (25). Thus, the vertical 
displacement,

44( , ,0, ) ( , , ) ( , ,0, )z zzU                   (27)

Applying the inverse Fourier transform defi ned in 
Eq. (8) to Eq. (27) yields the following convolution,

44( , ,0, ) ( , , ) ( , ,0, )d dz zzU x y x r y s r s r s    
 

 
                

(28)

where ( , , , )zU x y z  , 44 ( , , )x y   and ( , , , )zz x y z   are 

the inverse transforms, respectively, of ( , , , )zU z   , 

44 ( , , )     and ( , , , )zz z    . According to the 
physical meaning of the convolution, 44 ( , , )x y   is the 
amplitude of the vertical displacement response at the 
point (x,y) to a vertical harmonic excitation eiωt acting 
at the origin, which indicates that 44 ( , , )x y   is the 
vertical displacement Green’s function in the frequency-
space domain, and 44 ( , , )     represents its transform 
in the frequency-wave number domain.

If the harmonic load with an angular frequency 
Ωk moves along the x axis with a speed c, the single 
frequency of the load may excite infi nite frequency 
contents of the ground vibration. The relationship 
between the frequency of excitation and the frequency 
of ground vibration ω can be written as (Sheng et al. 
1999b),

ω = Ωk – βc                            (29)

Substituting Eq. (29) to Eq. (26) results in the 
Green’s functions for moving load. In this case, the 
inverse Fourier transform of the Green’s function with 
respect to (β, γ) is the complex amplitude of the ground 
vibration in a coordinate system (x*, y) traveling together 
with the load, where the moving coordinate x* = x - ct.

In summary, the implementation of calculating the 
Green’s function is as follows:
 calculate every layers’ coeffi cient matrices   +

j
uC , 

-
j

uC , +
j
C , -

j
C and exponent matrix ,

j
hE  in terms 

of their specifi c expressions listed in the Appendix;
 carry out all interface matrices 11

jT  , 12
jT , 21

jT  and 
22

jT  according to Eq. (22);
 iteratively calculate each layer’s matrix Rj 

according to Eq. (24)   from bottom to top; 
 calculate the Green’s function matrix δ in terms 

of Eq. (26).
In dealing with moving excitations, the frequency ω 

should be replaced by Ωk – βc as Eq. (29).

4  Model of train-track-ground coupled 
       vibration

Figure 2 illustrates the mechanical model of the 
train, the track and the ground (Sheng et al. 2003, 2004). 
The train is simplifi ed as a mass-spring-dashpot system, 
with the mass matrix being MT and complex stiffness 
matrix KT. The track is infi nitely long in the x direction, 
and has a contact width of 2bt with the ground. The 
rails are modeled as an infi nitely long Euler beam, of 
which the mass per unit length is mR, and the fl exural 
rigidity is EI. The sleepers are modeled by a distributed 
mass along the track direction x, with the mass per unit 
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length being ms. The rail pads are approximated by a 
continuous spring distributed along the x direction, with 
the spring stiffness kp. The embankment is simplifi ed by 
means of consistent mass approximation with a mass 
per unit length mB, and only the vertical stiffness kB is 
taken into account. Material damping effects of all track 
components are formulated similar to Eq. (2), and EI, 
kB and kp are all complex numbers with loss factors in 
their imaginary parts. For the train and the track, only the 
vertical dynamics are considered. The interactive stress 
between the embankment and the ground is assumed 
to be vertical and uniformly distributed along the y 
direction.

The fi rst step of modeling is to calculate the 
response of the track-ground subsystem excited by a 
time-harmonic load ie k t  moving on the track with the 
train speed c. The governing equations for the rail beam, 
sleeper mass and the embankment are as follows (Sheng 
et al., 1999b),

4 2
1 R 1 p 1 2( ) ( ) ( ) ( ) ( ) 1kEI w c m w k w w               

(30a)

2
s 2 p 2 1 2( ) ( ) ( ) ( ) ( )k c m w k w w F            

  
(30b)

2
2B

3

22
B

3 3

2 1 ( )( )
1 26 ( )

( )1 1 ( )
1 1 ( ) ( )

k wm c
w

Fw
k

w F

 



 

   
   

   
                





           (30c)

The displacement continuity at the interface of the 
embankment and the ground can be written as,

 3
1( ) ( , , 0, )d

2 z kw U z c     



  

 
     (30d)

and the continuity of the stress is,

t
3

t

sin
( , ,0, ) ( )zz k

b
c F

b


     


           (30e)

There are seven unknown functions to be determined 
in the six equations above, where w1 is the vertical 

displacement of the rail, w2 is the displacement of the 
sleeper, w3 is the displacement of the embankment’s 
bottom, F2 is the interactive force between sleeper 
and embankment, F3 is the interactive force between 
embankment and ground, Uz is the vertical displacement 
of ground surface, and σzz is the vertical stress on the 
ground, respectively. Equation (27) describes the 
relationship between Uz and σzz, which is the needed 
seventh equation, so that the seven unknowns can be 
determined.

Multiplying the obtained stress solution 
1 T
0 =(0,0,0, )zz  to the Green’s function matrix δ in 

terms of Eq. (25) results in the displacement vector of the 
ground surface 1

0u , then the arbitrary functions A1 and B1 

for the fi rst layer can be obtained by solving Eq. (19). 
Other arbitrary functions Aj and Bj , j=2, n+1, can be 
determined successively by using Eq. (21). The responses 
 T{ , , , }z x y zw U U U   u  and T

f{ , , , }xz yz zzP         at any 
depth of the ground can be calculated according to Eq. 
(18). The inverse Fourier transform of the solutions in the 
wave number domain yields their complex amplitudes 
in the moving space domain *( , , )x y z ; e.g., the inverse 
transforms of rail displacement 1( )w   and ground 
displacement ( , , )zU z   are 1 *( )w x  and *( , , )zU x y z , 
respectively.

The second step of modeling the train-induced 
ground vibration is to derive the wheel-rail forces 
under the condition of harmonic wheel-rail unevenness 
(Sheng et al., 2004). In this case, the vertical location 
of the wheel-rail contact point is harmonically varying 
with the x-coordinate, and the spatial wavelength of the 
unevenness is λk=2πc/Ωk. Thus the axles must oscillate 
up and down in a time-harmonic way with the frequency 
being Ωk/2π when the train is travelling at the speed of 
c. The harmonic motions of the axles result in a series 
of time-harmonic forces acting on all the wheel-rail 
contacts moving along the track. If the initial location 
of the lth and mth wheelsets are x = al and x = am at the 
time t = 0, the horizontal distance of the two points is 
( )l ma a , and 1( )l mw a a  is the transfer function of 
the track-ground subsystem between the two wheel-
rail contact points. All transfer functions of every two 
wheel-rail contact point constitute a matrix HR, in which 
the element of the lth row and mth column is given by,

R
1( )lm l mH w a a  , l, m=1,M,               (31)

and M is the total number of axles of the train. Thus, the 
vertical displacements of rail can be written as,

R R= Z H P                            (32a)

in which the vector  T
R R1 R 2 R, ,..., Mz z z   Z  collects 

the displacement amplitudes of the rail at all wheel-

rail contact points;  T

1 2, ,..., MP P P   P  denotes the 
amplitudes of the wheel-rail dynamic forces.

The motion equation of the train is given in the 

Rail
Rail pad
Sleeper

Embankment

Train Track
x

y

z

Ground

c

Fig. 2   The coupled train-track-ground system
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frequency domain as,
2

T T T Tk     M Z K Z BP                (32b)

where  T
T T1 T2 T, ,..., Nz z z   Z  collects the displacements 

and rotations at all the degrees of freedom N of the train 
model; B is a matrix for transforming degrees of freedom, 
and BT=[0, I]M×N, I is a M-dimension identity matrix. The 
displacements of the axles constitute a sub vector of the 
displacement vector for all degrees of freedom, i.e.,

T
w T Z B Z                         (32c)

Each vertical displacement of axle in w
Z  is composed 

of three parts, which are the deformation of the wheel-
rail contact, the uneven vertical location of the contact 
(wheel-rail unevenness), and the vertical displacement 
of the rail, i.e., 

-1
w h R= + +   Z K P Z Z                (32d)

in which -1
h
K P  represents the deformation of wheel-

rail contact, with the matrix Kh =diag[ h1k , h2k ,…, hMk ],
hlk  the stiffness of linearized Hertz spring between the 

rail and the lth wheelset; the vector ( )kZ  ={ 1i /e k a c ,
2i /e k a c ,…, i /e k Ma c }T collects the wheel-rail unevenness 

perceived by all the wheels.
After some simple manipulations of Eq. (32), the 

wheel-rail force vector can be solved as,
1-1

R w h


   = + + P H H K Z                (33)

The fi nal step of the modeling is to calculate the 
ground vibration caused by the wheel-rail forces and by 
random wheel-rail uneven contact. Ground responses 
under condition of the harmonic wheel-rail unevenness 
can be obtained by superimposing the responses to 
moving harmonic loads with the wheel-rail forces 
in Eq. (33) being weighting factors, e.g., the vertical 
displacement amplitude of ground in the moving 
reference of coordinate,

,P * *
1

( , , ) ( , , ) ( )
M

z z l l k
l

U x y z U x a y z P 


         (34)

For some point ( , , )x y z  in the fi xed Cartesian system, 
the displacement time history of ground is,

i
,P

1
( , , , ) ( , , ) ( )e k

M
t

z z l l k
l

U x y z t U x ct a y z P 


      (35)

Fourier transform Eq. (35) with respect to time t gives 
the spectrum of the vertical displacement ,PzU ,

*

i ( )/c

1

i ( )/c i ( )/c
* *

( , , ; ) ( )e

1 e ( , )e d

l k

k k

M
a

Uz k l k
l

x x
z

S x y P

U x y x
c

 

   

    



  



 
   

 
 
  







     

  

(36)

In reality, the wheel-rail unevenness is a random 
process extended along the track direction x, which 
may be decomposed into infi nite contents with different 
wavelengths. The total response to the random wheel-
rail unevenness is the superposition of the responses to 
each of the harmonic wheel-rail unevenness with a single 
wavelength. The power spectral density (PSD) response 
can therefore be derived as follows (Sheng et al. 2004),

2 2

1

2

( , , , ) [ ( , , , ; ) ( , , , ; ) ]

( ) ( , , , ;0)

Uz Uz k Uz k
k

z k Uz

P x y z S x y z S x y z

P v v S x y z

    







  

 



 
(37)

in which ( )z kP v  is the PSD of wheel-rail unevenness 
with the wave number =1/k kv   and v  the sampling 
interval; SUz(x,y,z,ω;0) represents the spectrum of 
vertical displacement response to the quasi-static axle 
loads (Takemiya and Goda, 1998) due to gravity of the 
train.

5   Numerical results and discussions

5.1  Verifi cations

Two typical examples in the literature of layered 
half-space will be computed based on the proposed 
Green’s function. One is a layered half-space loaded by 
strip-distributed stress whose position is fi xed on the 
surface, the other is still a layered half-space but excited 
by a moving strip load with a constant speed. Then the 
Green’s function together with the train-track-ground 
model is further verifi ed by an in situ test of the ground 
vibration caused by urban railway traffi c. 
5.1.1 Comparisons with existing numerical results

Responses of layered half-space to harmonic load 
with fi xed position

The dimension of a layered half-space is shown in 
Fig. 3 (Rajapakse and Senjuntichai, 1996; Liu and Zhao, 

4 m

Layer 1

Layer 2

2 m

2 m

x

Underlying half-space

z

Q0e
iΩt

Fig.  3     Geometry of poroelastic layered systems C, D and dry elastic 
                layered system, after Rajapakse and Senjuntichai  (1996)

.

.
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2013). Three sets of material properties, System C, 
System D and dr y layers, are considered in this example. 
The values of poroelasitc parameters are listed in Table 1 
and Table 2. Biot (1962) indicated that the mechanical 
behavior of a solid phase may approximate that of a 
single phase medium if the three parameters ρf, M and b 
approach 0. Accordingly, the properties of the dry layers 
are set as ρf = 0.0001kg/m3, M = 0.0001 Pa and b =0; μ0, 
λ0, and ρ are assigned as Table 1; lost factor of the solid 
skeleton is η = 0.005.

The time-harmonic vertical load has a frequency Ω 
and an amplitude Q0=1/4 Pa, acting on the surface of 
the layered half-space with a fi xed position. The loading 
area is a strip perpendicular to the x-z plane. The problem 
considered here is therefore of plane strain (i.e., P-SV 
mode), which makes the y-direction’s wave number γ=0. 
The load amplitude in the wave number domain is given 
by,

sin(2 ) / (2 )zz                          (38)

According to Eq. (27) the displacement of ground 
surface,

44 ( ,0, )sin(2 ) / (2 )zU                    (39)

in which the frequency of ground vibration ω/2π is 
the same as the excitation frequency Ω/2π because the 

moving speed of the load is zero. Taking advantage of 
the FFT, the inverse Fourier transform of zU  from the   
domain to the x domain can be carried out numerically. 
Altogether, 8192 points have been sampled with the 
interval of 0.001(rad∙m-1) in the FFT implementation.

Figure 4 shows the variation of the maximum 
displacements of ground surface as the frequency 
increases. The quantities shown are non-dimensionlized. 
The dimensionless displacement * (1) (1)

0 0/z zU U Q h   

and the dimensionless frequency (1) (1) (1)
0/h    , 

where μ0
(1), h(1), ρ(1) are the shear modulus, thickness 

and mass density of the material in the fi rst layer. Also 
shown in Fig. 4 are the numerical results of Rajapakse 
and Senjuntichai (1996) and Liu and Zhao  (2013). It can 
be seen that the results obtained by the proposed method 
are close to those of the references.
Responses of layered half-space to moving strip load

When the time-harmonic load moves along the x 
direction with a speed c, Eq. (39) becomes,

44 ( ,0, )sin(2 ) / (2 )zU c               (40)

The inverse Fourier transform from the β domain to 
the space domain yields the vibration amplitude *( )zU x   
in the moving frame of reference x* = x - ct. For a particle 
of the ground surface, e.g., the point situated at the origin 

Table 1   Material properties of the layered system excluding the values of b, after Rajapakse and Senjuntichai (1996)

μ0 (MPa) λ0  (MPa) M  (MPa) ρ (kg∙m-3) ρf  (kg∙m-3) m  (kg∙m-3) α
First layer 250 500 2500 2000 1000 3000 0.95

Second layer 125 188 1880 1600 1000 1800 0.98
Underlying half-space 1000 1000 2000 2400 1000 4800 0.90
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Fig. 4   Maximum vertical displacements of the ground surface due to time-harmonic strip loads with a fi xed position
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Table  2   Values of parameter b for different poroelastic layered 
                systems, after Rajapakse and Senjuntichai (1996)

First layer Second layer Half-space
b(1) b(2) b(3)

(MPa∙s∙ m-2) (MPa∙s∙ m-2) (MPa∙s∙ m-2)
System C 0.30 0.75 4.50
System D 7.50 0.75 4.50
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Fig. 5  Time domain responses at point (0,0) of poroelastic layered systems D subject to moving loads, with speed = 20 m/s.
              (a) Frequency of load  Ω/2π = 0; (b) Frequency of load  Ω/2π = 10 Hz

(0, 0) in Fig. 3, the time history of vibration may be 
computed as,

i( , ) ( )e t
z zU x t U x ct                   (41)

For a point located inside the ground, other quantities 
involved have to be obtained before Uz is calculated. 
The displacements of ground surface 1

0u  should be 
computed in terms of Eq. (25), where the stress vector 

1 T
0 ={0,0,0,sin(2 ) / (2 )}  . Then the functions A1 and 

B1
 are worked out by solving Eq. (19), and Aj+1 and Bj+1 

may be determined in terms of Eq. (21) successively. 
The displacement zU  at an arbitrary depth z is therefore 
obtained by Eq. (18).

The computed time histories of dimensionless Uz at 
(0, 0) point of ground D are presented in Fig. 5, where 
the time t = 0 corresponds to the moment that the center 
of the load exactly passes the origin with the speed c = 
20m/s. In the case of quasi-static load (i.e., Ω = 0), as 
shown in Fig. 5a, the particle moves gradually down to 
a maximum and then come back to its original location. 
No upward displacement has been observed in the time 
history. In contrast, if the frequency of load Ω is NOT 
zero, the particle oscillates up and down repeatedly, as 
shown in Fig. 5(b).

One of the properties of a fl uid-fi lled porous medium 
is the existence of P2 (or slow P) wave. It can be seen in 
Eq. (15) that the vertical displacement zU  is composed 
of eight parts, of which two are related to the P2 wave 
via the parameter p2 . The summation of the two parts, 

p 2 p 2
p2 2 2 p2 2 2e ez zg A g B    , is called Slow P Wave 

Effect, and its time histories are also plotted in Fig. 5. 
It is interesting that the slow P wave effect is not in-
phase with, sometimes even inverse, to the displacement 
of soil skeleton, though the effect is actually a part of 
the Uz according to Eq. (15). This result is consistent 
with the idea that in the fl uid-borne slow P wave, the 
fl uid phase moves in the opposite direction to the solid 
phase (Lo et al., 2007). This motion of fl uid may lead to 
an inverse effect on the displacement of the solid phase, 
which may counteract the displacement of the skeleton-
borne fast P wave and shear wave. The total value of 
solid displacement is a combined effect of slow P wave, 
fast P wave and shear wave. It should be mentioned that 
the slow P wave effect can be quite notable, as shown 
in this numerical example for silty sand under moving 
traffi c load. This indicates that though the slow P wave 
attenuates rapidly and can hardly be observed in the fi eld 
(Klimentos and Mccann, 1988), its effect should not be 
neglected in the case of moving excitations, because the 
slow P wave may be excited and carried by the moving 
loads.

Another typical stratifi ed poroelastic ground model 
(Siddharthan et al., 1993b; Theodorakopoulos, 2003) is 
shown in Fig. 6, where the soil is supposed to be a layer 
of medium dense sand beneath which is impermeable 
bedrock. The material properties for the model are 
listed in Table 3. Because the example neglected the 
compressibility of porous fl uid (Siddharthan et al. ,
1993a, b), an extraordinary large value has been 
assigned to the parameter M which describes the relative 
compressibility among skeleton, solid grain and fl uid. In 
order to simulate the impermeable and fi xed boundary, 
large values are assigned to the Lamé constants, the mass 
density and the parameter M, while very small values are 
set to the permeability and porosity for the underlying 
half-space. The strip load on the ground has a constant 
magnitude Q0= 400 kPa.

Figure 7 presents the peak value of Uz inside the 
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ground, where the results from the two above references 
are also depicted. The maximum displacement attenuates 
in the ground as the depth increases. Since the computed 
results have again been very close to those of the 
references, it may be concluded that the proposed Green’ 
function works properly.  
5.1.2 Comparison with data measured in the fi eld

Ground vibrations were measured at a location 
(40.4118°N and 116.2096°E, identifi ed by GPS) beside 
Line 13 of the Beijing Urban Railway (Wang et al., 
2011), where the trains traveled between the stations of 
Huilongguan and Huoying with a speed about 60km/h 
(i.e., 17 m/s) along the track on the ground surface. 
The DKZ5 train, manufactured by Changchun Railway 
Vehicles Co., Ltd, consists of two locomotives and two 
carriages. Figure 8 shows the confi guration of the train. 
Each of the vehicles is supported by two bogies and has 
four axles. The track in the measuring section is of the 
classic ballast type. The stochastic characteristics of 
the wheel-rail random unevenness were obtained by an 
inversion procedure (Wang et al, 2012). Figure 9 gives 
the PSD of the wheel-rail unevenness with respect to the 
spatial wavelength along the direction of the track.

A soil investigation was carried out in the measuring 
section. Figure 10 shows the plan of four boreholes 
BH1-BH4 near the track. The top soil is a layer of 
miscellaneous fi ll that is about 0.8 m thick. A silt layer 
under laid the top soil to a depth of 15 m below the 
ground surface. The underlying soils are fi ne sand and 
silty clay. Figure 11 gives the soil profi le of the ground, 
where the shear wave velocities were measured by 
suspension logging instruments.

Accelerometers were installed at fi ve points of the 
ground surface and arranged in a line perpendicular 

to the track, as shown in Fig. 10. The distances of the 
observation points to the track centerline were 10 m, 20 m, 
40 m, 50 m and 60 m, respectively. Acceleration time 
histories were measured with a sampling frequency of 
200 Hz during the passage of an urban train. Altogether, 
80 time histories were obtained for the passage of 16 
trains. 

Figure 12 shows one group of the vertical acceleration 
time histories. The PGAs (peak ground accelerations) are 
0.23 m/s2, 0.16 m/s2, 0.04 m/s2, 0.02 m/s2 and 0.02 m/s2, 
respectively, at the observation points of P1 to P5. This 
indicates that in the immediate vicinity of the track, the 
vibration attenuates very quickly from P1 to P3, whereas 

Table  3   Material properties of the layered system for the case of moving strip load

h(j) (m) μ0 (MPa) λ0 (MPa) M (MPa) ρ (kg∙m-3) ρf (kg∙m-3) k (m∙s-1) τ α η φ
Sandy layer 18 77 180 1.5×108 1816 1000 1.0×10-5 1.0 1.0 0.05 0.40

Underlying half-space ∞ 20000 15000 1.5×109 4500 2000 1.0×10-7 1.0 1.0 0.05 0.05

c = 20 m/s
Q0 x-ct

4 m

18 m

Medium dense sand

Impermeable fi xed boundary

z
Fig. 6  Geometry of poroelastic ground for the case of moving 
            strip load
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in the further area from P3 to P5, the attenuation is 
slower.

The time history at the nearest observation point 
P1 has fi ve apparent ‘groups’, as indicated by the fi ve 
arrows in Fig. 12. These are the results of the passage 
of fi ve groups of wheels. Each vehicle in the urban 
train has two bogies under the two ends of the car body. 
At one connection of two vehicles, there is a group of 
wheels under the bogies of the two neighboring ends. 
The train has four vehicles; consequently, there are three 
wheel-groups under the three connections. Together 
with the two wheel-groups under the fi rst and last bogies 
of the train, the number of the groups totals fi ve. The 
wheel-group effect can be easily identifi ed in the time 
history of P1. However, when the distance increases to 
20m or further, because of the complicated interference 
of vibrations, the effect can hardly be seen in the time 
histories.

By using the periodogram method, PSDs of 
acceleration were estimated based on the recorded time 
histories, as shown in Fig. 13. Within the area from 10 m 
to 60 m beside the track, the main frequency range 
of ground vibration is from 10 Hz to 80 Hz. Higher 
frequency contents dominate the vibrations of near 
points, and lower frequency vibrations are the main 
contents for the further points, which indicates that 
higher frequency contents attenuate more quickly than 
lower ones with the distance from the track increases. 

The PSD of acceleration can be transformed to 
the vibration acceleration levels (VALs) at the center 
frequencies of one-third octave bands. In terms of the 
China National Standard, measurement method of 
environmental vibration of urban area (GB10071-88), 

,rms 0VAL 20lg( / )zU a                 (42)

in which a0=1×10-6 m/s2 is the reference acceleration; 

,rms du

l
z UzU P




  

  is the effective value of the vertical 

acceleration; UzP  is the PSD of the acceleration; and ωl 
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and ωu are the lower and upper limits of the one-third 
octave band. The estimated vibration levels based on the 
observed data are plotted in Fig.14.

The procedure of section 4 is used to simulate the 
fi eld test. Parameters needed for modeling the train and 
the track are listed in Table 4 and Table 5, respectively, 
where the values are estimated based on design 
documents. Table 6 shows the ground soil properties 
from the soil investigation. The ground water table of 
this site is quite low, so very small values are assigned 
to the three parameters as M = 0.0001 Pa, b = 0 and ρf= 
0.0001 kg/m3. The computed PSDs of ground vibration 
are also transformed to the vibration levels, as shown in 

Fig. 14. It can be seen that in general, the agreements 
between the computed and the observed results are quite 
good at the observation points with different distances 
to the track. This indicates that the proposed Green’s 
function, together with the train-track-ground model, is 
able to properly simulate the ground vibration caused by 
railway traffi c.

5.2   More resu  lts of numerical simulation

As the ground water effect is diffi cult to investigate by 
the in situ observation, the proposed model is employed 
to numerically study the train-induced vibrations of 
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Fig. 14   Comparison between the simulated values and the observed values of the vibration acceleration levels (VALs) at the 
                observation points on the ground surface

Table 4   Parameter values for the vehicles

Parameter Unit Carriage Locomotive
Mass of the car body kg 4.5×104 5.0×104

Mass of bogie kg 2.8×103 3.0×103

Mass of wheelset kg 1.8×103 1.8×103

Pitch inertia moment of the car body kg·m2 1.4×106 1.5×106

Pitch inertia moment of the bogie kg·m2 2.2×103 2.1×103

Primary vertical stiffness per axle N/m 2.5×106 2.5×106

Secondary vertical stiffness per axle N/m 1.0×106 1.0×106

Primary vertical viscous damping N·s/m 1.2×105 8.0×104

Secondary vertical viscous damping N·s/m 1.1×105 6.0×104

Distance between bogie centers m 12.6 12.6
Distance between axles under a bogie m 2.0 2.0
Radius of the wheel m 0.42 0.42
Total length of the car m 19.0 19.0

Table  5   Parameter values for the track structure

Component Notation Parameter Value 
Rail mR Mass per unit length 121 kg/m

E0I Flexural rigidity 1.3×107 N·m2

ηR Hysteric damping ratio 0.005
Rail pad kp0 Undamped stiffness 3.5×108 N/m2

ηP Hysteric damping ratio 0.075
Sleeper mass ms Mass per unit length 416 kg/m

Layer of  ballast embankment mB Mass per unit length 2400 kg/m
kB0 Undamped stiffness per unit length 1.45×107 N/m2

ηB Hysteric damping ratio 0.05
2bl Contact width with the ground 4.50m

VA
L 

(d
B

 re
 1

0-6
 m

/s
2 )

VA
L 

(d
B

 re
 1

0-6
 m

/s
2 )



No.2     Wang Futong et al.: Green’s function of multi-layered poroelastic half-space for models of ground vibration due to railway traffi c    323

ground with shallow water table. For this purpose, 
an appropriate number of layers and the thickness of 
each layer for the poroelastic half-space should be 
determined. The geometric parameters depend on both 
soil profi les in the fi eld and intentions of the modeling. 
Generally speaking, a model ground with many layers 
seems closer to the reality than the one with several 
layers. Too many layers, however, might contribute 
too much infl uence on the simulation. The results can 
therefore be too complicated to show useful meanings. 
The simulation presented in this section aims to reveal 
general features of water-saturated soil layers under 
railway, rather than for a specifi c engineering project. 
Thus the ground is represented by a simple model that 
consists of two layers and one underlying half-space, as 
listed in the Table 7. The thicknesses of the soil layers 
are determined by taking account of the depth of the 
ground, within which the energy of the Rayleigh wave 
cannot be ignored. As observed in the fi eld, the main 
frequency content ranges are from 10Hz to 80Hz for 
the ground vibration from trains. For the phase velocity 
of about 200m/s, the corresponding range of Rayleigh 
wave length is approximately from several meters to 
over twenty meters. The 8m thick layers make it possible 
that all interfaces of soil within the depth of the Rayleigh 
wave have an impact on the ground vibration.

The material for underlying half-space is selected 
to be a water saturated Berea sandstone, which is a 
sedimentary rock whose grains are predominantly 
sand sized and composed of quartz bonded by silica 
(Mesgouez & Lefeuve-Mesgouez, 2009; Gerasik and 
Stastna, 2008). The material of the second layer is a 
water saturated sand of Mol (Mesgouez and Lefeuve-
Mesgouez, 2009; Degrande et al., 1998), which is also 
composed of quartz particles but is much softer than 
the underlying Berea sandstone. The surface layer has 

the same properties as those of the second layer, except 
for the parameters of ρf, M and b whose values are very 
small to represent a dry layer of ground surface. 
5.2.1 Vibration levels of ground surface 

The simulated vibration levels at three surface 
points, with distances of y = 10 m, 20 m and 30 m from 
the track, respectively, are compared in Fig. 15. Overall, 
the surface vibration tends to decrease was the distance 
from the track increases. From the point of y = 10 m to 
the point of y = 20 m, vibration levels of all frequencies 
are decreasing. The attenuation values in the frequency 
bands of 10 Hz and 12.5 Hz are smaller than those in 
other frequency bands. From y = 20 m to y = 30 m, 
the attenuation is slower than that from 10 m to 20 m, 
especially in the very low frequency bands under 4 Hz.
5.2.2 Patterns of vibration under midline of track 

As mentioned in Section 4, the random wheel-rail 
unevenness can be deemed as a superposition of a series 
of harmonic unevenness, and the random vibration of 
ground is a combined effect of the vibrations caused 
by all harmonic contents of the unevenness. Assuming 
that the amplitude of harmonic unevenness is 1mm, 
and the frequencies perceived by wheels Ωk/2π = 0, 4, 
8, 16, 31.5, 63 Hz, respectively, calculate the ground 
vibration in the moving coordinate system (x*= x-ct, y, z) 
in terms of Eq. (34). Note that under the condition of 
Ωk/2π = 0, no fl uctuation occurs at wheel-rail contact 
points, and each of the wheel-rail load is the quasi-static 
load whose magnitude equals the gravity of train shared 
by the wheel. The computed patterns of displacement 
Re( ,PzU ) and excess pore pressure Re( f,PP ) at y = 0, z = 1.2 m 
(the location is directly below the midline of the track 

Table 6   Parameter values for the ground

h(j) (m) μ0 (MPa) λ0 (MPa) ρ (kg/m3) Vs (m/s)
3.0 45 67 1800 158
4.0 56 84 1950 169
1.0 63 94 2000 177
1.0 65 97 1950 183
1.0 70 105 2000 187
2.0 74 111 1900 197
1.0 84 126 2050 202
1.0 85 128 1950 209
∞ 99 148 1950 225

Table  7   Material properties of the poroelastic layered ground for the case of coupled train-track-ground vibration

h(j) (m) μ0 (MPa) λ0 (MPa) M (MPa) ρ (kg∙m-3) ρf  (kg∙m-3) k (m∙s-1) τ α η φ
First layer 1.0 112 223 0.0001 2010 0.0001 1.000×108 1.789 1.0 0.05 0.388
Second layer 7.0 112 223 5178 2010 1000 1.019×10-4 1.789 1.0 0.05 0.388
Underlying
half-space

∞ 7020 5690 9710 2315 1000 3.600×10-6 2.400 1.0 0.05 0.200
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and within the saturated sand near the top of the second 
layer) are presented in Fig. 16. In each of the graphs, the 
left tick labels are for displacement and the right for pore 
pressure. Downward displacement and compressive 
pressure are supposed to be positive in this fi gure. The 
train is moving toward the positive direction of the x-ct 
axis, and is at the position from x-ct = 0 to x-ct = -76 m.

The curves of Ωk/2π = 0 show that the displacement 
shape under the quasi-static loads is quite similar to the 
ground settlement under static loads. The displacement 
of any point is positive, which indicates that the soil 
skeleton has only downward displacement without 
upward fl uctuation. The peaks of the displacement curve 
correspond right to the locations of bogies. The excess 
pore pressure, however, is obviously different from its 
distribution under static loads. Both positive and negative 
values of the pressure appear, which means that the 
pore water pressure increases somewhere but decreases 
elsewhere in the ground. Each positive peak is under the 
front wheel of a bogie and does not appear under the 
back wheel of the bogie, which may be interpreted as an 
effect of moving load. When the front wheel is coming, 
the soil is squeezed, and the water pressure is rising. 
After the front wheel rolls away, the resilient dilation of 
the compressed soil may result in a sharp drop of the 
water pressure. The pressure cannot reach a positive 
peak when the back wheel of the bogie arrives, though it 
may compensate for the water pressure to some extent. 

Once the wheel-rail force frequency Ωk/2π is not 0, 
the displacements and stresses of the ground are time-
harmonically varying in the moving reference system. 

The curves shown are the amplitudes of the vibration. 
In the condition of very low frequency (Ωk/2π = 4 Hz), 
the curves of displacement and the excess pore pressure 
are similar, especially under the four bogies of the fi rst 
two vehicles. When the excitation frequency becomes 
higher, the two curves are no longer in phase. The 
vibrations attenuate very quickly ahead of and behind 
of the train when the frequency Ωk/2π is not more than 
8Hz. For higher frequencies of wheel-rail excitation, the 
vibration has a much wider infl uence range along the 
track direction.
5.2.3  Vibration attenuation with depth under midline of 
           track 

The maximum of the absolute value of the function 
,PzU  along the x-ct axis represents the vibration intensity 

of the vertical displacement. Fig. 17 shows the variation 
of this intensity under the midline of the track when 
the depth  increases in the ground. Also shown are the 
intensities of excess pore water pressure max[abs( f,PP )], 
and the vertical total stress max[abs( ,Pzz )]. The 
frequency of wheel-rail force is selected to be 4, 16 and 
64Hz, respectively, to represent low, medium and high 
frequency of excitation.

In the fi rst layer, the computed excess pore pressure 
are almost zero, which indicates that the propose method 
is able to make a proper simulation for a dry soil layer. 
The vertical total stress has its maximum on the ground 
surface in the case of the low frequency excitation. In the 
case of medium or high frequency, the maximum appears 
in the fi rst layer but under the surface of the ground. The 
vertical displacement decreases as the depth increases 
within the fi rst layer. It should be noted that the three 
displacement curves have different scales in Fig. 17, and 
the attenuation is much faster in the high frequency case 
than that in the low frequency case.

The second layer is from z = 1 m to z = 8 m. As the 
depth increases, the excess pore pressure increases to its 
fi rst peak very quickly, then reduces to a valley value 
near the midpoint of the layer. When approaching the 
underlying half-space, the excess pore pressure increases 
to its second peak. This result properly refl ects the fact 
that the permeability of Berea sandstone is far lower 
than that of Mol sand, which results in a local condition 
of poor drainage at the bottom of the sandy layer of 
Mol, and therefore increases the excess pore pressure 
to the second local peak. The vertical displacements 
and total stresses, in general, keep attenuating in the 
second layer. At the bottom of the second layer, the 
displacements almost decrease to zero while the total 
stresses still have substantial magnitudes to be delivered 
into the underlying half-space. These results indicate 
that the hard underlying Berea sandstone has effectively 
constrained the bottom of the second layer.

In the underlying half-space, the excess pore pressure 
reduces sharply to a very small value while the vertical 
total stress attenuates much slower, which indicates 
substantial portion of stress is transferred to the very stiff 
skeleton of the Berea sandstone.
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Fig. 17  Attenuation of the vibration intensities under the midline of track

5.2.4   Two-dimensional patterns of vibration in the ground 
The results presented in Fig. 16 and Fig. 17 are some 

of the responses within the vertical plane of y = 0. Fig. 18a 
shows a two dimensional pattern of the displacement 
Re( ,PzU ) in the horizontal plane of z = 1.2 m. In this 
case, the frequency of the wheel-rail force is 4 Hz, which 
is caused by the wheel-rail unevenness with the wave 
length of λk = 4.25 m at the train speed of 60 km/h (or 
17m/s). The vertical displacement is largely limited 
within the area under the train, and attenuates very 
quickly along the two sides of the track.

If the speed of the train is set to be 220 m/s, which is 
the value of the Rayleigh wave velocity of the medium 
in the fi rst layer, the frequency of wheel-rail force 
becomes Ωk =c/λk = 220/4.25 = 52 Hz. Fig. 18(b) gives 
the recomputed displacement Re( ,PzU ) at z = 1.2 m. 
Both the amplitude and the infl uence area are much 
larger than those in the Fig 18(a). Because the train 
is traveling almost together with the surface wave, no 
ground vibration is found propagating ahead of the train 
in the Fig. 18(b). Intensive vibrations propagate toward 
the side-back of the train, which results in a series of 
Mach Cone. According to many reports (e.g., Sheng et al., 
2003; Adolfsson et al., 1999; Takemiya, 2003; Madshus 
and Kaynia, 2000), Sweden’s X2000 High Speed Train 
was subjected to severe vibration when traveling near 
Ledsgard at a speed approaching the Rayleigh wave 
velocity of the soft soil ground. The computed result 
indicates that the proposed approach is able to model 
this extreme effect. In addition, Figure 19 shows the 
computed vibration levels in the condition of random 
wheel-rail unevenness. Compared with the results 
of the train speed c = 17m/s, vibration levels in every 
frequency band are remarkably enhanced when the train 
speed approaches the Rayleigh wave velocity.

6   Conclusion

Dynamic Green’s function is a mathematical 
representation of ground, which plays a key role in the 
coupled vibration model of train-track-ground. The 
proposed Green’s function allows for the effects of the 
solid-fl uid dynamic interaction, stratifi ed confi guration 
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Fig. 18   Vertical displacement of ground surface when a train 
                       running on a track with different speeds, (a) c = 17 m/s; 
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of deposits and three-dimensional propagation of waves 
in the ground. Numerical results agree with those in the 
literature and are close to an in situ test of train-induced 
ground vibration.

The computed responses to the random wheel-rail 
unevenness are able to simulate the distribution features 
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of the ground surface vibration, i.e., the vibration 
attenuates faster in the immediate vicinity of the track 
than in the area far from the track. Typical features 
of ground settlement and pore pressure distribution 
under quasi-static loads can be evaluated by the 
proposed approach. In the case of harmonic wheel-rail 
unevenness, the computed displacement caused by high 
frequency wheel-rail force may attenuate more quickly 
in the ground, compared to low and medium frequency 
excitation. The variations of the displacement, total stress 
and pore pressure in the ground refl ect the variations of 
the soil properties of the ground layers. When the speed 
of the train is set to be the velocity of the Rayleigh 
wave, the Mach Cone, as expected, is represented in the 
computed vibration pattern. 

Although the Green’s function has been proposed 
to study ground vibration from the train, it may also 
be useful in modeling other geotechnical problems of 
moving excitations such as vibrations of pavement from 
highway traffi c, and dynamic responses of seabed to 
ocean wave. It should be mentioned that the procedure 
described herein cannot deal with the problem of buried 
excitations, which has been well investigated by other 
researchers as previously mentioned.

The Fortran programs of the Green’s function 
together with the train-track-ground coupled vibration 
have been developed by the fi rst author. Researchers 
interested in the programs are welcome to contact Wang-
futong@126.com to receive a copy of the codes.
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