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Torsional vibration of a pipe pile in transversely isotropic saturated soil
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Abstract: This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based 
on Biot’s poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing 
equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve 
the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency 
domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the 
soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the 
infl uence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.
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1   Introduction

The study of torsional vibrations of piles has attracted 
the attention of many researchers in the past several 
decades. Novak and Howell (1977,1978) proposed a 
plane strain model to investigate the dynamic torsional 
response of piles. Based on the plane strain model, 
Militano and Rajapakse (1999) studied the transient 
torsional and axial responses of a pile in multi-layered 
soil. Note that the stress gradient of the soil in the vertical 
direction was neglected in the plane strain model. Hu and 
Zhang (2007) assumed the soil as a viscoelastic layer 
and deduced a closed-form solution for the torsional 
dynamic response of the pile by considering th  e stress 
gradient of the soil in the vertical direction. Wu et al. 
(2016) adopted the fi ctitious soil pile model to analyze 
the torsional dynamic response of a pile embedded in 
layered soil. Pak and Abedzadeh (1992) studied the 
torsional traction of a cylindrical cavity in a half-space. 
Then Pak and Abedzadeh (1996) extended this scheme 
to the case of a rigid disk at the bottom of the cavity. 

Wang et al. (2008) studied the steady state torsional 
response of a pile in a saturated soil layer within the 
framework of the poroelastic theory originally presented 
by Biot (1956).

A common assumption in all of the above-mentioned 
studies is that the soil is an isotropic medium. However, 
the soil is often anisotropic due to the deposition 
history so that the properties in the horizontal and 
vertical directions are different. Liu and Novak (1994) 
investigated the dynamic response of single piles in 
transversely isotropic layered soil using the fi nite 
element method. Chen et al. (2008) investigated the 
transient torsional dynamic response of a pile embedded 
in transversely isotropic saturated soil based on the 
plane strain assumption. Wang et al. (2009) studied the 
torsional time-harmonic vibration of an end-bearing pile 
in a transversely isotropic saturated soil layer. Eskandari-
Ghadi et al. (2012) studied the torsion vibration of a finite 
cylindrical cavity in a transversely isotropic half-space. 
Ardeshir-Behrestaghi (2014) extended it to the case of a 
bottom rigid disk. Wu et al. (2014) studied the vertical 
response of pile embedded in layered transversely 
isotropic soil.

The majority of the past studies focused on solid 
piles. In engineering practice, pipe piles are also widely 
used (Xu et al., 2006; Liu et al., 2007; Liu et al., 2009; 
Ding et al., 2015). The action of pipe piles under 
dynamic loading is different from that of the solid piles 
because of the existence of the inner soil. Zheng et al. 
(2014) derived the frequency-domain solution of the 
torsional dynamic response of a pipe pile in isotropic 
saturated soil, in which the anisotropy of the soil was not 
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considered. The objective of this study is to extend the 
work of Zheng et al. (2014) by developing closed-form 
frequency domain solutions for the torsional vibration 
of a pipe pile in transversely isotropic saturated soil and 
semi-analytical solutions in the time domain. It is found 
that the anisotropy of the soil has a signifi cant infl uence 
on the torsional vibration of the pipe pile. The solutions 
derived in this study can provide a theoretical guideline 
for dynamic pipe pile-soil interaction in a transversely 
isotropic medium.

2  Basic assumptions and computational model

The basic assumptions adopted here are as follows:
(1) The pile is elastic, and the pile bottom is fi xed to 

a rigid base.
(2) The outer and inner soil are transversely isotropic 

saturated layers.
(3) The top surfaces of the soil layers are free and the 

bottoms are fi xed.
(4) Only the circumferential displacements of the 

pile and soils are taken into account.
(5) The pipe pile is perfectly bonded to the soils, 

and there is no slip at the interfaces between the pile and 
soils.

(6) The initial conditions of the pile-soil system are 
static.

Figure 1 shows the computational model of the pile-
soil system. A dynamic torque m(t)  is applied on the 
top of the pile. H  is the length of the pile. 1r  and 2r  are 
the outer and inner radii of the pipe pile, respectively. 

1( , )f z t  and 2 ( , )f z t  are the circumferential resistances 
developed at the outer and inner interfaces, respectively.

3   Governing equations

3.1  Governing equation of the soil

The governing differential equations for saturated 
soil in an axisymmetric system, in the absence of the 
vertical and radial displacements of the soil, can be 

expressed as (Biot, 1956):

2 2

f2 22r r z u w
r r z t t
      

 
   

   
   

         (1)

where  r  and z  are the shear stress components of the 
soil; u  and w  are the circumferential displacements of 
the solid phase and fl uid, respectively; and   and ρf are 
the densities of the bulk material and fl uid, respectively.

The constitutive equations for a transversely 
isotropic medium can be written as (Lekhnitskii, 1963):
   

66r rC                                      (2)
   

44z zC                                      (3)

where 66C  and 44C   are the elastic constants; 

r
u u
r r
 




 


, and z
u
z








. In addition, 44 vC G   

and 66 hC G , where Gv and Gh are the shear modulus of 
the soil in the vertical and horizontal planes, respectively.

Combining Eqs. (1)−(3), the governing equation of 
the transversely isotropic saturated soil can be expressed 
as:

2 2 2 2

h v f2 2 2 2 2

1 1( )G u G u u w
r r r r z t t        

    
      

(4)

The governing equation  of the fl uid is (Biot, 1956):

2 2

f 2 2 0
u w w

m b
t t t
  

  
  

  
                 (5)

where b is a parameter a ccounting for the internal friction 
between the solid phase and fl uid, and equal to the ratio 
between the fl uid viscosity and the permeability of the 
soil. m is equal to the ratio between the fl uid density and 
the porosity of the soil.

3.2  Governing equation of the pile

The pipe pile is assumed to be governed by the 
following one-dimensional wave equation:

2 2
2 2

p p 1 1 2 2 p p2 22 2G J r f r f J
z t
  
    

 
           (6)

where   is the twist angl e of the pipe pile; ρp, Gp and Jp 
denote the mass density, shear modulus and polar moment 
of inertia of the pipe pile, respectively; 4 4

p 1 2( )
2

J r r
   .

4  Solitions for the governing equations

4.1  Solutions for the governing equations of the outer soil

The Laplace transform of a function ( )f r,z,t  with 

H Pipe pile

m(t)

0

z
f2(z, t) f1(z, t)

2r2

2r1
Rigid base

Transversely
isotropic
saturated soil

r

Fig. 1  Computational model
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respect to t is defi ned as:

0
( , , ) ( , , )e dstF z r s f z r t t

                   (7)

Performing Laplace transform on Eqs. (4) and 
(5), the governing equations of the outer soil can be 
expressed as:

2 2
2 2

h1 1 v1 1 1 1 f 12 2 2

1 1( )G U G U s U s W
r r r r z      

    
  

 
(8)

2 2
f 1 1 1 1( ) 0s U m s b s W                      (9)

where the  Subscript 1 means the va riables an   d 
parameters corresponding to the outer soil; 1( , , )U z r s  
and 1( , , )W z r s  are the Laplace transforms of 1( , , )u z r t  
and 1( , , )w z r t .

Substituting Eq. (8) into Eq. (9) yields:
2 2 2

f
1 1 1 1 12 2 2

v1 1 1

1 1( ) ( )ssU U U
r r r r z G b m s  


   

    
     

(10)

where 1 h1 v1G G  .
Using the method of separation of   variables, 1U  can 

be easily obtained as:
   

  1 1 1 1 1 1 1 1 1 1 1( ) ( ) cos( ) sin( )U A K q r B I q r C z D z    
(11)

where  1I  and  1K  are the modifi ed Bessel 
fun ctions of the fi rst and second kind of the fi rst order, 
respectively; and 1  and 1q  satisfy the following 
relationship:

22
2 f 1
1 1

v1 1 1 1 1

( )ssq
G b m s

 


 
  


                 (12)

The boundary conditions of the outer soil can be 
expressed as follows:

The surface of the outer soil layer is free, so the 
boundary conditions at z = 0  can be expressed as:

1 1
0 0 0z z

u w
z z
 

 

 
 

 
                (13)

The bottom of the outer soil layer is fi xed, so  the 
boundary conditions at z = H can be written as:

1 1 0z H z Hu w                       (14)

The displacements of the outer soil at an infi nite 
distance from the pipe pile are zero, so the boundary 
conditions at r   can be expressed as:
   

1 1 0r ru w                        (15)

Substituting Eq. (11) into Eqs. (13)−(15) yields:
   

1 1 0B D                                 (16)

 1
(2 1) , 1,2,3

2n
n n

H
  

                (17)

Thus the circumferential displacement of the outer 
soi l is obtained as:
   

1 1 1 1
1

( )cos( )n n n
n

U A K q r z 




                 (18)

The circumferential frictional resistance at the outer 
 interface, which is equal to the circumferential shear 
stress of the outer soil at the outer interface, can be 
obtained as:

1 1 v1 1 2 1 1 1
1

( )cos( )n n n n
n

F G A q K q r z 




            (19)

where 1( , )F z s  is the Laplace transform of 1( , )f z t .

4.2  Solutions fo r the governing equations of the inner soil

A similar solving procedure of the outer soil can be 
followed for the inner soil. The general solution for the 
governing equations of the inner soil can be obtained as:
   

  2 2 1 2 2 1 2 2 2 2 2( ) ( ) cos( ) sin( )U A K q r B I q r C z D z    
(20)

where 
2 22

2 f 2
2 2

v2 2 2 2 2

( )ssq
G b m s

 


 
  


 ; 2 h2 v2G G   ;

2 ( , , )U z r s is the Laplace transform of 2 ( , , )u z r t ; the 
Subscript 2  indicates that the variables and parameters 
correspond to the inner soil.

The boundary conditions for the inner soil can be 
expressed as:

The surface of the inner soil layer is free, so the 
boundary conditions at z = 0 can be expressed as:

2 2
0 0 0z z

u w
z z
 

 

 
 

 
                  (21)

The bottom of the inner soil layer is fi xed, so the 
boundary cond itions at z H  can be written as:

2 2 0z H z Hu w                         (22)

The displacements of the inner soil at the center are 
bounded, so the boundary conditions at r = 0 can be 
expressed as:

2 0 2 0,r ru w                          (23)

Substituting Eq. (20) into Eqs. (21)−(23), one obtains:
   

2 2 0A D                                 (24)
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2
(2 1)

2n
n

H
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                              (25)

The circumferential displacement of the inner soil is 
obtained as:

   
2 1 2 2

1
( )cos( )n n n

n
U B I q r z 





                (26)

The circumferential shear frictional resistance at the 
inner interface c an be obtained as:

2 2 v2 2 2 2 2 2
1

( )cos( )n n n n
n

F G B q I q r z 




              (27)

where 2 ( , )F z s  is the Laplace transform of 2 ( , )f z t .

4.3  Solution for the governing eq uation of the pile

Performing Laplace transform on Eq. (6) and 
substituting Eqs. (19)  and (27) into it, the governing 
equation of the pipe pile is expressed as:

22 2
1

h1 1 2 1 1 12 2
1p p p

2
2

h2 2 2 2 2 2
1p p

2 ( )cos( )

2 ( )cos( )

n n n n
n

n n n n
n

rs G A q K q r z
z C G J

r G B q I q r z
G J

  












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







 

(28)
where ( , )z s  is the Laplace transform of ( , )z t .

The solution for Eq.  (28) can be easily o btained as:

1 2
p p

1 1 2 2
1 1

cos( ) sin( )

cos( ) cos( )n n n n n n
n n

E z E z
C C

A z B z

 

   
 

 

  

      (29)

where is  ; p p pC G  ;

2
1 1 v1 1 2 1 1

1 2 2 2
p p p 1

2 ( )
;

( )
n n

n
n

r G q K q r
J C s



 


 


2
2 2 v2 2 2 2 2

2 2 2 2
p p p 2

2 ( )
.

( )
n n

n
n

r G q I q r
J C s



 


 


As mentioned earlier, the pile bottom is fi xed and 
the pile t op is subjected to a dynamic torque. Therefore 
the boundary conditions at the top and bottom of the pile 
are:

0
p p

( )
z

M s
z G J





 


                         (30)

0z H                                  (31)

where ( )M s  is the Laplace transform of ( )m t .
The displacements at  the interfaces of the pil e and 

the soils are continuous:

1 1 1r rU r                              (32)
   

2 2 2r rU r                             (33)

Substituting Eqs. (18), (26) and (29) into Eqs. (32)  
and  (33) yields:

1 1 1 1 1 1 2
1 p p

1 1 2 2
1 1

( )cos( ) [ cos( ) sin( )

cos( ) cos( )]

n n n
n

n n n n n n
n n

A K q r z r E z E z
C C

A z B z

 

   





 

 

  





   
(34)

1 2 2 2 2 1 2
1 p p

1 1 2 2
1 1

( )cos( ) [ cos( ) sin( )

cos( ) cos( )]

n n n
n

n n n n n n
n n

B I q r z r E z E z
C C

A z B z

 

   





 

 

  





   
(35)

Equations. (34) and (35) can also be expressed as:

2 1 1 1 1 1 1 2 2 2
1 1

( )cos( ) ( )cos( )n n n n n n
n n

r A K q r z r B I q r z 
 

 

 
(36)

It is  found from Eqs. (17) and (25) t hat 1 2n n  . 
Given 1 2n n n    , it is obtained from Eq. (36) that:

   
2 1 1 1

1 1 2 2

( )
( )

n
n n

n

r K q r
B A

r I q r
                         (37)

Multiplying cos( )n z  on both sides of Eq. (34)  and 
integrating over the interval [0, ]z H , one obtains:
   

1 1 2 2 1 1 2 2( )( )n n n nA r I q r E E                (38)
where 

 
0

1
1 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1

2 cos( )cos( )d

( ) ( ) ( ) ( )

H

n
p

n
n n n n n n

z z z
C

H K q r I q r r I q r r K q r

 


 


 



 
(39)

 
0

2
1 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1

2 sin( )cos( )d

( ) ( ) ( ) ( )

H

n
p

n
n n n n n n

z z z
C

H K q r I q r r I q r r K q r

 


 


 


 

(40)
Substituting Eq. (38) into Eq. (37), one can obtain:

2 1 1 1 1 1 2 2( )( )n n n nB r K q r E E              (41)

Substituting Eq. (29) into Eqs. (30)  and (31) yields:

p
1

p p p

( )
tan( )

C m s
E H

G J C



                  (42)

p
2

p p

( )C m s
E

G J
                               (43)
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All of the coeffi cients have been determined. The 
twist angle of the pipe pile can be written as:

 

p p pp

p p
1 1 1 2 2 2 2 1 1 1 1 2

1 p

tan( )cos( ) sin( )
( )

( ) ( ) tan( ) cos( )n n n n n n n
n

H z z
C C CC M s

G J
r I q r r K q r H z

C

  


     





  
            
  

(44)
The torsional complex impedance of the pile top is 

defi ned by:

d
(i )

(0,i )
MK 
 

                            (45)

The complex impedance can be further expressed in 
terms of its non-dimensional real and imaginary parts as:

 p p
d

1

i
G J

K k c
r

                        (46)

where the parameters k and c represent the non-
dimensional real and imaginary parts of the torsional 
impedance, respectively. 

The time-domain twist angle of the pile can be 
obtained by numerical inverse Fourier transform:

i1( , ) ( , i )e d
2

tz t z   



 

               (47)

5    Numerical results and analysis

The fundamental torsional vibration characteristics 
of a pipe pile in saturated soil has been studied in Zheng 
et al. (2014). Thus, numerical results presented herein 
are mainly focused on the infl uence of the anisotropies 
of soils on the impedance of the pile in the frequency 
domain and twist angle in the time domain. The software 
MATLAB is utilized for the numerical procedure. In the 
frequency domain, the upper limit of n=20 is suffi cient 
for the convergence. In the time domain, the upper limit 
of 10000 is suffi cient for the convergence of the inverse 
Fourier transform. The following parameter values in 
the analysis are adopted: H = 5 − 40 m; r1= 0.5 m; r2= 

0.38 m; Gp=10 GPa; Gv1= Gv2=10 MPa; ρp= 2500 kg/m3; 
ρ1= ρ2= 2000 kg/m3; ρf= 1000 kg/m3; m1= m2= 2500 kg/m3; 
b1= b2=2500 N.s/m2; δ1= δ2 = 0.5 − 2.

5.1  Verifi cation of the proposed solution

The present solution is verifi ed by comparison with 
the solutions for a solid pile in transversely isotropic 
saturated soil proposed by Wang et al. (2009) and a pipe 
pile in isotropic saturated soil by Zheng et al. (2014). 
Given 2 0r  , the solution of this study is reduced to that 
of a solid pile in transversely   i  sotropic saturated soil. 
Figure 2 shows the comparison between the present 
solution and Wang et al. (2009), where 0 1 1 v1/a r G   
is the non-dimensional frequency. Excellent agreement 
is obtained between the two solutions. Given δ1= δ2 = 1, 
the solution of this study is reduced to that of a pipe 
pile in isotropic saturated soil. Figure 3 shows that the 
reduced solution   of this study matches well with Zheng 
et al. (2014) for the isotropic saturated soil case. The 
validity of the present solution is therefore confi rmed by 
the above two comparisons. 

5.2  Frequency domain torsional impedance of pile
Figures 4 and 5 show the infl uence of the anisotropy 

of the outer soil on the torsional impedance of the pipe 
pile for H = 5 m, 40 m, respectively. The stiffness 
decreases with frequency, while the damping increases 
with frequency. It can be seen that the stiffness i  ncreases 
steeply with the increase of 1 . This indicates that 
increasing the horizontal shear modulus of the outer soil 
can signifi cantly increase the torsional impedance of the 
pipe pile. The increment cau  sed by increasing 1  for long 
piles (H = 40 m) is more pronounced than that for short 
piles (H = 5 m). This is because the pile-soil coupled 
vibration causes larger soil resistance to longer piles, 
and the soil resistance mainly depends on the horizontal 
shear modulus. The damping of shor  t piles increases 
with increasing 1 . On t he contrary, the damping of long 
piles decreases with increasing 1 .

Figures 6 and 7 show the infl uence of the anisotropy 
of the inner soil on the torsional impedance of the pipe 
pile for H = 5 m, 40 m, respectively. In the low-frequency 
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Fig.   2   Comparison with the solution for a solid pile in transversely isotropic saturated soil
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range, the stiffness and damping show negligible change 
with the increase of 2 . In higher frequency range, the 
stiffness increases and the damping decreases with the 
increase of 2 . Furthermore, the stiffness and damping 
become less dependent on 2  with increasing 2 . The 
infl uence of 2  doesn’t show an obvious difference with 
the increase of pile length.

Figure 8 shows the infl uence of r1 and r2 on the 
complex impedance of the pile. With the increase of r1 
or decrease of r2, the stiffness and damping increase. 
The area of the pile with r1= 0.5 m and r2= 0.2 m is 
approximately equal to that of the pile with r1= 0.6 m 
and r2= 0.38 m. It can be seen that the stiffness and 
damping of the pile with r1= 0.6 m and r2= 0.38 m is 
larger than that of the pile with r1= 0.5 m and r2= 0.2 m. 
With the same area, the stiffness and damping of the pile 
increase with the increase of the mean radius. This is due 
to the fact that the outerwall and inner wall of the pile 
increase and therefore the shear frictional resistances of 
soil increase with the increase of the mean radius. It is 
also noted that the curves of r2= 0.2 m are close to that of 
the solid pile. It can be concluded that the action of the 
inner soil becomes negligible when r2/r1≤ 0.4.

5.3  Time domain twist angle of pile

Figure 10 shows the infl uence   of the anisotropy 

of the outer soil on the time histories of the non-
dimensional twist angle of the pile head subjected to 
a triangular transient torque. The time history of the 
transient torsional load is shown in Fig. 9, where T0 is the 
amplitude of the impulse load; pt C H   is the non-
dimensional time. It can be seen from Fig. 10 that there 
is an obvious peak value in each curve which varies 
signifi cantly with 1 . With the increase of 1 , the peak 
value of the twist angle of the pile head decreases, and 
the arrival time of the peak value also slightly decreases. 
It is also noted that 1  shows a more prominent effect on 
long piles (H = 40 m) than short piles (H = 5 m).

Figure 11 shows the infl uence of the anisotropy 
of the inner soil on the time histories of the non-
dimensional twist angle of the pile head subjected to a 
triangular transient torque. For short piles (H = 5 m), the 
peak value of the twist angle of the pile head decreases 
slightly with the increase of 2 , but the arrival time of 
the peak value shows negligible change. For long piles 
(H = 40 m), however, the anisotropy of the inner soil 
shows a negligible effect on the twist angle of the pile. 
This indicates that short piles are more dependent on 2  
than long piles. 
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Fig. 7   Infl uence of the inner soil anisotropy on the torsional impedance of pile (H = 40 m)
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6   Conclusions

The torsional vibration of a pipe pile in a transversely 
isotropic saturated soil layer has been investigated in 
this study. The frequency domain solution is derived by 
using the Laplace transform technique and the method 
of separation of variables. The time domain solution is 
obtained by the numerical inverse transform method. The 
solution proposed in this study is verifi ed by comparison 
with some existing solutions. Some selected numerical 
results are presented to discuss the infl uence of the 
anisotropies of the outer and inner soil. The following 

conclusions are obtained:
(1) The stiffness greatly increases with increasing 1 .The 

increment generated by increasing 1  for long piles is 
more pronounced than for short piles. The damping of 
short piles increases with increasing 1 , but that of long 
piles decreases with increasing 

1 .
(2) In the low-frequency range, the stiffness and 

damping show negligible change with increasing 2 . 
In the high-frequency range, the stiffness increases with 
increasing 2  and the damping decreases with increasing 

2 . The infl uence of 2  doesn’t show an obvious change 
with the increase of the pile length.

(3) With the increase of r1 or decrease of r2, the 
impedance increases. With the same area, the stiffness 
and damping of the pile increase with the increase of 
the mean radius. The action of the inner soil becomes 
negligible when r2/r1≤ 0.4.

(4) With the increase of 1 , the twist angle of the pile 
in the time domain decreases, and the time of the peak 
value decreases. Long piles are more dependent on 1  
than short piles.

(5) For short piles, with the increase of 2 , the 
twist angle of the pile decreases, while the time of the 
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peak value shows little difference. For long piles, the 
anisotropy of the inner soil has a negligible effect on the 
twist angle.
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