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Abstract: A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the 
maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues 
and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic 
combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called 
the CCQC-R method, in which the correlation coeffi cients of high-order modal responses are enclosed in addition to the 
correlation coeffi cients in the normal CCQC method. As a result, the formulas for calculating the correlation coeffi cients of 
high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation 
coeffi cients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make 
the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step 
integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake 
ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method 
derived here is suitable for generally linear systems with classical or non-classical damping.
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 1  Introduction

The dynamic responses of structures subjected to 
earthquake ground motion are usually calculated by 
the response-spectrum mode superposition method in 
the seismic design codes of many earthquake prone 
countries. Using the response-spectrum m ethod for 
either a classically or non-classically damped MDOF 
linear system, the maximum structural response can 
be obtained by each mode of a set of modes which are 
used to represent the response. Based on the classically 
damped assumption, the square root of the sum of 
the squares (SRSS) method and complete quadratic 
combination (CQC) rule are proposed to calculate 
the dynamic response of structures (Caughey, 1960). 
However, for structures with strongly non-classical 

damping, the accuracy of the SRSS method or CQC 
rule becomes questionable (Clough and Mojtahedi, 
1976; Veletsos and Ventura, 1986). For this reason, 
several modal combination rules accounting for the 
effect of non-classical damping are developed. For 
instance, Igusa et al. (1984) described the responses in 
terms of spectral moments and provided the formations 
of correlation coeffi cients among modes using fi ltered 
white noise process as inputs. Later on, Gupta and Jaw 
(1986) developed the response spectrum combination 
rules for non-classically damped systems by using the 
displacement and velocity response spectrum. Singh 
and Ghafory-Ashtiany (1986) formed a modifi ed 
conventional SRSS approach where non-proportional 
damping effects can be properly included. Villaverde 
(1988) improved Rosenblueth’s rule (1951) by including 
the effect of modal velocity responses. Maldonado and 
Singh (1991) proposed an improved response spectrum 
method for non-classically damped systems, which 
reduces the error associated with the truncation of high 
frequency modes without explicitly using them in the 
analysis. Zhou et al.  (2004) derived the complex square 
root of the sum of the squares (CSRSS) method and 
the complex complete quadratic combination (CCQC) 
algorithm for a generally non-classically damped linear 
system, which were entirely in real value form and 
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included three correlation coeffi cients of displacement, 
velocity and displacement-velocity. Moreover, in later 
research, the CCQC method was developed to consider 
the effects of over-damping and non-stationary input (Yu 
and Zhou, 2006; Zhou and Yu, 2008), and to estimate the 
structural response under multi-component excitation 
(Yu et al., 2005; Song et al., 2007). 

However, these methods still need improvement. For 
example, for either classical or non-classical damping 
systems, all the combination rules mentioned above 
did not incorporate the effect of repeated eigenvalues 
in the formulation. With the growth of the structural 
size an  d complexity of the system, very close and 
repeated frequencies are no longer unusual and are 
sometimes inevitable (Michael, 2011). Moreover, it is 
worth considering whether the earthquake responses 
corresponding to the two equal frequencies can be 
offset from each other. In fact, it is based on this 
consideration that the tuned mass damper (TMD) was 
developed (Fujino and Abe, 1993). As a consequence, 
the methods dealing with the dynamic responses of the 
system with repeated eigenvalues are inevitably evolved 
(Katsuhiko, 2006; Yao and Gao, 2011; Li et al., 2013; 
Long et al., 2014). In our previous studies, the generally 
damped linear systems with repeated eigenvalues 
and defective eigenvectors, a hybrid   decomposition 
approach was developed to calculate the dynamic 
response of the structure, which incorporates the merits 
of the modal superposition method and the residue 
matrix decomposition method, and does not need to 
consider the defective characteristics of the eigenvectors 
corresponding to repeated eigenvalues (Yu et al., 2012). 
However, the previous research only deduced dynamic 
responses of damped systems with repeated eigenvalues 
in the time domain but did not obtain the calculation 
algorithm based on earthquake response-spectrum, 
which limits its application in earthquake engineering. 

The purpose of this study is to develop a response-
spectrum mode superposition method which can 
consider the repeated-frequency characteristics based on 
the derived hybrid decomposition approach (Yu et al., 
2012). Because this algorithm can consider the effect of 
repeated eigenvalues, it is called the CCQC-R rule, in 
which the correlation coeffi cients of high-order modal 
responses will be involved in addition to correlation 
coeffi cients in the normal CCQC method (Zhou et al., 
2004). As a result, the formulas for calculating the 
correlation coeffi cients of high-order modal responses 
are deduced, including displacement, velocity and 
velocity-displacement correlation coeffi cients. 
Furthermore, the relationship between high-order 
displacement and velocity variance is derived to make 
the CCQC-R algorithm only relevant to the high-order 
displacement response-spectrum. Finally, the practical 
step-by-step method for calculating the high-order 
displacement response spectrum is discussed and tested 
for application in earthquake engineering.

2 Decomposition technology of damped linear 
    systems with repeated eigenvalues

For a discrete system, with N degrees of freedom, 
the equations of motion in terms of nodal displacements 
are expressed as

 gy tMy + Cy + Ky = Me  
                   

(1)

Here M ,C and K are the N N mass, damping and 
stiffness matrices, which are real symmetric matrices. 
Also, the damping matrix C should be a constant 
matrix due to consideration of the viscous damping. y  
is a 1N  nodal displacement vector which describes 
the dynamic response of the structure, and N is an 
arbitrarily large integer. e  is a   unit vector with dimension 

1N  , and  gy t   is the arbitrary time history of ground 
acceleration. Equation (1) can also be rewritten as a 
group of fi rst-order linear differential equations, that is

                            gy t x Dx b 
                             

(2)
in which 

1 1

, ,
        

      
    

e yM C M K
D b x =

0 yI 0


      (3)

and I  is identity matrix with dimension N N .
The eigenvalues corresponding to the system 

expressed by Eq. (2) can be divided into two types: distinct 
eigenvalues and repeated eigenvalu es. Correspondingly, 
the structural responses can also be divided into two 
groups according to distinct and repeated eigenvalues. 
And the response contributions from two groups can 
be calculated through different methods. Therefore, a 
hybrid decomposition method was deduced by making 
full use of the merits of the mode superposition method 
and residue matrix decomposition method (Yu et al., 
2012), which can be treated as an alternative expression 
form of the generalized complex mode analysis method. 

Suppose the different conjugate eigenvalues of the 
system are  ,m m   ( 1,2, ,m z  ) with multiplicity mk
( 1mk  ). Now separate the 1z -pairs distinct eigenvalues 

m  with 1mk  from the eigenvalues, and renumber the 
eigenvalues  ,m m   ( 1 11, , 1, ,m z z z   ) according 
to the corresponding multiplicity mk , that is

            

 
 

1

1

    1,              
    2,    1

m m

m m

k m z
k z m z



  
    

 

The displacement responses of the structure in the 
time domain can then be written as

           
1

1

D M D M
1 1

z z

m m
m m z

y t y t y t y t y t
  

      
(4)    

in which the fi rst part  Dy t  represents the linear 
combination of the displacement responses of the 1z  
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SDOF oscillators. The mode superposition method 
mentioned by Zhou et al. (2004) is recommended to 
calculate the fi rst part in Eq. (4) to reduce the amount of 
computation, that is

     
1

D ,1 ,1 ,1 ,1
1

z

m m m m
m

y t q t q t


  A B
 

           (5)

in which the subscript  ,1m  represents the order and 
corresponding multiplicity of eigenvalue, respectively. 
In the case of distinct eigenvalues, the multiplicity is 
equal to 1. ,1m


A and ,1m


B  are the generalized participation 

factors corresponding to the m -th distinct eigenvalue m , 
which can be calculated based on the orthogonality of 
the eigenvectors provided by the characteristic equation, 
or be calculated based on the residue matrix ,1mR (Yu et al., 
2012), that is

   ,1 ,1 ,12 Re +2 Imm m m m m  

A R Me R Me                  

 
 ,1 ,12Rem m 


B R Me                    

where m m m    and 21m m m     are the damping 
coeffi cient and the damped frequency of the m -th mode, 
and m  and m  are the frequency and the corresponding 
damping ratio. Re (.) and Im (.) represent the operation 
of extracting the real and imaginary part of complex 
number.  

And,  ,1mq t  and  ,1mq t  in Eq. (5) can be calculated 
by solving the following equation
        

     2
,1 ,1 ,1 g2 ( )m m m m m mq t q t q t y t               (6)

i.e.

        ,1 g0

1 e sin dm
t t

m m
m

q t t y     


        (7)

and defi ne the expression

    ,1
1( ) e sinm t

m m
m

h t t   


           (8)

is the impulse response function, which is the 
displacement response of the SDOF oscillator due to 
unitary velocity at initial time 0t  .

The second part  My t  represents the linear 
combination of the displacement responses of the 1z z  
coupled systems, in which   M m

y t  is the response 
of the m th coupled system. According to the derived 
hybrid decomposition approach (Yu et al,. 2012), the 
response  My t  can be calculated by the residue matrix 
decomposition method, in which the coupled system 
corresponding to a repeated eigenvalue will be handled 
as a coupled-system, and no longer decomposed into 
smaller systems. Thus, it is not necessary to calculate 
the geometric multiplicity of the repeated eigenvalue m  
and to determine the corresponding independent vectors 
and derived-vectors of the repeated eigenvalue, which 

is a time consuming task for a large system. The second 
part  My t  in Eq. (4) can be expressed as

    
1

M M
1 1

mkz

mj
m z j

y t y t
  

                        (9)

in which   M mj
y t  is the j th order response 

corresponding to repeated eigenvalue m  with 
multiplicity mk , the values of j  varies from 1 to mk . 
Based on the residue matrix decomposition method, Eq. 
(9) can be expressed as

   
1

M , , 1 , , , ,
1 1

mkz

m j m j m j m j m j m j
m z j

t q q q
  

   y G A B      (10)

where vectors ,m j
G , ,m j

A and ,m j
B are the generalized 

participation factors of the j -th order response 
corresponding to the repeated eigenvalue m , which 
can be determined based on residue matrix ,m jR  
corresponding to the term   j

m  of repeated 
eigenvalue m  (Yu et al., 2012), that is

   , ,2

2 1
Rem j m jj

m

j
 


G R Me            

                     , , ,1

2 Re Imm j m m j m m jj
m

 
 

    
A R Me R Me

 
 , ,1

2 Rem j m jj
m
 B R Me             

And  , 1m jq t  and  ,m jq t  in Eq. (10) can be 
calculated by

          2
, 1 g0

1 e sin dm
t j t

m j m m
m

q t t t y      


  
       

(11)

          1
, g0

1 e sin dm
t j t

m j m m
m

q t t t y      


        

(12)

and defi ned

       1
,

1 e sinm
j t

m j m m
m

h t t t     


         
(13)

is the high-order impulse response function corresponding 
to the j -th order of the repeated root m . Note that the 
impulse transfer function expressed by Eq. (13) has an 
additional dimensionless term   1j

m t 


    compared 
to Eq. (8) corresponding to distinct roots.

Because the structural responses of the distinct 
eigenvalues can be treated as the case when the 
multiplicity mk of the eigenvalue is equal to 1, the 
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Eq. (4) can be generalized as the equation of the double-
summation expression, i.e.
                     

   , , 1 , , , ,
1 1

mkz

m j m j m j m j m j m j
m j

t q q q
 

   y G A B (14)

in which  

1 1 1 11,1 1, ,1 ,, , , , , , , , ,
z zz z k z z k


 
   

      G 0 0 G G G G

1 1 1 111,1 ,1 1,1 1, ,1 ,, , , , , , , , ,
z zz z z k z z k 

   
 

      A A A A A A A

1 1 1 1 11,1 ,1 1,1 1, ,1 ,, , , , , , , , ,
z zz z z k z z k


 
   
 

      B B B B B B B

3 Response-spectrum mode superposition 
    method for damped system with repeated 
      eigenvalues 

For the generally non-classically damped system 
with complex modes, it can be seen from Eq. (14) that 
the structural modal response not only depends upon 
the displacement response of the separated oscillator 
but also relates to the corresponding velocity response. 
Moreover, because the effect of repeated eigenvalues 
is considered, the high-order modal displacement and 
velocity are involved in Eq. (14) besides the one-order 
modal responses, which make the mode superposition 
method more diffi cult than that of classical one without 
repeated roots. However the response-spectrum mode 
superposition method of earthquake response for non-
classically damped system with repeated eigenvalues is 
able to be deduced according to following steps. 

According to the stationary random vibration theory, 
the deviation or mean square response of  ty can be 
calculated by

 

       
       
       

1 1 1 1

, , , 1 , 1 , , , ,

, , , , , , , , 1

, , , , 1 , , , ,

2

2 2

n mk kz z

n m i j

n i m j n i m j n i m j n i m j

n i m j n i m j n i m j n i m j

n i m j n i m j n i m j n i m j

E t

q t q t q t q t

q t q t q t q t

q t q t q t q t

   

 





   

      
 

      
 

      

2y

G G A A

B B A G

B G B A

 

 

 

(15)                                                                             

in which the symbol < > represents the operation for the 
calculation of average. 

It can be concluded from Eq. (15) that, regard  ing 
the covariance between different modal resp  onses 
for the damped system with repeated eigenvalues, the 
following situations are possible: (1) The covariance 
among the modal responses corresponding to a repeated 
eigenvalue. For instance, for the repeated root n with 
multiplicity nk , there are nk  modal responses, and 
each of them may have a different transfer function. 
Because these SDOF systems are subject to the same 
earthquake input, a relationship exists between modal 
responses corresponding to a repeated-root. (2) The 
covariance between the modal responses corresponding 
to a repeated-root and responses responding to distinct-

roots. (3) The covariance between the modal responses 
corresponding to a repeated-root and responses of 
the other repeated-root. The key question in solving 
Eq. (15) is to calculate the covariance of the modal 
responses, such as    , ,n i m jq t q t  ,    , ,n i m jq t q t    
and    , ,n i m jq t q t  , which are related to the high-
order displacement and velocity responses. For damped 
systems without repeated eigenvalues, the covariances 
of displacement, velocity and displacement-velocity 
were provided by Zhou et al. (2004). Therefore, the 
focus herein is how to calculate the covariance among 
high-order modal responses corresponding to repeated 
roots. 

 
3.1 Displacement correlation coeffi cient

Considering the expression given by Eq. (13) 
and noticing that the impulse response function is 
deterministic, the covariance , ,( ) ( )n i m jq t q t  , which is 
between the ith order modal displacement corresponding 
to the repeated eigenvalue n and the jth order modal 
displacement corresponding to the repeated eigenvalue 

m , can be expressed as

, , , , g g0
( ) ( ) ( ) ( ) ( ) ( ) d

t

n i m j n i m j n mq t q t h t h t y y           

(16)

Assuming ground motion excitation g ( )my t  and 
g ( )ny t  involved in Eq. (16) are stationary white noise 

starting from 0, with zero mean value, results in 
g g 0( ) ( ) 2n my y S     , where 0S  is the severity of the 

ground motion
 g ( )my t . Then,

 D
, , 0 , ,0
( ) ( ) 2 ( ) ( )d

tnm
n i m j ij n i m jq t q t O t S h t h t         (17)

Actually, the earthquake ground motion excitations 
are non-stationary. Zhou and Yu (2008) deduced 
the covarianc  es of displacement, velocity and 
displacement-velocity considering the non-stationarity 
of the earthquake by introducing the envelope function. 
However, in this study, the ground motion excitation is 
assumed as a white noise process because the complexity 
of repeated eigenvalues is considered. 

Substituting Eq. (13) into Eq. (17), 

       D 2 2 ( )
0 0

2 e sin sin d
t lnm i j H t

ij n m n mO t S t t t             
 (18)

here H = −αn−αm, l = i + j −2 (i = 1,..., kn, j = 1,..., km), 
in which nk  and mk are the multiplicity of repeated-
eigenvalues n  and m , respectively. 

Let t s  , we have d( ) dt s   and d ds   , 
then Eq. (18) can be rewritten as

 
0D 2 2

02 e sin sin dnm i j l Hs
ij n m n mt

O t S s s s s         
(19)

For the convenience of calculation, Eq. (19) can be 
represented as the difference between the two cosine 
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functions, that is

   
0D 2 2

0 2 1

2 2
0 ,2 ,1

e cos cos d

( ) ( )

nm i j l Hs
ij n m t

i j
n m l l

O t S s L s L s s

S V t V t

 

 

 

 

  

    


 (20)

here 1 n mL    , 2 n mL    . The deduction of 
, ( )l kV t  ( 1,2k  ) is given in Appendix 1, in   which the 

recursion formula of  
0

, e cos dl Hs
l k kt

V t s L s s   when 
0,1,2,3,4l  are given. 
When t  , the steady state solution of 

displacement covariance  Dnm
ijO t , called dd

,nm ijI , can be 
expressed as

 dd D 2 2
, 0 ,2 ,1

nm i j
nm ij ij n m l lI O t S V V            

(21)

where ,l kV is the steady state solution of , ( )l kV t  . Table 1 
lists the calculation formula of ,l kV when 0,1,2,3,4l  , in 
which the values kL  represents 1L  and 2L , re  spectively.

Substituting formula of ,l kV listed in Table 1 
into Eq. (21), the steady state solution dd

,nm ijI  of the 
displacement covariance corresponding to a high-order 
response can be calculated. When n m , the calculation 
formula of dd

,nm ijI  corresponding to three-repeated 
eigenvalue are listed in column 3 of Table 2, in which 
the possible combinations of  ,i j when 0,1,2,3,4l   
are listed in column 2 of Table 2. It can be seen from 
these expressions that the displacement covariance is 
only related to the cosine function.

When 0l  , 1i   and 1j  , and substituting 
formula of 0,kV into expression of dd

,nm ijI , results in 

 
     

dd
,11

0
22 2 2 2 2 2 2 2

4

4 4

nm

n n m m

n m n m n m n m n m n m

I

S    

           



 

    
 

(22)

Table 1  Calculation formula of ,l kV ( 0,1,2,3,4l  )

0l  0,k 2 2
k

HV
H L




3l   
 

4 2 2 4

3, 42 2

6 6 k k
k

k

H H L L
V

H L

 
 



1l 
 

2 2

1, 22 2

k
k

k

H LV
H L


 


4l   

 

4 2 2 4

4, 52 2

24 10 5k k
k

k

H H H L L
V

H L

 




2l   
 

2 2

2, 32 2

2 3 k
k

k

H H L
V

H L






Table 2  Covariances of high-order modal displacement response

l  ,i j n m n m

0  1, 1i j 

1  1, 2i j 

 2, 1i j 

2  1, 3i j 

 2, 2i j 

 3, 1i j 

3  2, 3i j 

 3, 2i j 

4  3, 3i j 

 dd 0
,11 0,2 0,1nm

n m

SI V V
 


 

 dd 0
,12 1,2 1,1nm

n

SI V V



 

 dd 0
,21 1,2 1,1nm

m

SI V V



 

 dd 0
,13 2,2 2,1

m
nm

n

SI V V



 

 dd
,22 0 2,2 2,1nmI S V V  

 dd 0
,31 2,2 2,1

n
nm

m

SI V V



 

 dd
,23 0 3,2 3,1nm mI S V V  

 dd
,32 0 3,2 3,1nm nI S V V  

 dd
,33 0 4,2 4,1nm n mI S V V   

0
3

1
2 n n

S
 



2
0

2 4

1 2
4

n n

n n

S  
 

 

 4 2
0

3 3

1+ 3 4
4

n n

n n

S  

 



 4 4 2
0

4 4

1 8 8 13
8

n n nn

n n

S   
 

  

 6 4 22
0

5 5

1 16 20 53
4

n n nn

n n

S   
 

  
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This expression is in accordance with the result 
corresponding to the distinct roots (Zhou et al., 2004)  . 
For the damped systems wit  h repeated eigenvalues, 

dd
,11nmI  represents three cases: (1) The covariance of the 

modal displacement corresponding to different distinct-
roots n and m ; (2) The covariance between the modal 
displacement corresponding to a distinct-root n  and 
the 1-th order modal displacement corresponding to a 
repeated-root m ; (3) The covariance of the 1-th order 
modal displacement corresponding to different repeated-
roots n and m .   

When 1l  , there are two combinations of  ,i j ; 
they are  1, 2i j   and  2, 1i j  . dd

,12nmI  represents 
two cases: (1) The covariance between the modal 
displacement corresponding to a distinct-  root n and 
the 2-th order modal displacement corresponding to 
a repeated-root m ; and (2) The covariance between 
the 1-th order modal displacement corresponding to a 
repeated-root n and the 2-th order modal displacement 
corresponding to a repeated-root m . Substituting 
formula of 1,kV into expression of dd

,nm ijI , results in

      

     

dd
,

221 1 3 3 2 2
0

222 2 2 2 2 2 2 2

   

4 4 8

4 4

nm ij

i j
n m n n m m n n m m n m n m n n m m n m

n m n m n m n m n m n m

I

S                    

           

 



         
       

 

(23)

It can be seen that when  the order of n  and m is 
exchanged, only the term 1 1i j

n m    in expression (23) is 
changed; that is, for two different eigenvalues, regardless 
of which is the repeated root, the displacement covariance 
is essentially the same. For the other combinations of (i, j), the expression of dd

,nm ijI related to n , m , n  and 
m can also be obtained by substituting ,l kV  into the 

calculation formula of dd
,nm ijI  listed in Table 2.

When n m , for a repeated-eigenvalue m with 
multiplicity mk , dd

,mm ijI  represents the covariance among 
mk modal displacements, whose calculation formula are 

listed in column 4 of Table 2. 
The displacement correlation coeffi cient dd

, ,nm i j is 
defi ned next as

dd
,dd

, , dd dd
, ,

nm ij
nm i j

nn ij mm ij

I

I I
                       (24)

which is a standardized function of modal displacement 
covariance. In order to intuitively observe the variation 
of the displacement correlation coeffi cient, let 0.05m  ,

2m   , and make the ratios   of n m   and n m   
change from 0.1 to 10. The variation of dd

, ,nm i j ( 1i  ,
1,2,3j  ) along with n m   and n m  are shown 

in Fig. 1. It can be seen that the variation of the 
displacement correlation coeffi cient dd

,1,1nm among one-
order modal displacements is consistent with that of 
distinct eigenvalues (Yu and Zhou, 2006), but the 
variation of correlation coeffi cient dd

,1,nm j between one-
order and high-order modal displacements is different 
from the changes of dd

,1,1nm .

3.2  Velocity correlation coeffi cient

Based on Eq. (13), the one-order differential 
coeffi cient of a high-order impulse response function is 
calculated, that is

    

 

1
2

,

e
( ) 1 e sin

sin cos

m

m

j t
j mt

m j m m
m

m m m m

t
h t j t t

t t


 

 


   


  





 (25)

Then the velocity covariance , ,( ) ( )n i m jq t q t  
between the ith order modal velocity of a repeated 
eigenvalue n and the jth order modal velocity of a 
repeated eigenvalue m , can be expressed as

 V
, , 0 , ,

0

( ) ( ) 2 ( ) ( )d
t

nm
n i m j ij n i m jq t q t O t S h t h t            

(26)

Substituting Eq. (25) into Eq. (26), and let
t s  , results in d ds   , then Eq. (26) can be 
rewritten as the integration about the sine and cosine 
function. The recursion formula of the integration 

.

Fig. 1  Changes of displacement correlation coeffi cients dd
, ,nm i j ( 1i  , 1,2,3j  )
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 
0

, e sin dl Hs
l k kt

U t s L s s   when 0,1,2,3,4l   are 
also listed in Appendix 1, in which 1 n mL    ,

2 n mL    . 2l i j   ( 1,..., ni k , 1,..., mj k ) , 
in which nk  and mk are the multiplicity of repeated-
eigenvalues n and m , respectively. 

When t  , the steady state solution of , ( )l kV t 
have been obtained, as is listed in Table 1. When

0,1,2,3,4l  , the steady state solutions of , ( )l kU t  , 
expressed as ,l kU  are shown in Table 3, in which the 
values kL  represents 1L  and 2L , respectively.

Based on expressions of 
,l kV and ,l kU , the steady 

state solution of the velocity covarianceis  Vnm
ijO t   

obtained and expressed as vv
,nm ijI . Table 4 gives the 

calculation formula of vv
,nm ijI  corresponding to three-

repeated root that have nine combinations of  ,i j , in 
which *

,2 ,1l l lV V V   , *
,2 ,1l l lV V V   , *

,2 ,1l l lU U U   ,
*

,2 ,1l l lU U U   ( 0,1,2,3,4l  ). It can be seen from 
these expressions that the velocity covariances are 
related to the sine and cosine function.

Similarly, when 0l  , 1i   and 1j  , substituting 
0,kV and 0,kU into expression of vv

,11nmI , results in 

 
     

vv
,11

0
22 2 2 2 2 2 2 2

4

4 4

nm

n m n m m n

n m n m n m n m n m n m

I

S      

           



 

    
 

(27)
This expression is in accordance with the result 

corresponding to the distinct roots (Zhou et al., 2004). 
For the damped systems with repeated eigenvalues, 

vv
,11nmI represents three cases: (1) The covariance of 

modal velocity corresponding to different distinct-roots 
n and m ; (2) The covariance between modal velocity 

corresponding to a distinct-root n and the 1-th order 
modal velocity corresponding to a repeated-root m ; (3) 
The covariance among the 1-th order modal velocities 
corresponding to different repeated-roots n  and m . 
When 0l  , the expression of vv

,nm ijI related to n , m , n  
and m can also be derived by substituting formulas of 

,l kV and ,l kU  into the calculation formula of vv
,nm ijI  listed 

in Table 4.
When n m , for a repeated root m with multiplicity

mk , the calculation formula of vv
,mm ijI are listed in 

Table 5, which represent the covariances among mk
modal velocities of 9 kinds of combinations of  i j， .

The velocity correlation coeffi cient vv
, ,nm i j is defi ned 

as
vv

, ,vv
, , vv vv

, , , ,

nm i j
nm i j

nn i j mm i j

I

I I
                     (28)

which is a standardized function of modal velocity 
covariance. Similarly, let 0.05m  , 2m   , and make 
the ratios of n m   and n m   change from 0.1 to 10. 
The variation of vv

, ,nm i j  ( 1i  , 1,2,3j  ) are shown in 
Fig. 2. It can be seen that the variation of the correlation 
coeffi cient vv

,1,1nm  among one-order modal velocity 
is consistent with that of distinct eigenvalues (Yu and 
Zhou, 2006), but the variation of correlation coeffi cient 

vv
, ,nm i j when 1i  or 1j   is different from the changes 

of vv
,1,1nm . 

3.3 Velocity-displacement correlation coeffi cient

 Based on Eq. (13) and Eq. (25), the velocity-
displacement covariance , ,( ) ( )n i m jq t q t  , which 
is between the ith order modal velocity response 
corresponding to a repeated-eigenvalue n  and the  jth 
order modal displacement response corresponding to a 
repeated-eigenvalue m , can be expressed as

     VD
, , 0 , ,0
( ) ( ) 2 d

tnm
n i m j ij n i m jq t q t O t S h t h t        

(29)

Similarly, let t s  , so that d ds   .
Equation (29) can be rewritten as the expression 
about the integrations  

0

, e cos dl Hs
l k kt

V t s L s s   and 

 
0

, e sin dl Hs
l k kt

U t s L s s  . Then the recursion formula 
of these integrations listed in Appendix 1 can be used to 
obtain the formula of  VDnm

ijO t  . When t  , the steady 
state solution of the velocity-displacement covariance, 
called vd

,nm ijI , can be calculated by introducing the formula 
of ,l kV and ,l kU . The calculation formula of vd

,nm ijI  
corresponding to different combinations of  ,i j  are 
listed in Table 6, in which *

,2 ,1l l lV V V   , *
,2 ,1l l lV V V  

Table 3  Calculation formula of ,l kU  ( 0,1,2,3,4l  )

0l  0, 2 2
k

k
k

LU
H L

 


3l   
 

2 2

3, 42 2

24 k k
k

k

L H H L
U

H L






1l 
 1, 22 2

2 k
k

k

HLU
H L




4l   
 

4 2 2 4

4, 52 2

24 5 10k k k
k

k

L H H L L
U

H L

 
 



2l   
 

2 2

2, 32 2

2 3k k
k

k

L H L
U

H L


 


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*
,2 ,1l l lU U U   , *

,2 ,1l l lU U U   ( 0,1,2,3,4l  ) . 
It is seen from these expressions that the velocity-
displacement covariance is also related to the expression 
of sine and cosine function.

When 0l  , 1i   and 1j  , and substituting the 
expressions of 0,kV and 0,kU into vd

,1,1nmI , results in 

 
     

vd
,11

2 2
0

22 2 2 2 2 2 2 2

2

4 4

nm

m n

n m n m n m n m n m n m

I

S  

           



 

      
(30)

This expression is also accordance with the result 
corresponding to the distinct roots (Zhou et al., 2004). 
For the damped systems with repeated eigenvalues, 

vd
,11nmI represents three cases: (1) The covariance between 

modal velocity corresponding to a distinct-root n
and modal displacement corresponding to a distinct-
root m ; (2) The covariance between modal velocity 
corresponding to a distinct-root n and the 1-th order 
modal displacement corresponding to a repeated-root 

m ; and (3) The covariance between 1-th order modal 
velocity corresponding to a repeated-root n and 1-th 
order modal displacement corresponding to another 

Table 5  Covariances of high-order modal velocity responses when n m

 1 1i j ，  2 2i j ，

 1 2i j ，

 2 1i j ，

 2, 3i j 

 3, 2i j 

 1 3i j ，

 3 1i j ，

     3, 3i j 

Table 4   Covariances of high-order modal velocity responses when n m

0l   ,i j n m

0  1, 1i j 

1  1, 2i j 

 2, 1i j 

2  1, 3i j 

 2, 2i j 

 3, 1i j 

3  2, 3i j 

4  3, 3i j 

vv * * * *
,11 0 0- 0+ 0- 0+

n m n m
nm

n m n m
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 
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repeated-root m . When 0l  , the expression of vd
,nm ijI  

related to n , m , n  and m  can also be calculated by 
substituting the expressions of ,l kV and ,l kU  into the 
calculation formula of vd

,nm ijI  listed in Table 6.
  When n m , vd

,mm ijI  represent the variances between 
modal velocity and displacements corresponding to a 
repeated-eigenvalue m , which are listed in column 4 of 
Table 6.

Next, the velocity-displacement correlation 
coeffi cient vd

, ,nm i j is defi ned as
vd

,vd
, , vv dd

, ,

nm ij
nm i j

nn ij mm ij

I

I I
                       (31)

which is a standardized function of the modal velocity-
displacement covariance. Similarly, let 0.05m  , 2m   , 

and make the ratios of n m   and n m  change from 
0.1 to 10. The variation of vd

, ,nm i j ( 1i  , 1,2,3j  ) 
along with n m   and n m  are shown in Fig. 3. It 
can be seen that the velocity-displacement correlation 
coeffi cient  vd

,1,1nm  when 1i  and 1j   is consistent with 
that of distinct eigenvalues (Yu and Zhou, 2006), but the 
variation of correlation coeffi cient vd

, ,nm i j when 1i  or
1j   is different from the changes of vd

,1,1nm . 

3.4 Discussion of the relationship between 
          displacement and velocity covariance

The relationship between modal displacement and 
velocity covariances of a linear SDOF system when
n m are discussed in this subsection. Based on the 
expressions of displacement covariance dd

,nn ijI  and 
velocity covariance vv

,nn ijI , 
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vv 2 dd
, , ,nn ij n ij n nn ijI I                         (32)

here n  represents the order of concerned mode, and 
,n ij is the scale factor. Because vv

,nn ijI and dd
,nn ijI are 

only for steady state responses under stationary white 
noise input, this relationship is accurate. Based on the 
expressions of vv

,nn ijI  and dd
,nn ijI listed in Table 2 and Table 

5, respectively, the scale factor ,n ij  can be obtained, as 
shown in Table 7. 

It can be seen that the expression of ,n ij is only 
related to damping ratio n . When 1i   and 1j  , ,11 1n  ,
which is consistent with the result corresponding to 
the distinct eigenvalues (Zhou et al., 2004). However, 
when 1i  or 1j  , ,n ij  varies from 1 to 0 along with 
increasing of the damping ratio n , as is shown in Fig. 4, 
in which n changes from 0.02 to 0.9. Since the value of 
the scale factor ,n ij is small when the damping ratio n
is relatively large, the scale factor should be calculated 
according to the formula listed in Table 7 when 1i  or

1j  . 

Table 7   Scale factor between displacement and velocity covariance when n m
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3.5 Complex complete quadratic combination 
         algorithm considering repeated eigenvalues

According to the defi nition of Eq. (24), Eq. (28) 
and Eq. (31), and considering the relationship of modal 
displacement and velocity covariances when n m , as 
listed in Eq. (32), Eq. (15) can be rewritten as

Fig. 4  Changes of scale factor ,n ij with damping ratio n
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If it is assumed as usual that the maximum response 
 

max
ty is proportional to the root of the mean square 

responses, the following closed-form formula of the 
complex mode response-spectrum superposition for the 
calculation of maximum response of the non-classically 
damped system with repeated eigenvalues, i.e., the 
complex complete quadratic combination considering 
repeated eigenvalues (CCQC-R) algorithm, is deduced 
as  
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(34)
where  , maxm jq t are high-order displacement response 
spectrum corresponding to the jth order response of the 
repeated-eigenvalue m , which can be defi ned as

 

        

, max

1
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1 e sin dm
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(35)

Compared to the calculation of the displacement 
response spectrum corresponding to the distinct 
eigenvalue, the impulse transfer function in Eq. (35) has 
an additional dimensionless term   1j

m t 


   . The 
practice calculation method is discussed in section 4.

4  Practice calculation procedure of high-order 
    response spectrum 

For the Duhamel integration shown in Eq. (35), the 
high-order dynamic response can be solved by using 
the trapezoidal rule and Simpson’s rule (Clough and 
Penzien, 1993). However, in earthquake engineering, the 
structural responses are usually calculated using the step-
by-step integration procedure, such as the Newmark-β 
method, Wilson-θ method and the piecewise exact 

method. Compared to the Duhamel integration in Eq. (7), 
there is an additional dimensionless term   1j

m t 


  
in Eq. (35). If the Duhamel integration in Eq. (35) can be 
transformed into the expression of Eq. (7), the familiar 
step-by-step integration can be used to solve the high-
order dynamic response. 

The term   1j
m t 


   of Eq. (35) is expanded into 

a binomial expression, i.e.
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(36)

After substituting this formula into Eq. (35), 
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(38)

Then the form of Eq. (37) is identical to the Eq. (7) 
by changing the input of acceleration input. In order to 
verify the practice calculation method mentioned above, 
the high-order response of the SDOF system is solved 
through the superposition numerical integration method 
and step-by-step integration procedure. The calculation 
results are then compared with the theory solution.  

Suppose = 6.2915 = 10.0735m m ， , the input is   
 g sin my t t  (Gal), and the time interval is 0.01s.t 

Now let the order number 2j  , and then the 
corresponding response is the second-order response. 
It is easy to obtain a theory solution of displacement 
response shown in Eq. (35) under the sine-wave input. 
Figure 5 displays the theory solutions of the displacement 
time history, where the peak value of the corresponding 
displacement is 0.0136 cm. 

In order to examine the various numerical calculation 
methods, the Duhamel integration shown in Eq. (35) is 
solved fi rst by using the trapezoidal rule. The results 
illustrate that the displacement response obtained from 

Fig. 5  Theory solution of displacement response under the 
             sine-wave input
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the trapezoidal rule matches the theory data well. In 
addition, the step-by-step integration procedure and the 
piecewise exact method (Clough and Penzien, 1993) 
are selected to calculate the same example, in which the 
input is changed according to Eq. (38). The results show 
that the piecewise exact method obtained an identical 
displacement response as that of the theory.

5   Conclusion

According to the theoretical analysis and numerical 
investigation performed in this study, some important 
results and conclusion are obtained as follows:

(1) For the generally damped linear MDOF 
system with repeated eigenvalues, a new response 
spectrum mode superposition method considering the 
effect of repeated roots is deduced based on a hybrid 
decomposition method in the time domain. This 
algorithm has clear physical concepts and is similar to 
the previously established complex complete quadratic 
combination (CCQC) method. Since it can consider 
the effect of repeated roots, it is called the CCQC-R 
rule, in which the correlation coeffi cients of high-order 
modal responses are involved in addition to correlation 
coeffi cients in the normal CCQC method. Moreover, the 
method derived in this study is suitable for generally 
damped systems with classical or non-classical damping.

(2) Based on the stationary random vibration 
theory, the formula for calculating the high-order modal 
responses correlation coeffi cients are deduced, including 
displacement, velocity and velocity-displacement 
correlation coeffi cients. Moreover, the relationship 
between displacement and velocity covariances is 
derived to make the CCQC-R algorithm relevant only to 
the high-order displacement response-spectrum.

(3) The practical method for calculating high-
order displacement response spectrum is discussed, in 
which the earthquake input is changed and step-by-step 
integration procedures, such as Newmark- β method, 
Wilson-  method and the piecewise exact method can 
be used to solve the high-order structural responses. 
The derived method is evaluated by comparing it to the 
theory solution obtained under sine-wave input.
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When 0,1,2,3,4l  , ,l kU and ,l kV can be written as
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in which  lA   and  lB   can be expressed as  
(1) when 0l  : 
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Appendix 1  The recursion formula of simple integration 
                     Basic formula 



550                                             EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol.15

 

       
 

     
 

4 2 2 4 4 2 2 4
4 3 2 2 2 2 2

4 22 2 2 2 2 2 2 2

2 2 4 2 2 4
4 3 2 2 2

4 22 2 2 2 2 2 2 2

2 6 2 10 54 3( ) 3

8 2 5 104 3( ) 2 3

k k k k
k k

k k k k

k k kk
k k

k k k k

L L L L
A L L

L L L L

L L LL
B L L

L L L L

     
     

   

   
    

   

                     
                 





  
(A9)

Based on the above recursion formula, we can have

 , 2 2 2 20

(0)e( ) e sin d ( )sin ( )cos
tt l l

l k k l k l k
k k

B
U t L A t L t B t L t

L L


  

 
   

                    (A10)

 , 2 2 2 20

(0)e( ) e cos d ( )cos ( )cos
tt l l

l k k l k l k
k k

A
V t L A t L t B t L t

L L


  

 
   

                     (A11)

When t  , the Eqs. (A10) -(A11) can be written as: 
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where (0)lA and (0)lB can be obtained by using Eq. (A5)−(A9).


