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Abstract: Orthotropic membrane components and structures are widely used in building structures, instruments and 
meters, electronic engineering, space and aeronautics, etc., because of their light weights. However, the same lightweight 
combined with low stiffness make membranes prone to vibration under dynamic loads, and in some cases the vibration may 
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structures subjected to  impact loading is studied by analytical and numerical methods. The analytical solution is obtained 
by solving the governing equations by the Bubnov-Galerkin method and the Lindstedt-Poincaré perturbation method. 
Numerical analysis has also been carried out based on the same theoretical model. The analytical and numerical results 
have been compared and analyzed, and the infl uence of various model parameters on membrane vibration discussed. The 
results obtained herein provide some theoretical basis for the vibration control and dynamic design of orthotropic membrane 
components and structures.
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1   Introduction 

Orthotropic membrane components and structures 
are widely used in building structures, instruments and 
meters, electronic engineering, etc. Membrane structures 
are very sensitive to impact loads (such as rainstorm, 
hails, drops) due to their lightweight and fl exibleness; 
the loading sets off vibration in the membranes, which 
may lead to structural failure. Therefore, it is necessary to 
study the behavior of membrane structures under impact 
load so as to understand its basic response characteristics 
and to establish a computational basis for safety design. 

Seventeenth century researchers laid the physical 
foundation and provided mathematical tools for dealing 
with membrane vibration. By the 18th century vibration 

mechanics has gained independence from physics, and 
the most important achievement is the evolution of linear 
vibration theory. In 1829, Poisson solved the linear free 
vibration problem for thin membranes (Chen and Liu, 
1997). Nonlinear membrane vibration problems have 
also been studied. Qian (1982) studied the vibration 
of rectangular, circular and elliptical membranes with 
unequal tension in two directions and obtained an 
approximate solution for the free vibration frequencies. 
Yuan and Zhang (1993a, b) studied the large defl ection 
and free vibration problem by the fi nite element method 
of lines. York et al. (1999) extended the material-point 
method (MPM) to handle membranes, which constituted 
a signifi cant improvement over existing methods. 
Lin et al. (2008) obtained an analytical solution for 
free vibration of an annular membrane. Zheng et al. 
(2009) and Liu et al. (2010, 2013, 2014) considered 
the geometric nonlinearity of membranes and studied 
the vibration problem of orthotropic membranes with 
large defl ection theory and analytical methods. Sunny 
et al. (2012) studied the nonlinear transverse vibration 
problem of a pre-stressed membrane by the Adomian 
decomposition method. Also, design issues concerning 
nonlinear vibration frequencies of rectangular 
orthotropic membranes were discussed by Wetherhold 
and Padliya (2014). Khan et al. (2014) studied the 
nonlinear behavior of the fabrication and characterization 
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of a vibration-based polydimethylsiloxane membrane 
type electromagnetic energy harvester, and the results 
provided a useful basis for the actual engineering. 
Gajbhiye et al. (2015) studied the rectangular, fl at thin 
membrane using PVDF piezo-actuated material as an 
actuator/sensor by the fi nite-element method. 

 Present studies on forced vibration caused by 
external loads have concentrated mainly on wind 
induced vibration. Many scholars carried out research on 
the theoretical analysis, numerical calculation and wind 
tunnel test of various forms of membrane structures 
(Shen and Wu, 2006; Matsumoto, 1990; Buchholdt, 
1998; Yasui et al., 1999; Glück et al., 2003; Wu and 
Shen, 2003; Qin et al., 2008; Zhou et al., 2013; Chen 
et al., 2015). However, little research on the dynamic 
response of membrane structures under concentrated 
impact load has been done. Leigh and Porwal (2003) 
developed an analytical model for the ballistic impact 
response of fi brous materials of interest in body armor 
applications, and the comparison between the analytical 
and experimental results raised fundamental questions 
on many long-held views on the impact behavior of 
fabric systems. Suhir et al. (2009) studied the response 
of a ‘fl exible-and-heavy’ square simply supported 
printed circuit board (PCB) to an impact drop load 
applied to its support contour and evaluated some major 
parameters of this response; signifi cant results were 
obtained for engineering practice. Zheng et al. (2012) 
and Liu et al. (2014) studied the dynamic response of 
orthotropic membranes by analytical methods, but they 
didn’t carry out numerical or experimental study to 
prove the correctness of their results. In addition, they 
didn’t analyze the infl uence of each parameter on the 
vibration of the membrane. 

In this paper we present a numerical study and 
parameter analysis of the dynamic response of 
membranes subjected to concentrated impact loads. 
Membrane structures usually remain elastic in actual 
application despite large deformations in the vibration 
process. Hence, we devoted our study to the elastic, but 
geometrically nonlinear, forced vibration of orthotropic 
membranes. 

2 Governing equations and boundary 
       conditions 

Assume that the rectangular membrane is simply 
supported on its four edges and the membrane material 
is orthotropic. Its two orthogonal directions are the two 
principal fi ber directions denoted by x and y in Fig.1, 
respectively, and a and b are the x and y dimensions. N0x 
and N0y are the initial tensions in the x and y directions, 
respectively. Assume that the impact loading comes 
from a pellet which can be considered a particle with 
mass M and initial velocity v0, and the impact contact 
point is (x0, y0) as noted in the fi gure. 

According to Von Kármán’s large deflection theory 
and the D’Alembert principle (Zheng et al., 2009; Liu 

et al., 2010), the forced vibration partial differential 
equation and consistency equation for an orthotropic 
membrane are:
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where  denotes aerial density of membrane; Nx and 
Ny denote additional tension in x and y direction, 
respectively; N0x and N0y denote initial tension in x and y 
direction, respectively; Nxy denotes shear force; w = w(x, 
y, t) denotes the defl ection; ( , , )p x y t denotes the impact 
loading; h denotes membrane thickness. E1 and E2 denote 
Young’s modulus in x and y direction, respectively. G 
denotes shearing modulus. μ1 and μ2 denote Poisson’s 
ratio in x and y direction, respectively. 

The pellet impact loading on the membrane can be 
expressed as follows:

0 0( , , ) ( ) ( ) ( )p x y t F t x x y y               (2)

where ( )F t  denotes the impact force on the membrane; 
 denotes the Dirac function.

According to the theorem of momentum, we obtain
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The membrane is a plane before impact. Therefore, 
the initial condition of the membrane is 
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where 0v  denotes the velocity of membrane at the time 
of t = 0.

The corresponding displacement and stress boundary 
conditions of the governing equations can be expressed 
as follows: 
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Fig. 1  The impact model of rectangular orthotropic membrane 
           with four edges simply supported
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(5)
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where denotes stress function ( , , )x y t .

3    Analytical solution of the governing equations

The maximum vibration displacement of the 
membrane is much smaller than the boundary size, so 
the shearing actions among the membrane fi bers are 
slight. Therefore, the effect of shearing stress is very 
small in the vibrating process of the membrane. In 
order to simplify the computation, we can take Nxy = 0. 
Meanwhile, introduce the stress function
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into Eq. (1), and Eq. (1) can be simplifi ed as follows 
(Zheng et al., 2009; Liu et al., 2010):
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where denotes stress function ( , , )x y t , 0x and
0 y denote initial tensile stress in x and y direction, 

respectively.
According to the vibration theory, assume that the 

functions that satisfy the boundary conditions (5) and (6) 
are
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where Wmn(x, y) is the mode shape function, and  mn(x, y) 
and Tmn(t) are unknown functions. 

The mode shape function of rectangular membrane 
(Qian,1982) is 
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where m and n are integer, and denote the sine half-wave 
number in x and y, respectively. Equation (11) satisfi es the 
displacement boundary condition (5) automatically. We 
can take one term of Eqs. (9) and (10) for computation, 

i.e. 
     ,, , T t W x yw x y t                   (12)

  
     2 ,, , T t x yx y t                  (13)

and then superpose the fi nal results. 
By substituting Eqs. (11), (12) and (13) into Eq. (8), 

one obtains
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Assume that the solution of Eq. (14) is given by
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The substitution of Eq. (15) into Eq. (14) yields
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By substituting Eq. (15) into the stress boundary 
condition (6), one obtains
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By substituting  ,  , 1 , 2 , 3 and 4  into Eq. (15), 
one obtains
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The substitution of Eqs. (9), (10) and (16) into Eq. (7), 
and according to the Bubnov-Galerkin method, furnishes
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The substitution of Eq. (16) into Eq. (17) yields

    

 

  

2 2 2
2

0 02 2 20 0

2 2 2 22 2
2 2 31 2

2 2 2 2

0 00 0

d
( )

d

( sin sin ) d d
4 4

( ) ( )( ) , d d

a b

x y

a b

T t W WW N W N W T t
t x y

E m E nn y W m y Wh W h W T t x y
a b x b b y

F t x x y y W x y x y





 
  

 

        

   

 

 

 

(18)



660                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.15

where 

2 2 2

2 2sin sin , sin sinm x n y W m m x n yW
a b x a a b
     

  


,

2 2 2

2 2 sin sinW n m x n y
y b a b

   
 


,

2 2 2 1 2 2sin sin (1 cos )(1 cos )
4

m x n y m x n yW
a b a b
   

   

The substitution of all the aforementioned 
expressions into Eq. (18) results in 
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The substitution of the expression of F(t), namely 
Eq. (3), into Eq. (19) and after simplifi cations yields 
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It is clear that Eq. (20) is a nonlinear differential 
equation with respect to T(t). It is very diffi cult to 
obtain an analytical solution of this equation. Therefore, 
we apply the L-P perturbation method to obtain an 
approximate analytic solution. 

Because  2 1h ab  and it is a dimensionless 
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perturbation parameter. Then Eq. (20) can be simplifi ed 
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By introducing a new variable t  , we obtain
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The substitution of Eq. (22), (23), (24) into Eq. (21) 
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Take the fi rst power of   as an approximation. 
Spread Eq. (25), and compare the coeffi cient of each 
power of  yields
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Equation (31) is a linear forced vibration equation, 
with a homogeneous solution 
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According to the perturbation theory, in order to 
make the general solution of Eq. (31) not contain secular 
terms, we must orthogonalize g and f, i.e.
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into Eq. (34), one obtains 
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where 
2

3
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3
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8
A

   . 

Now, we determine the constants A and B according 
to the initial conditions. The impact actuation duration 
of the pellet impacting the membrane is very short. So 
the system formed by the pellet and membrane can be 
considered as a conservative system. According to the 
principle of conservation of momentum, we can obtain 
the following expression

 0 0 0 , d
s

Mv Mv v W x y s                  (36)

The substitution of Eq. (11) into Eq. (36) yields

0
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                      (37)

The pellet and membrane have the same initial 
velocity 0v  at the time of t = 0. We can therefore obtain 
the following initial condition 
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The substitution of Eq. (35) into Eq. (38) yields
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The substitution of Eq. (29) into Eq. (38) yields

0

0 0sin sin

v
A m x n y

a b





 


                  (40)

The substitution of Eq. (40) into Eq. (39) yields
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By substituting Eq. (40) into 
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where 0 0sin sin
m x n y

C
a b
 

  . Equation (42) is the 

formula for the vibration frequency. 
The substitution of Eqs. (40) and (41) into Eq. (35) 

yields
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The substitution of Eq. (43) into Eq. (9) yields
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The substitution of Eq. (43) into Eq. (3) yields
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By fi nding the one and two time derivative of Eq. (44), 
one obtains 

3
0 3 0

2 3 30 0 0 01 1

3
3 0

2 3 30 0

3
( , , ) [( )

sin sin 32 sin sin

3
cos cos3 ]

32 sin sin

mn
m n

v v
v x y t W m x n y m x n y

a b a b
v

t tm x n y
a b






 



 

 

 
  

   
 




 




 

(46)

 
3

0 3 0

3 30 0 0 01 1

3
3 0

3 30 0

3
( , , ) [ ( )

sin sin 32 sin sin

9
sin sin 3 ]

32 sin sin

mn
m n

v v
a x y t W m x n y m x n y

a b a b
v

t tm x n y
a b

 




 



 

 

 
   

   
 




 




 

(47)

where ( , , )v x y t  and ( , , )a x y t  are  the  velocity  and 
acceleration of the membrane, respectively. 

4   Illustrative example of analytic solution

Consider a commonly used membrane material 
where the Young's modulus in x and y are E1 = 
1.4×106 kN/m2 and E2 = 0.9×106 kN/m2, respectively. 
The aerial density of membranes is ρ = 1.7 kg/m2. The 

example membrane has thickness h = 1.0 mm, length 
a = 0.4 m and width b = 0.2 m. The mass of the pellet is 
M = 10-2 kg. Pretensions are 0 0 10kN/mx yN N  . 

4.1  Computation of frequencies

Frequencies of the fi rst three orders under different 
pellet initial velocities are computed according to Eq. 
(42) and the results presented in Table 1. 

We can make several observations based on the 
results in Table 1.

(1) The membrane frequency increases with 
increasing initial velocity of the pellet, and increasing 
vibration order.

(2) For each vibration mode, the frequency value 
is minimum when v0→0, i.e., it approaches the small 
amplitude (i.e. linear) free vibration frequency. 

4.2  Displacement time histories of impact point

Take the center point of membrane (i.e. x0 = a/2, y0 = 
b/2) as the impact point. The displacement time histories 
of the impact point are analyzed according to Eq. (44). 
For v0 = 15 m/s (25 m/s), the vibration time-history 
curves of the fi rst three orders are shown in Fig. 2, where 
by the blue (red) dotted line.

Table 1   Values of frequency (rad/s) under different initial velocities of pellet

Order
Initial velocities of the pellet v0 (m/s)

125 100 75 50 25 v0→0

First 1435.95 1400.47 1370.40 1347.26 1332.60 1327.57

Second 2344.56 2278.80 2222.35 2178.43 2150.33 2140.63

Third 3992.31 3870.70 3765.52 3682.98 3629.80 3611.37

2

1

1

2

0.002           0.004           0.006          0.008

w
 (m

m
)

t (s)
(a) First order vibration time-history curve

1.0

0.5

0.5

1.0

0.002           0.004           0.006          0.008

w
 (m

m
)

t (s)
(b) Second order vibration time-history curve

0.002           0.004           0.006          0.008w
 (m

m
)

t (s)
(c) Third order vibration time-history curve

0.5

0.5

Fig. 2   The single mode displacement and time curves of the impact point of the membrane
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From Fig. 2, we can make the following observations:
(1) The vibration period decreases with the increase 

of vibration order. The maximum amplitude decreases 
with the increase of vibration order.

(2) The maximum amplitude of each order increases 
with the increase of initial velocity of the pellet. This 
refl ects the nonlinearity of the forced vibration of the 
membrane.   

Figure 3 shows the vibration time-history curves of 
the impact point (x0 = a/2, y0 = b/2) according to Eq. 
(44) for pellet velocities of: v0 = 15 m/s, v0 = 20 m/s, 
v0 = 25 m/s. The maximum displacement values of the 
impact point are shown in Table 2. One can conclude 
that the maximum displacement of the impact point 
increases with respect to increasing initial velocity of the 
pellet. The impact point did reciprocating motion after 
the pellet acts on the membrane, and the motion will 

continue (i.e., the vibration will not attenuate).

4.3  Analysis of vibration modes 

We substituted the material and geometric 
parameters into Eq. (44) to obtain the displacement 
function of the vibration of each order. Assume that the 
initial velocity of the pellet is v0 = 15 m/s and the time 
t = 0.001 s. The vibration modes of the fi rst six orders 
according to these displacement functions are shown in 
Figs. 4-9. By superimposing the vibration modes of the 
fi rst three orders, we can obtain the superposed vibration 
modes that are given in Fig. 10. The dimension of the 
coordinates of Figs. 4-9 is in meter.

From the results of the vibration mode analysis, 
we can conclude that one can expediently compute the 
vibration mode of each order by using the defl ection 
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Fig. 3   Displacement and time curves of the impact point of the membrane

Table 2   Maximum displacement values of impact point

Initial velocity (m/s) 15 20 25
Maximum displacement (mm) 5.6 7.4 9.1
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Fig. 4   The fi rst order vibration mode                          
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Fig. 5   The second order vibration mode                          
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function (44). In addition, the total superposed vibration 
mode of the nonlinear forced vibration of orthotropic 
membranes under concentrated impact load can be 
computed conveniently. The vibration amplitude 
decreases with respect to increasing vibration order, 
i.e. the contribution of the low order vibration modes is 
larger than the higher order vibration modes. Therefore, 
we just need to consider vibration modes of the fi rst 
three to six orders. The total superposed vibration mode 
is axial-symmetric in the x and y directions. 

5 Comparison and analysis of numerical and 
    analytical results 

5.1  Model of numerical analysis

The fi nite element analysis software ANSYS/LS-
DYNA was used to analyze the nonlinear vibration 
of the pretension rectangular orthotropic membrane 
structure with four edges fi xed under impact force. 
The impact force is imposed by a rigid pellet with 
an initial velocity. The solution method is implicit-
explicit continuous solution. In the implicit solution, 
the membrane elements are represented by SHELL181 
(only membrane algorithm) and pellet element is 
SOLID185 (3D solid). In the explicit solution, the 
elements convert into SHELL163 and SOLID164. In 
order to avoid hourglass in the computing process, the 
complete integral Belytschko-Tsay membrane algorithm 
was used for SHELL163.

The unit system of the numerical analysis is shown in 
Table 3. The material property parameters are the same 
as those of the analytic solution. The material property 
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Fig. 6   The third order vibration mode
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 Fig. 9  The sixth order vibration mode
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Fig. 10   The superposed vibration mode
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Table 3  Unit prescribes of the numerical analysis

Mass Length Time Force Stress Energy Density Young′s Velocity
ton mm s N MPa N.mm t/mm3 MPa mm/s

Table 4  Material property parameters of the numerical model

Element h/R(mm) ρ (t/mm3) Ex (MPa) Ey (MPa) NUXY Gt
Shell 181 1 1.7e-9 1400 900 0.3 12
Solid 185 10 1.91e-8 —— —— —— ——
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parameters are shown in Table 4.

5.2  Meshing and pretension 

The four-node surface element is used in the mesh. 
The center area of the membrane surface is the main 
impacting area of the pellet, so the meshing of the center 
area is much fi ner. In order to meshing the pellet by using 
hexahedron mapping solid element, the pellet is split 
into eight one-eighth pellet by moving and revolving 
working plane. After meshing, the fi nite element model 
is shown in Fig. 11.  

In the implicit analysis, the pretension of membrane 
is applied by applying the same displacement on the two 
opposite sides of rectangular membrane.  

Because the elastic moduli in the two orthotropic 
directions are different, the principal axis direction of the 
element coordinate system must align with the direction 
of the global coordinate system. Aligning the fi ber 
directions with the x and y directions of the coordinate 
system, the stress-strain relationship of the membrane is 
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The displacement in x and y direction is 
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                           (49)

where x  and y  denote the strains of x and y directions, 
respectively; h  denotes the thickness of membrane; E1 
and E2 denote the elastic modulus in x and y direction, 
respectively; μ1 and μ2 denote Poisson’s ratio in x and y 
direction, respectively; xN and yN  denote the pretension 
of x and y direction, respectively; xl  and yl  denote the 
length of x and y direction, respectively; xl  and yl
denote the displacement of x and y direction, respectively. 

The corresponding displacement of xN and yN  can 
be obtained by Eqs. (48) and (49). Then the pretension of 
membrane can be exerted by imposing the corresponding 

displacement in the x and y direction, respectively. 

5.3  The solving process 

Firstly, implicit solving was carried out. The 
complete restrictions were applied to all nodes of 
the pellet element. The corresponding displacements 
calculated by Eq. (49) were imposed on the membrane. 
Then, the keyword fi le of implicit solving was submitted 
to LS-DYNA to carry out the explicit solving. In explicit 
solving, the membrane elements change to SHELL163 
and the pellet elements change to SOLID164.

In order to avoid penetration between the pellet and 
membrane elements, density of the elements in the contact 
area and the stiffness of penalty function were increased, 
and the contact thickness was decreased. Through this 
adjustment the penalty factor was determined as 0.8. 

The solution of the model leads to the post-processing 
stage. The post-processing software is LS-PREPOST. 

In the numerical analysis the parameters of the 
membrane and pellet are the same as those in Section 
3. The displacement time history and maximum 
displacement of the impact point ( 2 , 2)a b  are 
calculated in the numerical analysis. Meanwhile, the 
results of the numerical and theoretical calculations are 
compared and analyzed.  

5.4  Comparative analysis of frequencies

The analytical and numerical frequencies of the 
fi rst three orders for various pellet initial velocities are 
compared in Table 5. It is observed that:

 (1) All frequencies, analytical and numerical, 
increase with the increase of pellet initial velocity and 
the vibration orders.

(2) The relative difference between the analytical 
and numerical results also increases with the increase of 
pellet initial velocity and the vibration orders. But the 
relative differences are all less than 5% within the fi rst 
three orders. 

5.5 Comparative analysis of displacement time 
         histories  

Displacement time histories of the impact point 
obtained from the analytical calculation and numerical 
analysis are shown in Fig. 12 (time in second, and 
displacement in mm). It can be seen that the displacement 
time histories from analytical calculation is very close 
to those from numerical analysis. Only the theoretical 
value of the maximum displacement of the impact point 
is slightly less than the numerical value. This proves the 
correctness of the analytical solution. 

5.6   Comparative analysis of maxium displacements

The analytical and numerical results of the maximum 
displacement of the membrane are compared and 
analyzed; the deformation diagrams are shown in Fig. 
13 and 14 while the displacement values are listed in 

Fig. 11  Membrane surface grid division and spheroid grid 
               division
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Table 5   Values of frequency (rad/s) under different initial velocities of pellet

Order
Initial velocities of the pellet v0 (m/s)

75 50 25 v0→0

First Analytical 1370.40 1347.26 1332.60 1327.57

Numerical 1310.80 1295.30 1290.12 1288.35

Relative difference (%) 4.55 4.01 3.30 3.04

Second Analytical 2222.35 2178.43 2150.33 2140.63

Numerical 2123.40 2092.43 2079.62 2074.27

Relative difference (%) 4.66 4.11 3.40 3.20

Third Analytical 3765.52 3682.98 3629.80 3611.37

Numerical 3594.77 3534.53 3507.73 3495.67

Relative difference (%) 4.75 4.20 3.48 3.31
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Fig. 12  Displacement time histories of the impact point of the membrane
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Table 6, together with their relative differences.
From Table 6 it can be seen that the relative differences 

in the maximum displacement results are small, with a 
maximum value of 9.46%. Hence, the numerical results 
are in good agreement with the analytical results. It can 
be seen also from Table 6 that the relative difference 
between the analytical and numerical results decreases 
with the increase of the initial velocity of the pellet, and 
the analytical results are slightly less than the numerical 
results. The reason is as follows:

(1) In order to eliminate stress singularity of the 
membrane under the concentrated load, the smooth sine 
function is taken as the displacement function there 
without fully considering the deformation characteristics 
of the membrane under the pellet. 

(2) In reality there is a displacement amplifi cation 
effect in the area near the impact point on the membrane. 
A side view of the membrane deformation under the 
pellet is shown in Fig. 15 which shows clearly the 
amplifi cation in the area near the impact point. The 
shape function of the analytical solution cannot precisely 

express this amplifi ed deformation so the results of the 
analytical calculation are slightly smaller than the of 
numerical analysis results.

(3) With increasing initial pellet velocity, this local 
amplifi cation effect is gradually weakened since the 
relative difference between the analytical and numerical 
displacements decreases as the initial pellet velocity 
increases.

6   Analysis of the infl uence of parameters

Boundary size, pretension and surface density 
of the membrane, and the velocity and quality of the 
pellet all have an infl uence on membrane vibration. The 
effects of these parameters are analyzed by comparing 
the numerical and analytical results on the maximum 
displacement.

6.1  Membrane size

To analyze the infl uence of membrane size, analytical 
and numerical results on the maximum displacement 
of the impact point for selected membrane dimensions 
are collected in Table 7 and Fig. 16. The calculation 
parameters are taken as: h = 1 mm, ρ = 1.7 kg/m2 , 
M = 10-3 kg, 6 2

1 1.4 10 kN/mE   , 6 2
2 0.9 10 kN/mE   , 

0 0 10 kN/mx yN N  , v0 = 15 m/s. The boundary size of 

Fig. 13  The plan view of the deformation of the membrane Fig. 14  The lateral view of the deformation of the membrane

Table 6   Comparison of analytical and numerical results of the maximum displacement

Velocity v0 = 15 m/s v0 = 15 m/s v0 = 15 m/s

Analytical results (mm) 5.60 7.40 9.10
Numerical results (mm) 6.1296 7.7247 9.1287
Relative difference (%) 9.46 4.39 0.32

Fig. 15   The side view of the membrane deformation under the 
              pellet impact

Local area

Table 7   Comparison of maximum displacements for different membrane sizes

Number 1 2 3 4 5 6 7 8
Boundary size
(mm × mm)

1000×500 900×450 800×400 700×350 600×300 400×200 300×150 200×100

Analytical results
(mm)

1.4578 1.6199 1.8217 1.9273 1.942 1.9401 1.9375 1.93

Numerical results
(mm)

2.1492 2.0438 2.0867 2.0401 2.0299 2.0609 2.0726 2.01

Relative difference 32.17% 20.74% 12.7% 5.53% 4.33% 5.85% 6.52% 3.98%
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the membrane is varied as shown in Table 7. 
From Table 7 and Fig. 16, it can be seen that the 

differences between the analytical and numerical results 
gradually decrease with the decrease of membrane size. 
When the membrane size is smaller than 700mm×350mm 
(membrane size #4 or higher in Table 7), the relative 
differences stabilize at about 5%, which is acceptable 
engineering error. 

6.2  Membrane pretension 

Maximum displacements of the membrane under 
the impact pellet for selected membrane pretensions 
are calculated. The pretensions investigated are 5, 6, .. 
10 kN, corresponding to pretension membrane number 
#1 through 6 in Table 8. The other parameters are

6 2
1 1.4 10 kN/mE   , 6 2

2 0.9 10 kN/mE   , a = 0.4 m, 
b = 0.2 m, 21.7kg/m  , h = 1 mm, M = 10-3 kg, v0 = 15 m/s. 

Table 8   Comparison of maximum displacements for different pretensions

Number 1 2 3 4 5 6
Pretension levels N =  5 kN N =  6 kN N =  7 kN N =  8 kN N =  9 kN N =  10 kN

Analytical results (mm) 2.7440 2.5049 2.3189 2.1692 2.0449 1.9401
Numerical results (mm) 2.7818 2.5695 2.4379 2.2704 2.1551 2.0609

Relative difference 1.36% 2.52% 4.88% 4.46% 5.11% 5.86%

Fig. 16  Relative difference between analytical and numerical maximum displacements (membrane size number refers to membrane 
             dimensions in Table 7)
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Analytical and numerical results on the maximum 
membrane displacement are collected in Table 8 and 
Fig. 17. 

From Table 8 and Fig. 17, it can be seen that the 
differences between the analytical and numerical results 
gradually increase with increasing pretensions. The 
reason is that the actual vibration deformation is closer 
to the theoretical mode function when pretension is 
small, other parameters being held fi xed; with decreasing 
pretension. the vibration mode approaches a sinusoidal 
function, the theoretical mode function. 

6.3  Pellet velocity

Maximum displacements of the membrane under the 
impact of the pellet with different impact velocities were 
calculated. The velocities investigated are v0 = 15, 17, 20, 
25 and 27 m/s. The other parameters are 6 2

1 1.4 10 kN/mE   ,
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Fig. 17   Comparison of analytical and numerical maximum displacements of the membrane under different pretensions (pretension  
              number refers to selected pretensions listed Table 8)        
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Table 9   Analytical and numerical maximum displacements with different pellet velocities

Number 1 2 3 4 5
Pellet velocities v0 = 15 m/s v0 = 17 m/s v0 = 20 m/s v0 = 25 m/s v0 = 27 m/s

Analytical results(mm) 1.455 1.6512 1.94 2.425 2.6213
Numerical results(mm) 1.6453 1.7957 2.0609 2.5527 2.7435

Relative difference 11.56% 8.04% 5.86% 5.00% 4.45%

Table 10   Analytical and numerical maximum displacements with different areal densities

Number 1 2 3 4 5
Areal densities ρ = 1.0 kg/m2 ρ = 1.2 kg/m2 ρ = 1.5 kg/m2 ρ = 1.7 kg/m2 ρ = 2.0 kg/m2

Analytical results (mm) 2.5244 2.3077 2.0668 1.9401 1.7871
Numerical results (mm) 2.5785 2.3812 2.2081 2.0609 1.8629
Relative difference 2.1% 3.09% 6.4% 5.86% 4.07%
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Fig. 18   Comparison of theoretical and numerical maximum displacements of impact point for different pellet velocities (pellet 
                velocity number refers to values in Table 9)
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6 2
2 0.9 10 kN/mE   , a = 0.4 m, b = 0.2 m, ρ = 1.7 kg/m2,

h = 1 mm, M = 10-3 kg, 0 0 10 kN/mx yN N  . The 
analytical and numerical results are compared in Table 9 
and Fig. 18. 

From Table 9 and Fig. 18, it can be seen that 
maximum displacement of the membrane increases with 
increasing pellet velocity, as expected. The difference 
between the analytical and numerical results gradually 
decreases with increasing pellet velocity. The reason is 
the same as the effect of membrane pretension described 
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Fig. 19   The comparison of the analytical and numerical maximum displacement of the membrane with different area densities       
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previously: the actual vibration deformation approaches 
the theoretical sinusoidal mode function as the pellet 
velocity increases, with the other parameters held fi xed. 

6.4  Areal density of the membrane 

Maximum displacements of the membrane for areal 
densities varying between 1.0 kg/m2 and 2.0 kg/m2

were calculated. The other parameters are v0 = 
15 m/s,  6 2

1 1.4 10 kN/mE   , 0 0 10 kN/mx yN N  , 
6 2

2 0.9 10 kN/mE   , a = 0.4 m, b = 0.2 m, h = 1 mm, 
M = 10-3 kg. The analytical and numerical results are 
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shown in Table 10 and Fig. 19. 
From Table 10 and Fig. 19, it can be seen that 

maximum displacements of the membrane decrease 
with increasing areal density. The reason is that initial 
velocity of the membrane will decrease with increasing 
areal density, according to the law of conservation 
of momentum. Differences between analytical and 
numerical results gradually increase with increase in areal 
density. The reason is again the same as aforementioned: 
the difference between the theoretical sinusoidal mode 
function and the actual membrane deformation will 
increase with decreasing areal density. 

6.5  Pellet mass

Pellet masses considered are 0.8 g, 1.0 g, 1.2 g, 
1.4 g and 1.6 g. The other parameters are v0 = 15 m/s, 

6 2 6 2
1 0 0 21.4 10 kN/m 10 kN/m, 0.9 10 kN/m, x yE N N E     , 

a = 0.4 m, b = 0.2 m, ρ = 1.7 kg/m2, h = 1 mm. 
Analytical and numerical results for the maximum 
displacement of the membrane are shown in Table 11 
and Fig. 20. 

From Table 11 and Fig. 20, it can be seen that the 
maximum displacements of the membrane increase with 

Table 11   Analytical and numerical maximum displacements for different pellet masses

Number 1 2 3 4 5
Pellet masses M = 0.8 g M = 1.0 g M = 1.2 g M = 1.4 g M = 1.6 g
Analytical results (mm) 1.554 1.9401 2.3283 2.7132 3.1002
Numerical results (mm) 1.7021 2.0609 2.4576 2.7901 3.1716
Relative difference 8.70% 5.86% 5.26% 2.76% 2.25%
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Fig. 20   Comparison of analytical and numerical maximum displacements of the membrane under different pellet masses (mass 
               number refers to Table 11)      
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the increase of the mass of the pellet. The reason is that the 
impact energy of the pellet increases with the increasing 
pellet mass when pellet velocity is constant. Meanwhile, 
difference between the analytical and numerical results 
gradually decreases with increasing pellet mass because 
the difference between the theoretical sinusoidal mode 
function and the actual membrane deformation becomes 
smaller with increasing pellet mass.

6.6  The infl uence of the Young’s modulus ratio

Assume that 6 2
1 1.4 10 kN/mE   , we varied 2E from 

6 20.7 10 kN/m to 6 210 kN/m1.1 . The other parameters 
are v0 = 15 m/s, M = 10-3 kg, 0 0 10 kN/m,x yN N    
a = 0.4 m, b = 0.2 m, ρ = 1.7 kg/m2, h = 1 mm. Analytical 
and numerical results for maximum membrane 
displacement for various E1/E2 ratios are shown in Table 
12 and Fig. 21.  

From Table 12 and Fig. 21, it can be seen that 
maximum displacements of the membrane increase with 
the increase of Young’s modulus ratios. This is because 
the increase of Young’s modulus ratios with 1E held 
constant means the decease of 2E  and the deformation 
of forced body will increase when Young’s modulus 

Table 12  Analytical and numerical maximum displacements for different pellet masses

Number 1 2 3 4 5
Young’s modulus  × 106 kN/m2 E2 = 0.7 E2 = 0.8 E2 = 0.9 E2 = 1.0 E2 = 1.1
Analytical results (mm) 2.5971 2.2661 1.9401 1.6204 1.3142
Numerical results (mm) 2.7747 2.4138 2.0609 1.7005 1.3640
Relative difference 6.40% 6.12% 5.86% 4.71% 3.65%
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Fig.  21   Comparison of analytical and numerical maximum displacements of the membrane for different Young’s modulus ratios 
                (Young’s modulus number refers to Table 12)     
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becomes smaller. Meanwhile, the difference between 
the analytical and numerical results gradually decreases 
with the decrease of Young’s modulus ratio. The 
difference between the theoretical and numerical models 
will decrease when the Young’s modulus ratio ( 1 2E E ) 
approaches zero. 

7   Conclusions

The nonlinear vibration response of an orthotropic 
membrane under concentrated impact load was studied 
with analytical and numerical methods in this paper. The 
governing equations were established by Von Kármán’s 
large deflection theory and the D’Alembert principle. 
The governing equations were solved by the Bubnov-
Galerkin method combined with the Lindstedt-Poincaré 
perturbation method, and analytical solutions obtained. 

The numerical study was carried out by using the 
fi nite-element analysis software ANSYS/LS-DYNA. 
The numerical results are found to be very close to the 
analytical results. Only the theoretical values of the 
maximum displacement of the impact point are slightly 
less than those from the numerical study. This proves the 
correctness of the analytical solution. 

The infl uence of various model parameters 
(including boundary size, pretension and surface density 
of the membrane and the velocity and quality of the 
pellet) on the vibration of the membrane is analyzed, and 
signifi cant conclusions are obtained, as follows: 

(1) Differences between the analytical and numerical 
results of the maxim displacement gradually decrease 
with decreasing membrane size. When membrane size is 
smaller than 700 mm × 350 mm, the relative differences 
stabilize at about 5%, which is in accordance with the 
requirement of the engineering error.

(2) Differences between the analytical and numerical 
results of the maxim displacement increase gradually 
with increasing pretension. 

(3) The maximum displacements of the membrane 
increase with increasing pellet velocity or mass, and 
decrease with increasing membrane areal density.

The results presented in this paper may contribute 
some insight towards vibration control and dynamic 
design of orthotropic membrane components and 
structures.
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