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Prediction of seismic collapse risk of steel moment frame mid-rise 
structures by meta-heuristic algorithms
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Abstract: Different performance levels may be obtained for sideway collapse evaluation of steel moment frames 
depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing modelling 
uncertainties, record to record (RTR) variations and cognitive uncertainties for moment resisting steel frames of various 
heights is discussed in detail. RTR uncertainty is used by incremental dynamic analysis (IDA), modelling uncertainties are 
considered through backbone curves and hysteresis loops of component, and cognitive uncertainty is presented in three levels 
of material quality. IDA is used to evaluate RTR uncertainty based on strong ground motion records selected by the k-means 
algorithm, which is favoured over Monte Carlo selection due to its time saving appeal. Analytical equations of the Response 
Surface Method are obtained through IDA results by the Cuckoo algorithm, which predicts the mean and standard deviation 
of the collapse fragility curve. The Takagi-Sugeno-Kang model is used to represent material quality based on the response 
surface coeffi cients. Finally, collapse fragility curves with the various sources of uncertainties mentioned are derived through 
a large number of material quality values and meta variables inferred by the Takagi-Sugeno-Kang fuzzy model based on 
response surface method coeffi cients. It is concluded that a better risk management strategy in countries where material 
quality control is weak, is to account for cognitive uncertainties in fragility curves and the mean annual frequency.

Keywords: modelling uncertainty; cognitive uncertainty; TSK model; Cuckoo algorithm

Correspondence to: Fooad Karimi Ghaleh Jough, 
Department of Civil Engineering, Sarab Branch, Islamic Azad 
University, Sarab, Iran 
Tel: +98 (914) 5353339
E-mail: karimi@iausa.ac.ir

†Assistant Professor;  ‡Associate Professor 
Received May 5, 2015; Accepted August 31, 2015

1  Introduction

Collapse is one of the main reasons for loss of life 
and property during an earthquake. Earthquakes cause 
serious damage by destroying buildings and/or rendering 
them unsafe and unusable (Kircher et al., 1997). 
Quantifying earthquake damage has become a serious 
research topic. Structures may collapse in two ways: The 
fi rst one is sideway collapse, which results in the loss of 
lateral stability. Sideway collapse is itself the result of 
incremental and consecutive losses of capacity by the 
structural elements which comprise the load-resisting 
system. In contrast, vertical collapse, the second way of 
collapse, is the result of direct loss of components which 
contribute to the gravitational stability of the structure 
(Zareian et al., 2009). 

Structural uncertainties include mainly the 
uncertainties associated with the earthquake (record to 
record uncertainty), the uncertainties associated with 
the model (modelling uncertainty), and those associated 

with materials (cognitive uncertainty). Record to Record 
(RTR) uncertainties stem from the random nature of 
seismic activity and the lack of knowledge about deep 
geological causes. Modelling uncertainty is part and 
parcel of modelling itself; discrepancies exist between 
a model and the actual data collected on a phenomenon 
(Liel et al., 2009). The third source of uncertainty is 
also of prime importance especially in countries where 
supervision is not very rigorous. 

There are two important relations in seismic 
assessment of structures: The fi rst one is between 
intensity measure (IM) and the collapse probability or 
fragility, and the second is between the hazard curve and 
IM (Zareian et al., 2009). The effects of each of a number 
of parameters e.g., material quality (Dimova and Negro, 
2006), irregular story (Kappos and Panagopoulos, 
2010), and building height (Erberik, 2008), have been 
considered by various researchers in determining the 
fragility curves. Rajeev and Tesfamariam (2012) have 
considered interactions among the parameters such 
as irregularities (weak story, irregular story, vertical 
discontinuities etc.,) and material quality to develop 
fragility curves. Liel et al. (2009) has presented the 
effect of modelling uncertainty in collapse limit state 
in comparison with other limit state such as immediate 
occupancy and life safety in fragility curves.  Zareian et al. 
(2009) incorporated RTR variability and modelling 
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uncertainties through the incremental dynamic analysis 
(IDA) on deriving the fragility curves. Fuzzy logic is 
used for risk analysis, safety evaluation and structural 
analysis to incorporate the impact of modelling 
uncertainty (Rajeev and Tesfamariam, 2012; Möller et al., 
2003). 

This study investigates the effect of cognitive 
uncertainties in material quality versus modelling 
uncertainties in quantifying fragility curves for 
sideway collapse limit state of structures by using the 
Cuckoo algorithm and the Takagi-Sugeno-Kang (TSK, 
Sugeno, 1985) model. IDA is applied to consider RTR 
uncertainty with strong ground motion records selected 
by the k-means algorithm, which reduces calculation 
time compared with methods that involve random 
sampling.  At the structural level four meta variables 
viz. beam strength (BS), column strength (CS), beam 
ductility (BD) and column ductility (CD) are considered 
for defi ning modelling uncertainty. RTR and modelling 
uncertainties are incorporated through the response 
surface method (RSM). Analytical equations of RSM are 
obtained through IDA results by the Cuckoo algorithm, 
which predicts the mean and standard deviation (SD) 
of the collapse fragility curve. Three levels of material 
quality (MQ) are predicted for different levels of 
cognitive uncertainty. The TSK model is used for MQ 
uncertainties by the response surface coeffi cients. 
Finally collapse fragility curves with various sources of 
uncertainties are derived through a large number of MQ 
values and meta variables inferred by the TSK system 
based on RSM coeffi cients. 

As demonstration of the effi ciency of the method 
the procedure is applied to a fi ve-story moment resistant 
frame and a ten-story counterpart. Figure 1 depicts the 
uncertainties considered in this study. It is expected that 
the methodology, with special attention paid to cognitive 

uncertainties, will enhance seismic performance 
assessment of large building stock in regions that lack 
quality control of materials. 

2   Combination of sources of uncertainty

The main step in predicting the effect of modelling 
uncertainty is to combine various uncertainties such as 
RTR with the modelling uncertainties. In this effort, 
RTR, modelling and cognitive are considered as separate 
uncertainties (Kiureghian and Ditlevsen, 2009). Three 
common methods to incorporate the effects of RTR 
and modelling uncertainties are confi dence interval, 
mean estimate and Monte Carlo simulation (Cornell 
et al., 2002; Ellingwood and Kinali, 2009). In the 
mean estimate method, the mean value of the fragility 
curves remained unchanged while the variance which 
refl ects modelling uncertainties varies. In contrast, the 
confi dence interval approach considers the variance of 
fragility curve unchanged. 

Results obtained by this method are not sensitive 
to a particular class of uncertainties and in fact classes 
are not explicit in the results. The Monte Carlo method 
implements thousands of simulations for modelling 
parameter values based on their probabilistic distributions 
and samples are analysed based on the simulated values 
as modelling parameters of the structure. Thousands of 
collapse fragility curves, i.e., the probability of collapse 
versus intensity measure values, that include the effects 
of modelling uncertainties result from this accurate 
analysis (Liel et al., 2009). In recent studies (Seo and 
Linzell, 2013), a new approach to consider modelling 
uncertainty combines the Monte Carlo method with 
the RSM. Since the Monte Carlo simulation approach 
requires a large number of simulations in order to 
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Fig. 1   Uncertainty analysis of the system fragility curve by RSM and TSK method
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incorporate various uncertainties, RSM helps to bring 
the computation cost down to an affordable level. RSM 
in combination with Monte Carlo simulation is used for 
seismic vulnerability assessment of horizontally curved 
steel bridges (Seo and Linzell, 2012), concrete building 
structures (Liel et al. 2009; Franchin et al. 2003) and 
steel framed structures (He and Wang, 2011). Also, 
RSM has been applied in previous relevant literature to 
derive fragility curves (Rajeev and Tesfamariam, 2012; 
Rossetto and Elnashai, 2005; Schotanus et al., 2004). The 
initial in this approach is to conduct a sensitivity analysis 
to determine which modelling parameter contributes 
the most to the mean and standard deviation (SD) of 
fragility. Then, regression analysis is used to compile 
the fragility curve based on an analysis of sensitivity. To 
this end, the second order polynomial function given in 
Eq. (1) is used for the estimation of the mean and SD 
(using Monte Carlo method) for different scenarios of 
modelling uncertainty. Results obtained using the Monte 
Carlo method conform with estimates obtained from a 
variety of models (Seo and Linzell, 2013).
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In this study, the k-means algorithm is used to 
select records that constitute RTR uncertainty. Then the 
Cuckoo algorithm is used to derive the mean and SD of 
each defi ned scenario of modelling uncertainty. Finally 
the TSK algorithm is used to incorporate cognitive 
uncertainty. The three algorithms are defi ned as follows.

2.1  RTR uncertainty

Much data are needed for a full defi nition of strong 
ground motion because the phenomena are relatively 
complicated. IM is the summary of a number of ground 
motion variables that simplifi es the defi nition of an 
earthquake and at the same time connects seismic hazard 
with structural damage. The most important properties 
of ground motion are: Arias intensity (IA) that refl ects 
amplitude, characteristic intensity (IC) that shows the 
frequency content, and cumulative absolute velocity 
(CAV) that portends the potential to damage buildings 
by calculating the duration of records. Arias intensity 
(IA) is described as Eq. (2)

 dIA  2
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where a(t) is the acceleration intensity and the unit of (IA) 
is meter per second. The infi nity symbol in the equation 
indicates that IA is calculated based on whole duration 
and not Td (duration of the record). 

Characteristic intensity (IC) is described as
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Cumulative absolute velocity (CAV) is the continuous 
accumulation of acceleration during the earthquake and 

it is calculated by the following Eq. (4)
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CAV is the best parameter relating to structural damage 
for various earthquake disasters (Kramer, 1996). 

RTR uncertainty is considered through the IDA 
approach. Selecting the ground motion is the main step 
in applying the IDA method for considering the effects 
of RTR uncertainty. In this paper, the k-means algorithm 
is used to decrease the dispersion of uncertainty and 
facilitate proper selection of ground motion.  

First, one hundred records of natural earthquakes 
are selected by site specifi cation according to following 
properties:

 Records obtained in the region with longitude 
124°–115° and latitude 32°–41°;

 Moment magnitude (Mw) greater than 5;
 Minimum epicentral distance (R) 150 km.
To further prune this collection we used the k-means 

algorithm since random selection of data from the group 
may cause dispersion of results. 
2.1.1 Lloyd’s algorithm (k-means algorithm)

Proper selection of earthquake records may be 
performed through different steps such as classifi cation 
and clustering. Classifi cation is supervised learning; 
training data are needed.  Clustering is unsupervised, 
requiring no training data. Generally speaking, 
classifi cation is used to assign defi ned tag to samples 
according to the basic features, and clustering is used 
to categorize similar samples on the basic features 
and does not assign to every group. Lloyd’s algorithm 
(Lloyd, 1982) is an unsupervised clustering  algorithm. 
At the beginning of the analysis, the number of clusters 
k and the centroid of center (COC) of each clusters are 
determined. Any sample can be taken randomly or the 
fi rst k samples in sequence as the initial centroids. The 
steps in Lloyd’s algorithm are as follows:

 Decide the centroid point
 Decide the distance of each sample to the 

centroid (see Eq. (5))
 Categorize the sample based on optimum 

distance
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where || ||j
i jx c   is a selected distance value between 

a data sample xj
i and the cluster center cj.  D is then an 

index of the distance of n data samples from their relative 
cluster centers (Lloyd, 1982). 

2.2   Modelling uncertainty

In the IM-based (vertical statistics format) approach 
(Mitropoulou and Papadrakakis, 2011), seismic fragility 
curves are shown as:

     collapsecollapse IM imCollapse|IM im im IM
ii iP P F   

(6) 
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According to (Shinozuka et al., 2000), it is presumed 
that two-value (mean-η and log-SD-β) lognormal 
distribution functions could defi ne the curves FR and 
the maximum likelihood approach used to estimate the 
two parameters. The likelihood function for the present 
purpose is defi ned as follows:
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where FR denotes the seismic fragility curve for collapse 
limit state, SA,i is the intensity measure value to which 
the i-th scenario of the sample is considered, N is the 
number of sample scenarios. Therefore, FR has the 
following form:
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In Eq. (8), η is the mean and β is the SD of the 
collapse probability function and ϕ is the normal 
distribution function. It is clear that both the mean and 
SD values of a collapse fragility curve are affected 
when modelling uncertainty is involved. The modelling 
uncertainty is considered ±1.7 β away from the mean 
and ±1 β with correlation of each of the meta variables 
BD, BS, CS and CD. The two parameters η and β are 
evaluated by maximizing ln (L), and in this study the 
Cuckoo optimization algorithm is used.
2.2.1 Cuckoo optimization algorithm

The optimization algorithm used to solve the 
2n-value (η, β) problem maximizing ln (L) is the Cuckoo 
(CO) algorithm because it is obvious that the number 
of variables for CO is less than that for GA (genetic 
algorithm) and PSO (particle swarm optimization), 
which are more suited for larger optimization problems. 
The CO optimization algorithm is a population-based 
method. To start, the matrix of Np× Nvar as candidate 
habitat is created to show the maximum number of 

cuckoos. Laying eggs from their habitats in a maximum 
distance is another habitat of real CO. Egg laying radius 
(ELR) is computed based on the Eq. (9), which represents 
the maximum limit  (Rajabioun, 2011).

 Number of  current cuckoo's 
Total number of eggs

eggsELR par parh l   

(9)
where ω is an integer parameter, defi ned to apply 
the maximum value of ELR, parn and parl rameters, 
respectively. Each CO starts egg laying in the bird’s 
nests randomly. After the egg laying step, S% (usually 
10%‒15%) of all eggs, with low benefi t values, will be 
detected and destroyed. It is very amazing that only one 
egg can live in each nest. When COs grow, they begin 
living in their own community. During the egg laying 
period, the young COs migrate to new areas, while 
eggs are similar to host birds. The society with the high 
benefi t value is chosen as the target point for other COs 
to migrate to after the CO groups are formed in various 
environment. The procedure of new egg laying is defi ned 
in Eq. (10) (Shokri-Ghaleh and Alfi , 2014)

 NextHabitat currentHabitat GoalPoint currentHabitatX X F X X    (10)

Here, X and F are the position and the motion 
coeffi cient, respectively. Figure 2 gives the pseudo-code 
of the CO algorithm.

2.3 Theory of inference in a fuzzy expert system 
       (cognitive uncertainty)

Lotfi  Zadeh (Sugeno, 1985) created fuzzy logic 
to present a way to map qualitative knowledge into 
mathematical reasoning. A fuzzy inference system is an 
expert knowledge-based (KB) system which contains 
fuzzy algorithms in a simple rule base. In this system the 
knowledge which is encoded in the rule base is emanated 
from human experience and intuition and the rules show 
the relationships between the inputs and outputs of a 
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Fig. 2   The pseudo code representation of the Cuckoo algorithm
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system. Numerical value of a linguistic variable (i.e. 
MQ in this study) could be presented by a fuzzy number. 
A FIS (fuzzy inference system) consists of four parts: 
fuzzifi er, inference engine, KB, and defuzzifi cation of 
results (see Fig. 3). Fuzzifi er does the conversion of 
real numbers of input into fuzzy sets and defuzzifi cation 
denotes the opposite action. The knowledge base consists 
of a database and a rule base. The database includes 
membership functions of the fuzzy sets, while the rule 
base includes a set of linguistic statements in the form 
of IF-THEN rules that are connected by AND operator  
while other operators such as OR, and NOT may also 
be used. The inference engine which forms the core of 
a fuzzy inference system uses IF-THEN rules contained 
in the rule base to fi nd the output through fuzzy or 
approximate reasoning. The approximate reasoning 
process is to create conclusion from a set of IF-THEN 
rule. The Sugeno type (also known as the TSK fuzzy 
model) of FIS is written as follows:

Ri:    IF x is A     AND      y is B …    THEN   z = 
ax+by+c     i = 1, 2,…,N
in which the rule is shown as Ri, x and y are the 
parameters and A is the fuzzy set based on x, y.  a and 
b are constants and N is the number of rules (Siler and 
Buckley, 2005). The centre of area (COA) is the most 
popular defuzzifi cation approach in the Mamdani-type 
FIS. In Sugeno-type FIS, the fi nal output is measured by 
the weighted average of all outputs (shown by Eq. (11)).
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wi = min (f1(xi), f1(yi),...)     i = 1,2, ..., N         (12)

in which, wi is the fi ring strength of rule i and is described 
by Eq. (12) and f1(x) are f1(y) membership functions of 
variable x and y, respectively. Since the target of FIS 
in this work is to predict coeffi cients of the response 
surfaces and are numerical variables, the Sugeno 
inference system is used. 

3 Consideration of various uncertainties in 
    study structures

3.1 Design of structure

To assess the effect of cognitive uncertainty on 
medium-rise steel buildings, one 5 story structure and a 
10 story structure are assumed situated in a very high risk 
environment. It is further assumed that the soil on which 
these structures are situated is Type 2 soil (shear wave 
velocity between 360 to 750 m/s) (Stand No. 2800, 2007). 
The structures have regular plans (Fig. 4) with three 5 
meter bays on each side and 3.2 meter fl oor height 
(Fig. 5). Floors are assumed to be rigid diaphragms with 
dead load distributions similar to what we normally 
see in structures in Iran and in accordance with Iranian 

Input
Fuzzifi er

Fuzzy Fuzzy

Data base Rule base

Knowledge base

Inference unit

Defuzzifi er
Output

Fig. 3   Fuzzy expert systems perform fuzzy reasoning

3@5 m
  b2                  b2                  b2

b2

b2

b2

  b2                 b2                  b2

  b1                  b1                  b1

  b1                  b1                  b1

C1                  C2                C2          C1

C2                  C2                C2          C2

C2                  C2                C2          C2

b2

b2

b2

3@
5 

m

Fig. 4  The plan of sample structures

3@5 m

5@3.2 m

3@5 m

10@3.2 m

Fig. 5  Elevations view of samples

C1          C2                  C2                C1



748                                            EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.15

Seismic Code (Stand No, 2800; 2007), the response 
modifi cation factor (i.e. R) is 7 for the sample structures. 
The nominal yield strength of steel is 240 MPa. Table 1 
shows cross sections for all members. 

Numerical modelling of a sample interior frame is 
implemented using the OpenSEES (2006) fi nite element 
program. For modelling uncertainty, nonlinear springs of 
the Ibara-Krawinkler (Liel et al., 2009) model are used, 
and lumped plastic hinges of columns, beams and panel 
zones are incorporated in the model for the same purpose 
(Liel et al., 2009). The backbone curve of the moment-
rotation model is represented in Fig. 6. The element 
backbone is described by the following variables: yield 
strength (My), post yield strength (Mc), plastic rotation 
capacity (θp), post-capping plastic rotation (θpc), ultimate 
rotation capacity (θu) and cyclic deterioration (λ). θp, θpc 
and λ are the ductility variables.  

The hysteretic behavior of a connection is described 
based on deterioration rules that are defi ned according 
to the energy dissipated in each hysteretic cycle. The 
deterioration of basic strength, post capping strength, 
unloading stiffness and reloading stiffness are represented 
in the model (Liel et al., 2009). Capacity of energy 
dissipation of the component, by which deterioration 
rules are formulated, is described as Eq. (13)

t yE M                             (13)

where λ is the rate of cyclic deterioration and is based 
on calibration of experimental outcomes. Comparison 
of including and neglecting cyclic deterioration of 
component behaviour is given in Fig. 7.

The model variables are summarized in Table 2 and 
they are assumed to follow lognormal distributions with 
means and SD shown (Lignos, 2008). The ratio of (Mc/My) 
is the strength variable. As mentioned, the four meta 
random variables are beam strength (BS) (i.e. Mc/My for 
beams), column strength (CS) (i.e. Mc/My for columns), 
beam ductility (BD), (i.e. θp, θpc and λ for beams) and 
column ductility (CD) (i.e. θp, θpc and λ for columns), 
which represent strength and ductility for each element 
(Liel et al., 2009).  No uncertainties are assumed for the 
panel zones because the structures are designed based on 
new guidelines which assume that rupture occurs fi rst in 
the beams and not in the joints. 

The proposed model as applied to an interior frame, 
M2-WO panel zone model, presented in Fig. 8 (Foutch 
and Yun, 2002). 

3.2  Numerical tests

In the fi rst mode, acceleration is assumed to be a 
measure of intensity (Sa (T1)). This IM is used in different 
research and is represented to accomplish suffi ciency 
and effi ciency criteria in the prediction of structural 
damage, which is the main target in this work. Intersory 
drift ratio is selected as the engineering demand variable 
since it shows global behavior of the structure, which 
has good correlation with global collapse. Mean and 
(SD) of the modelling variables are affected by the 
quality of material. Low material quality leads to lower 
mean value and higher dispersion (Li and Ellingwood, 
2008). Three levels of material quality (good-average-
low) are considered. Experimental values (Mean and 
SD) are unchanged for good MQ. The mean value is 
decreased 25% and 40% for average MQ and Low MQ, 
respectively, while SD is increased 25% and 40% for 
average and low MQ, respectively, with respect to the 
value for good MQ. This pattern was used in previous 
investigations (Rajeev and Tesfamariam, 2012). 

Consequently, we have four main meta variables 
(Pinto et al., 2007) and 33 combinations of these meta 
variables (hence 33 scenarios) are used for the sensitivity 
analysis and IDA. Eight of these scenarios correspond to 

Table 1   Design pr operties for 5- and 10-story buildings

Story C1 C2 b1 b2

5-Story 1,2 TUBO  180×180×20 TUBO  300×300×20 IPE 450 IPE 330

3,4,5 TUBO  160×160×20 TUBO  200×200×20 IPE 400 IPE 300

10-Story 1,2 TUBO  240×240×20 TUBO  400×400×20 IPE 500 IPE 400

3,4,5,6 TUBO  220×220×20 TUBO  340×340×20 IPE 500 IPE 400

7,8,9,10 TUBO  180×180×15 TUBO  280×280×20 IPE 400 IPE 360
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Fig. 6 Backbone curve of moment rotation model based on 
            modifi ed Ibarra-Medina-Krawinkler
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only one variable and the other 25 scenarios correspond 
to interaction of variables taken two at a time. In the 
eight scenarios where one main meta variable is counted, 
its value is set at ±1.7 times the SD from the mean. In 
the other scenarios, the value of each main meta variable 
is set at ±1 SD from the mean. In general, (33×3×2) 
IDA analyses have been conducted on the 40 selected 
records selected by the k-means approach. The Hunt & 
Fill tracing algorithm (Vamvatsikos, 2007) is applied to 
scale the records in the IDA analyses to achieve good 

performance. In the k-means approach, fi rst the COC 
is calculated in four clusters and then each cluster is 
defi ned based on records occurring near the COC based 
on the similarity of three parameters of the earthquake 
records. Finally, 10 records are selected from each 
cluster randomly. This procedure lower the desperation 
of samples. Figure 9  shows the position of each sample 
for every cluster in 3-D which is presented in appendix. 
Figure 10  shows the IDA curves for different quality 
levels of building material for the sample structure. The 
effect of the quality of building material on fragility is 
quite obvious. 

3.3  Sensitivity analysis

With reference to the description of the meta 
variables, sensitivity analyses are performed to 
determine the effects of each parameter of the variables 
in various quality (MQ). Results of the sensitive analysis 
for sideways collapse of the sample 5-story structure 
are presented in Fig. 11, where Fig. 11 (a), (b) and (c) 
present created tornado diagrams of sensitivity outcomes 
and Fig. 11 (d) and (e) show results of histogram of the 
sensitivity analyses for each MQ. As depicted in the 
histogram dispersion for good material quality, structural 
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Table 2  Model parameters for beams and columns in uncertainty analysis

Random variable Mean Standard deviation
Beam θp 0.025 0.43

θpc 0.16 0.41
λ 1.00 0.43

Mc /My 1.11 0.05
column θp 0.011 0.57

θpc 0.07 0.92
λ 0.4 0.96

Mc /My 1.11 0.05

kp
ky

αke
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response is large and it is reduced based on quality. In 
good quality as represented in the tornado diagrams of 
Fig. 11, CS, BS and BD follow CD which has the largest 
effect on the mean collapse capacity, and BS has an 
inverse effect on collapse. For average quality, CS has 
large effect while CD has no effect in the mean collapse 
capacity. Finally in low quality, BD and CD have no 
effect in collapse. 

Monte Carlo simulation method has been used 
to incorporate the effects of modelling uncertainty 
on the collapse fragility curve as thousands of sets of 
random variables and IDA analyses of the structure for 
each realization are necessary. Applying a predefi ned 
regression function as response surface in Monte Carlo 
simulation, the nonlinearities and asymmetries in the 
relationship between the model random variables and 
structural response have been represented.

In this approach the fi rst step is to implement 
the IDA and vertical statistics for computing the two 
parameters η and β of Eq. (7) which maximize ln (L) 
by implementing the Cuckoo Search Algorithm (CSA). 
The parameters applied for the CSA are based on 
proposed parameters as follows: Number of initial 
population (numCuckoos = 5), maximum number of 
eggs for each cuckoo (max Number of Eggs = 4) and the 
control parameter of egg laying is 5. The optimization 
procedure is terminated when the number of iterations 
of the Cuckoo Algorithm reaches 51. A sample of the 
best value of the objective function is shown in Fig. 12. 
Vertical statistics is performed for all MQs. 

In the next step the functions of the response surface 
in Eq. (1) are used to predict the means and SD of the 
fragility curve for a limited number of realizations of the 
modelling parameters for each quality mentioned in the 
numerical test section. The response surface function 
is calculated by the Pinv(x) function in Matlab (2014). 
For the 5-story example, the surface for the collapse 
capacity limit state and the mean of the various material 
qualities for the collapse fragility curves are given by the 
following Eqs. (14), (15), (16)
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Figure 13 shows the mean effect of the collapse 

curve in RSM graphically. The best combination of 
values of the main variables for estimating the mean 
collapse capacity based on statistical data such as R2, 
RMSE and error are given in Fig. 14. It can be seen that 
for good quality, strength and ductility of columns as 
well as ductility of beams are desirable while strength 
of beams is not. 

A Sugeno-type fuzzy expert system has been 
used to consider quality uncertainty. Three rules are 
considered according to the constant coeffi cients (one 
input, three rules, and 30 outputs) that are derived 
based on the RSM coeffi cients summarized in Fig. 15. 
A Gaussian membership function for the index of 
MQ as input and linear type as output is applied. Also, 
the weighted average, sum and prod methods are 
used for defuzzifi cation, aggregation and implication, 
respectively. 
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Monte Carlo simulation is used for deriving 
fragility curve involving RTR, modelling and cognitive 
uncertainty effects. First, 10,000 Monte Carlo 
realizations are simulated in two parts. One hundred 
MQs are selected based on a uniform distribution in 
the interval [1, 3], which are followed by one hundred 
modelling simulations of the meta variables based on 

lognormal distribution (η = 0, β = 1). Finally the mean 
and SD values are obtained for the expected collapse 
probabilities, which are calculated according to the 
100×100 = 10,000 collapse fragilities. Fragility capacity 
can be evaluated based on the following criteria: (a) 
mean value of the collapse capacity corresponding to the 
MCE (maximum considered earthquake acceleration) in 
the IDA curve, (b) probability of collapse at the MCE 
intensity, (c) mean annual rate of collapse, as estimated 
by integrating the fragility curve over the risk curve of 
a specifi c site.

Probabilistic hazard analyses have been done for the 
Tehran region (Zolfaghari, 2014) and the relevant hazard 
curve which was estimated by fi tting the functional 
form β0 (Sa)

α is given in Fig. 16. Based on the hazard 
curve, the MPE (maximum probable earthquake spectral 
acceleration) and MCE are 0.477 g, 0.716 g for the 
5-story frame, and 0.42 g, 0.62 g for the 10-story frame, 
respectively. The effects of incorporating modelling 
uncertainty and material quality for 5 and 10 story 
sample structures are shown in Fig. 17. Combining the 
uncertainties into one entity causes the fragility curve 
to shift to the left and become more widely distributed. 
In other words, the curve depicts a critical state which 
becomes more pronounced when the material-related 
uncertainty comes into play. Neglecting material 
quality causes underestimation of the collapse fragility 
probabilities (Table 3). For example, for the 5-story 
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structure and considering material quality uncertainty 
(Fig. 17 (a) and (c)), the mean is decreased to 63% while 
if it is only modelling uncertainty, the mean is changed 
by only 3%. In Fig. 17 (d) and (e), fragility curves are 
obtained by using the RSM for each material quality 
level separately.  It can be observed, MQ uncertainty is 

the most important factor in deriving fragility curves. 
According to Table 3, the mean of the fragility curves 
in low quality for the 10-story structure changes 89%, 
which is a signifi cant shift in fragility curves.

Table 4 illustrates the probability of collapse in 
discreet hazard levels (MCE, MPE) and the Mean 
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Table 3  Variation in collapse fragility curves by uncertainty analysis

Method MQ Change in 
mean (%)

Change in 
dispersion (%)

5-ST RSM Good -3 0.5
Average -69 13
Low -75 18

TSK MQ -64 12
10-ST RSM Good -8 1

Average 82 19
Low 89 31

TSK MQ 77 18

Table 4   Variation in probability of collapse and mean annual frequency for selected levels of uncertainty

Method Uncertainty P(Collapse|MCE) P(Collapse|MPE) MAFE ×( 10-5 )
5-ST RSM No consideration 0.0440 0.0050 5.31

Good 0.1334 0.0465 5.59
Average 0.9381 0.7200 54.6

Low 0.9987 0.9154 82.9
TSK MQ 0.880 0.58 41.079

10-ST RSM No consideration 0.001 0.00016 2.80
Good 0.020 0.01 3.38

Average 0.870 0.72 89.6
Low 100 0.99 195

TSK MQ 0.860 0.42 50.5
MQ: incorporation of quality and modelling uncertainty

annual frequency of exceedance (MAFE) in the two 
sample structures. It can be observed that modelling and 
MQ uncertainties increase 75%‒80% and 40%‒50% 
approximately in MCE and MPE hazard levels, 
respectively. MAFE is an important factor in risk 
management and decision making so it can be concluded 
that material quality is a dominant factor affecting mean 
annual frequency. 

The confi dence approach has been applied to 
incorporate the effects of two uncertainties (modelling 
and material quality) in estimating the probability of 
collapse given in IM. By using Fig. 18, one can show the 
effect of MQ uncertainty on estimating the probability 
in certain Y confi dence level for each sample structure. 
For example, according to Fig. 18, it can be concluded 
that for the 5-story building, the collapse probability 
at MCE and MPE hazard level with the 95 confi dence 
level are 54% and 15%, respectively, (95 confi dence 
means 100%-95% = 5% probability that the actual value 
of collapse is less than 15%) when considering only 
modelling uncertainty, and the probability of collapse are 
94% and 99% when considering modelling AND quality 
uncertainty. FEMA guideline requires the probability of 
collapse for a 50 year period to be smaller than 2% at 
a confi dence level of 95%.  Figure 19 shows the MAF 
variation in the fragility of the 5 and 10 story structures 
at different confi dence levels. It can be seen that the 
variation is large and the criteria given for the design of 
the sample structures become unacceptable when all the 
uncertainties are taken into account.
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4   Conclusion 

In this study, the earthquake-related risk of structural 
collapse has been evaluated with special attention paid 
to RTR and epistemic (modelling) uncertainties as 
well as (cognitive) uncertainties related to the quality 
of the building material. As examples two moment-
resisting steel frames, a 5-story and a 10-story, which 
are designed according to a seismic load corresponding 
to events with 10% probability of exceedance in 50 
years, are analyzed. In order to consider modelling 
and cognitive uncertainties, modelling parameters are 
selected from the modifi ed Ibarra–Medina–Krawinkler 
moment rotation model. A set of 40 records suggested 
by the k-means clustering algorithm are considered for 
implementing incremental dynamic analysis for the 
effect of RTR uncertainty. Then, the mean and SD of 
the collapse fragility curve which are obtained by IDA 

and the Cuckoo optimization algorithm are predicted 
through analytical response functions. Interaction 
between model variables and structural parameters has 
been presented as response levels. The response levels 
qualitatively present the uncertainty in three different 
levels (good, average, and low). The TSK fuzzy 
inference system is used to combine these levels into one 
qualitative uncertainty. Since the sensitivity method is 
used for predicting the response level, the time taken for 
the prediction is considerably reduced. The alternative 
is to use the IDA method to consider all Monte Carlo 
combinations. 

It is observed that almost in all cases disregarding the 
effect of uncertainties is a conservative result in collapse 
fragility curve. The dispersion (βln) in the response 
fragility increases when modelling and cognitive 
uncertainties are incorporated. The mean of the curves 
may be reduced approximately by 70% for cognitive 
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uncertainty and 10% for modelling uncertainty. This 
reduction will increase when the number of stories 
increases. Cognitive uncertainties have greater impact 
than other uncertainties. Material quality is an important 
factor in the probability of collapse. Also, while MQ = 
low, the structure is more brittle. In studying nonlinear 
variables in the sensitive analysis, it is observed that 
the effect of ductility in MQ = good is more than other 
variables while in MQ = low strength is more effective. 
The effect of uncertainties considered for the sample 
frames reveal that uncertainties may affect collapse 
probability signifi cantly when compared with the 
deterministic approach (not considering epistemic and 
cognitive uncertainties). Generally it can be concluded 
that in developing countries where problems of material 
quality might be observed, cognitive uncertainties 
should be considered in determining the fragility curve 
and, hence, the MAF of collapse, which is an important 
measure for decision making and risk management. 
Advanced laboratory tests for diagnosing material 
quality are therefore highly recommended.
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      Appendix

The suit of 40 ground motion records.

No Year Earthquake MW Mech.1 Station GM
 

Dist.2 

(km)
PGA 
(g)

IA     IC CAV

1 1994 Northridge 6.7 RN Leona Valley #2 Far-Fault 37.2 0.063 0.06252 0.00676 216.82
2 1994 Northridge 6.7 RN Lake Hughes #1 Far-Fault 89.67 0.077 0.10962 0.0103 301.778
3 1994 Northridge 6.7 RN LA, Hollywood Stor FF Far-Fault 114.62 0.358 2.00474 0.08616 1185.35
4 1994 Northridge 6.7 RN LA, Centinela St. Far-Fault 31.53 0.322 0.99385 0.0547 799.35
5 1989 Loma Prieta 6.9 RO WAHO Far-Fault 17.50 0.672 6.27237 0.22791 2025.38
6 1989 Loma Prieta 6.9 RO Halls Valley Far-Fault 30.50 0.102 0.24847 0.018 467.845
7 1989 Loma Prieta 6.9 RO Agnews State Hospital Far-Fault 24.60 0.159 0.37439 0.02447 625.39
8 1989 Loma Prieta 6.9 RO Anderson Dam (Downstream) Far-Fault 4.40 0.24 0.80107 0.0434 721.197
9 1979 Imperial Valley 6.5 SS Chihuahua Far-Fault 8.4 0.254 1.18662 0.05813 1110.14
10 1979 Imperial Valley 6.5 SS Bonds Corner Far-Fault 4.01 0.588 3.90282 0.14418 1471.17
11 1987 Superstition Hills 6.7 SS El Centro Imp. Co Cent Far-Fault 18.5 0.258 0.67456 0.03806 814.968
12 1987 Superstition Hills 6.7 SS Plaster City Far-Fault 22.5 0.121 0.29862 0.02395 447.696
13 1987 Superstition Hills 6.7 SS Brawley Airport Far-Fault 29.91 0.116 0.24856 0.02091 427.309
14 1987 Superstition Hills 6.7 SS Superstition Mtn Camera Far-Fault 6.56 0.894 6.02742 0.22789 1908.88
15 1987 Superstition Hills 6.7 SS Westmorland Fire Sta Far-Fault 13.47 0.211 1.17613 0.05774 1073.18
16 1983 Coalinga 6.4 RN Parkfi eld — Cholame 2WA Far-Fault 44.72 0.114 0.19526 0.01502 422.411
17 1983 Coalinga 6.4 RN Parkfi eld — Fault Zone 14 Far-Fault 29.48 0.274 0.88032 0.04647 844.768
18 1983 Coalinga 6.4 RN Parkfi eld — Gold Hill 3W Far-Fault 39.12 0.122 0.15312 0.01252 330.881
19 1983 Coalinga 6.4 RN Parkfi eld — Stone Corral 3E Far-Fault 34.00 0.106 0.12442 0.01217 270.909
20 1983 Coalinga 6.4 RN Pleasant Valley P.P. — yard Far-Fault 8.41 0.551 3.8457 0.14045 1506.25
21 1987 Whittier Narrows 6 RO Alhambra—Fremont School Far-Fault 14.66 0.413 0.87457 0.04624 593.004
22 1987 Whittier Narrows 6 RO LA—Hollywood Stor FF Far-Fault 24.08 0.124 0.15938 0.0129 351.832
23 1987 Whittier Narrows 6 RO Altadena—Eaton Canyon Far-Fault 19.52 0.151 0.18627 0.0145 309.673
24 1987 Whittier Narrows 6 RO Brea Dam (Downstream) Far-Fault 23.99 0.313 0.4169 0.02852 408.27
25 1979 Coyote Lake 5.7 SS Gilroy Array #1 Far-Fault 10.67 0.132 0.07987 0.00849 170.129
26 1979 Coyote Lake 5.7 SS Coyote Lake Dam (SW Abut) Far-Fault 6.13 0.279 0.35919 0.02575 338.147
27 1979 Coyote Lake 5.7 SS Gilroy Array #2 Far-Fault 9.02 0.339 0.5126 0.03422 399.466
28 1979 Coyote Lake 5.7 SS Gilroy Array #6 Far-Fault 3.11 0.316 0.6798 0.0422 421.295
29 1992 Cape Mendocino 7.1 RN Eureka—Myrtle & West Far-Fault 41.97 0.178 0.33065 0.02177 579.139
30 1992 Cape Mendocino 7.1 RN Fortuna—Fortuna Blvd Far-Fault 19.95 0.114 0.23911 0.01707 491.474
31 1992 Cape Mendocino 7.1 RN Petrolia Far-Fault 8.18 0.662 3.82072 0.14349 1456.08
32 1981 Westmorland 5.8 SS Brawley Airport Far-Fault 15.57 0.171 0.18547 0.01574 303.306
33 1981 Westmorland 5.8 SS Niland Fire Station Far-Fault 15.5 0.176 0.17397 0.01377 339.247
34 1981 Westmorland 5.8 SS Parachute Test Site Far-Fault 16.81 0.155 0.49073 0.02998 670.89
35 1981 Westmorland 5.8 SS Salton Sea Wildlife Ref Far-Fault 8.15 0.176 0.51288 0.03366 542.232
36 1992 Landers 7.3 SS Desert Hot Springs Far-Fault 21.98 0.154 0.6776 0.03612 1050.99
37 1992 Landers 7.3 SS Amboy Far-Fault 69.17 0.146 0.75468 0.03916 1064.58
38 1992 Landers 7.3 SS Lucerne Far-Fault 3.71 0.789 6.58484 0.20068 2483.47
39 1992 Landers 7.3 SS Joshua Tree Far-Fault 11.34 0.284 2.34815 0.09472 1746.59
40 1992 Landers 7.3 SS Morongo Valley Far-Fault 17.58 0.188 0.95827 0.04305 1272.15

1 Faulting Mechanism = TH: Thrust; REV: Reverse; SS: Strike-slip; OB: Oblique; RN: Reverse-Normal; RO: Reverse-Oblique; NO: Normal-Oblique  
2 Closest distance to fault rupture (i.e., rjb) 

 

Characteristics (m/s)


