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1  Introduction
Performance-based design is a general approach 

by means of which a structure is designed to meet with 
confi dence specifi ed performance criteria for different 
limit states. Its application to earthquake engineering has 
been the subject of many previous studies (Bertero, 1997; 
Ghobarah, 2001; Hamburger et al., 2004), and forms 
the basis for modern Code specifi cations. These studies 
have highlighted the role played by the uncertainties 
present in both the structural performance as well as in 
the ground motions. 

In this work, performance-based design in earthquake 
engineering is defi ned as the determination of design 
parameters by means of an optimization process, the aim 
of which is the minimization of an objective function 
incorporating the total cost of the structure, while 
satisfying minimum target reliabilities for the specifi ed 
performance criteria and limit states.

Using a different approach to that from previous 
works, this paper does not use fragility data and 
integration over earthquake intensity demands 

(Hamburger et al., 2004). Fragilities represent the 
structural global response to a specifi ed demand, and 
include the effect of underlying design variables like 
structural dimensions, steel reinforcements, etc. Each 
change in structural parameters will demand a re-
calculation of the fragilities and this, in turn, will not 
be effi cient for structural optimization. In the present 
paper, we study the structural responses directly as 
functions of all the intervening variables, including the 
characteristics of ground motions and design parameters 
like dimensions and amount of reinforcement. This 
allows representation of the structural responses by 
means of continuous response surfaces. These, in turn, 
facilitate computer simulation for reliabilities achieved 
as the design is modifi ed during the optimization to 
minimize the total cost. 

The total costs normally include construction costs as 
well as those for repair of damage occurring during the 
economic life of the structure. In this paper, expanding 
the previous work presented in Möller et al. (2009a), we 
also incorporate in the objective the initial and damage-
related costs associated with non-structural elements 
and building contents. Furthermore, we include the 
social costs associated with injuries and fatalities, loss 
of economic activity and stocks, and cost of temporary 
facilities, as these costs are directly related to the risks 
and characteristics of the structure being optimized. 

The optimization must take into account all the 
uncertainties present. These stem from the ground 
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motion as well as from the random properties in the 
behavior of the structural components.  In the context of 
performance-based design (SEAOC Vision 2000, 1995; 
FEMA 356, 2000) minimum target reliability levels (or 
acceptable levels of annual failure probabilities) are 
specifi ed for the different performance levels considered: 
either for operational limits, or for life safety or at total 
collapse.  

The performance requirements are formulated 
in terms of maximum structural responses during 
the earthquake. These maxima are obtained through 
nonlinear dynamic analyses for specifi c combinations 
of the random variables in the problem. It is effi cient 
to represent these discrete results with continuous 
(response surface) functions, which can then be used as 
substitutes for the dynamic analysis (Hurtado, 2004). 
Different polynomial forms for response surfaces have 
been considered, but those based on neural networks 
have been found to offer advantages of fl exibility and 
adaptability (Möller et al., 2009b) and they are used 
in this work. Any type of response surface, when 
adequately adjusted, offers computational effi ciency 
when estimating failure probabilities through simulation 
procedures (Melchers, 1987). 

The problem is restricted to size optimization, 
maintaining fi xed the layout of the structural system. 
The process must consider constraints in probabilistic 
terms, the dimensionality of the problem, the form 
and the number of the different objective functions. 
The optimization algorithms can implement different 
strategies (Pérez López, 2005; Swisher et al., 2000; 
Gencturk and Elnashai, 2012), some requiring the 
calculation of gradients within schemes of steepest descent 
or of conjugate gradients (Bertero et al., 1979; Pezeshk, 
1998). Other strategies are not gradient-dependent, 
and utilize heuristic schemes like random search or 
genetic algorithms (Liu et al., 2006; Fragiadakis et al., 
2006; Lagaros and Papadrakakis, 2007). In this work 
we utilize a random search algorithm which has been 
developed previously by the authors (Möller et al., 2010, 
2012a, 2012b). Starting from an initial design point, the 
optimization parameters are randomly perturbed within 
a search zone. The parameters corresponding to the least 
cost, satisfying the minimum reliability constraints, 
are then taken as the new initial or anchorage point, 
initiating a subsequent cycle in the random search. This 
iteration is continued until no parameter combination, 
within the search zone, is found to lead to a cost lower 
than that corresponding to the anchorage. This optimum 
combination is further validated by increasing the size of 
the search zone and repeating the scheme. 

Apart from the introduction here of specifi c 
earthquake performance criteria and their associated 
target minimum reliability levels, the problem can 
also be classifi ed as a Life Cycle Cost analysis (LCC), 
as shown in examples from the relevant literature 
(Gencturk, 2012). 

The optimization methodology proposed here, 

although general, is described in the context of the 
example shown in the following section: a three-story 
reinforced concrete frame for an offi ce building in the 
city of Mendoza, a high-seismic risk region of Argentina.

2  The structural system

The structure to be optimized is a three-story offi ce 
building with spans and columns as shown in Fig. 1, 
both in plan and for a portal along the x-direction, which 
is the assumed direction of the earthquake motion.

Figure 1 shows the fl oor slabs, uniformly loaded 
with a load q; the column and beam dimensions in 
centimeters (cm); the longitudinal reinforcement Asc 
and reinforcement ratio ρc for the columns; and those 
corresponding to the beams, Asb and ρb for reinforcement 
at the bottom (midspan) and A′sb and ρ′sb at the supports. 

3   The optimization process for performance 
based design

Figure 2 shows the organization of the optimization 
process. It is divided into blocks that can be executed 
separately but in sequence. 

4   Block  1: structural analysis

4.1  Variables

Table 1 shows the variables X(1) to X(11), 
components of X, which are included in the dynamic 
structural analysis to obtain a set of discrete responses. 
This table also shows the lower and upper bounds for the 
variables, within which combinations for analysis are 
chosen via experimental design. Bounds for variables 
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corresponding to reinforcement ratios must implement 
design Code requirements. Furthermore, Eqs. (1) and 
(2) show additional relationships to be satisfi ed. For 
example, Eq. (2) is to be satisfi ed to achieve a minimum, 
code-required beam strength under just gravitational 
loads.
                       

s s s0.5 2                               (1)
  

2

s s 2
b b y

1.40
6.48

q l
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The design procedure specifi ed in the Code for 
Argentina (INPRES-CIRSOC 103, 2008), Part I, is 
based on a demand combination of permanent (D), live 

(L) and earthquake (E) loads: 1.0 0.25D L E  . For 
the structure in Fig. 1, and assuming a permanent load 
D = 6.80 kN/m2 and a live load L = 2.5 kN/m2, a total 
load W = 712.8 kN is obtained per story. Since the fl oor 
slabs are assumed to be rigid diaphragms, each portal 
must resist 1/4 of the total seismic demand. Thus, a mean 
value for the mass applied to the beams, per unit length, 
can be calculated to be m = 2.27 10-4 kN s2 / cm2.

The seismic action E corresponds to the specifi ed 
ground motions. These have to be selected to constitute 
a set of records likely to occur at the site. Of course, this 
is not a simple task, and several techniques are normally 
used to produce such a set, including the use of historical 
records (when available). Here, ground accelerograms 
are artifi cially generated (Shinozuka and Sato, 1967; 
Möller, 2001) following a procedure for which two basic 
variables are required: the peak ground acceleration 
aG at the site and the central frequency for the ground 
fi lter, fg. Following Shinozuka, a Normal random phase 
angle is introduced with each of the frequencies and 
a modulation function is applied to introduce non-
stationarity. Other methods can be similarly used for 
the specifi c characterization of the ground motions, as 
the approach chosen does not affect the optimization 
procedure described in this work. 

4.2  Variable combinations

Design of experiments was applied to generate, 
randomly, NP = 450 combinations of the intervening 
variables. The range of X(10) between its corresponding 
bounds was divided into three sectors, while only 
one sector was used between the bounds of each of 
the remaining variables. Each combination was then 
obtained by choosing a random value for a variable 
within each corresponding sector. The process was 
repeated 150 times, resulting in a total of NP = 450 
variable combinations. This number permits 1) an 
adequate coverage of the variable ranges, and 2) that 
the neural network which will be used to approximate 

Fig. 2  Block organization for the optimization process

Block 1: STRUCTURAL ANALYSIS
Defi nition of the intervening variables X with their bounds 
Experimental design: choose a combination xk from the set X
Nonlinear dynamic analysis to obtain responses Ri(xk) for xk 
Response approximation via a neural network, Fi(X)

Block 2: RELIABILITIES
Defi nition of the performance functions → Gj(X)
Defi nition of the design parameters xd with their bounds
Experimental design: choose a combination xdk from the set xd 
Reliability j associated with the combination xdk  → βj(xdk)
Reliability approximation via neural networks βj(xd)

Block 3: OPTIMIZATION
Defi nition of the objective function → C(xd)
Defi nition of target minimum reliability constraints →  βjT  
Preliminary design:  xd0
Optimization algorithm, to obtain xd for minimum C(xd), with  
βj(xd) ≥ βjT 

Table 1   Variables and their bounds

Variable Lower bound Upper bound Defi nition
X(1) = m  (kN.s2 / cm2) 1.50 × 10-4 3.00 × 10-4 Beam mass per unit length 

X(2) = bb (cm)  15 30 Beam section width
X(3) = hb (cm)  30 70 Beam section depth
X(4) = bc  (cm)  20 40 Column section width
X(5) = hc  (cm) 30 100 Column section depth
X(6) =  ρb 0.00298 0.01389 Beam reinforcement ratio (midspan)
X(7) =  ρ′b 0.00298 0.01389 Beam reinforcement ratio (supports)
X(8) =  ρc 0.008 0.04286 Column reinforcement ratio
X(9) = fr/f ′c0 0 0.15 Confi nement pressure (normalized) 
X(10) = aG (cm / s2) 10 1200 Peak ground acceleration
X(11) = fg  (Hz) 1.50 3.50 Central ground fi lter frequency
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the corresponding dynamic responses could have an 
architecture with a maximum of 25 neurons in one 
hidden layer, in order to achieve satisfactory precision in 
the predictions (Möller et al., 2010). 

For each of the 450 combinations of the variables 
in Table 1, a set of NS = 10 sub-combinations  were 
obtained. Each of these correspond to: 1) a different 
random choice for the phase angle associated with each 
frequency in the generation of an artifi cial accelerogram, 
that is, a different ground motion,  and 2) a different 
concrete strength and steel yield point, parameters that 
directly affect the moment-curvature relation for the 
beams and columns (Möller et al., 2006).

4.3  Nonlinear dynamic analysis

A nonlinear dynamic analysis is performed for 
each combination of the variables and for each of the 
corresponding sub-combinations. The background for 
the structural model used in this analysis is described 
elsewhere (Möller, 2001; Möller et al., 2006; Möller and 
Foschi, 2003) and is similar to that proposed by Filippou 
et al. (1992). 

The maximum responses, which enter into the 
different performance functions, are then obtained: 
UMAX: maximum horizontal displacement at the top 
of the structure; AMAX1: maximum acceleration for 
the fi rst story; AMAX2: maximum acceleration for the 
second story; DISTM: maximum inter-story drift; DIES: 
global damage index; DILOM: maximum local damage 
index. This work uses damage indices as defi ned by Park 
and Ang (1985) and Möller et al. (2009a).

If R is a generic response, the corresponding calculated 
responses Rk,j  are obtained for each combination j = 1, 
NP and each sub-combination k = 1, NS. For each of the 
NP combinations, the results are then used to calculate 
the mean response and the standard deviation over the 
set of NS sub-combinations:

    

NS NS
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1 1
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4.4    Neural  network approximations for the responses

The NP results from Eq. (3) are used to train two 
neural networks (Möller et al., 2009b), one for the 
mean value and another for the standard deviation of 
the responses over the set of sub-combinations. The 
implementation of the network has the general form

0 0
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in which R(X) is the value obtained for the particular 
combination of the  variables X,  F(X) is the neural 
network approximation, Wkj and Wji are weight factors 
to be calculated during network training, and h(t) is a 
nonlinear transfer function. Details on h(t) used and the 
calculation of the weight factors can be found in previous 
publications by the authors (Möller et al., 2009a, 2012b). 
The training implies the optimization of the weights W 
so that the differences between the network predictions 
and the dynamic analysis results are minimized.

Since the training or the approximation of R(X) with 
F(X) is normally very good but never perfect (see, for 
example, Fig. 3 for DISTM), there is a scattering around 
the network predictions that can be quantifi ed with the 
standard deviation of the relative error: 
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in which Yk is the value predicted by the network,  Tk is 
the corresponding result from the dynamic analysis and 
NP is the number of combinations in the database. 

Thus, the mean value and the standard deviation of 
the response over the set of sub-combinations can be 
written as in Eq. (6), incorporating the relative errors 
from Eq. (5):
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Fig. 3   Neural networks for maximum inter-story drift DISTM

DISTM - Mean value                                                                       DISTM - Standard deviation
0.05

0.04

0.03

0.02

0.01

0

N
eu

ra
l n

et
w

or
k

0.020

0.015

0.010

0.005

0

N
eu

ra
l n

et
w

or
k

0          0.01        0.02       0.03        0.04       0.05
                                  Target

0            0.005          0.010          0.015         0.020
                                 Target

σεr = 0.0608
Corr = 0.9961

σεr = 0.1634
Corr = 0.9867



No.2                Oscar Möller et al.: Optimization for performance-based design under seismic demands, including social costs             319

Table 2  Random variables 

Variable           σx       Type          Variable          σx     Type

X(1) = m 2.27 10-4 2.27 10-5 Normal X(10) =  aG 94 cm/s2 130 cm/s2  Lognormal

X(2) = bb   20 cm 1 cm Normal X(11) = fg  2.50 Hz 0.375 Hz Normal

X(3) = hb   ? cm 0.05 X  Normal X(12) =  σaG
0 0.25 Normal

X(4) = bc   30 cm 1.5 cm Normal X(13) =  aG X(13) = X(10) [1.0+X(12)]

X(5) = hc   ? cm 0.05 X Normal X(14) = RN 1 0 1 Normal

X(6) = ρs ? 0.10 X Lognormal X(15) = XN 1 0 1 Normal

X(7) = ρ′s ? 0.10 X Lognormal X(16) = XN 2 0 1 Normal

X(8) = ρcol    ? 0.10 X Lognormal X(17) = XN 3 0 1 Normal

X(9) = fr/f ′c0 0.10 0.01 Normal

X X

in which ( ) , ( )YY X X  are the mean value and 
standard deviations obtained from the neural networks; 

  ,m   are the deviations obtained from Eq. (5) , 
and XN 1 , XN 2 are Standard Normal random variables. 

Finally, the mean values and standard deviations from 
Eq. (6) can be used to predict the response R(X), using 
a Standard Normal random variable RN1, and assuming a 
Lognormal distribution to represent the variability over 
the sub-combinations:
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Equation (7) allows a quick estimation of the 
responses, using the neural networks to estimate the 
effect of the basic variables from Table 1 and with the 
Standard Normal variable RN1 providing the variability 
over the sub-combinations (which include the effect of 
different ground motions). 

5   Block 2: reliabilities

5.1  Random variables and design parameters

Table 2 shows all the random variables considered in 
the problem, including the basic ones shown in Table 1, 
and their assumed probability distribution and statistics. 
Each symbol “?” appearing in this table indicates a 
design parameter, that is, one of the outputs from the 
optimization. As shown, these are the mean values of the 
cross-sectional dimensions for the beams and columns, 
and the corresponding longitudinal reinforcement ratios. 

The lognormal statistics for the peak ground 
acceleration aG, X(10) in Table 2, correspond to the 

seismicity for the city of Mendoza, Argentina (INPRES, 
1995), and are calculated as shown by Möller et al. 
(2009a), with an arrival rate n = 0.20 for earthquake 
magnitudes M > 5. For this city, the peak acceleration 
with a 10% exceedance probability in 50 years is 
aG = 0.6 g. 

5.2  Performance functions

Equations (8) to (15) describe the eight functions 
adopted to describe the structural performance at three 
different levels: operational, life safety and collapse. A 
random variable XN3, Standard Normal, is introduced 
in order to take into account modelling error in the 
calculation of the demand parameters DISTM, DILOM, 
and DIES. It is assumed that these quantities show an 
uncertainty with a coeffi cient of variation COV = 0.10.
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- Collapse  

 331( ) 0.025 DISTM( ) 1 COV NG X    X X
 
mode 5

         (13)
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computational times, however, were not excessive, 
given the use of the neural network representation for 
the nonlinear responses of the structure.

The reliability indices bj(xd) ( j = 1, 6) calculated 
for each combination of design parameters are then 
represented by means of neural networks. The predictions 
from these networks are very good, as shown in Fig. 4 
for b3(xd) and b6(xd). During the subsequent optimization, 
these networks allow a very effi cient determination of 
the achieved reliability levels for a given set of design 
parameters, in order to verify the compliance of imposed 
minimum reliability constraints. 

6  Block 3: optimization

6.1  Objective function

The objective function used here is the total cost of 
the structure. This cost includes: 1) C0(xd), the initial 
construction cost; 2) Cd(xd), the cost of repairs for 
damage produced by earthquakes at some time during 
the life of the structure; and 3) Cs(xd), the social costs 
associated with the occurrence of the earthquakes. Thus,

d 0 d d d s d( ) ( ) ( ) ( )C C C C  x x x x          (16)

6.1.1 Initial cost
This cost is associated with:
(a) The reinforced concrete structure itself (beams 

and columns). In the example for this work, the unit 
cost used for concrete is CUH = 4500 $/m3. For the 
steel, the unit cost is CUA = 13 $/kg. These costs 
refl ect both currency and conditions in Argentina. 
Introducing the volumes of concrete (Vbeam and Vcol), 
and the weight of steel (Ps,beam and Ps,col), all functions of 
the design parameters, the initial cost of the structure is
                                

Fig. 4   Neural network approximation for reliability levels
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Six failure modes are considered: (1) G11(X) ≤ 0; (2) 
G12(X) ≤ 0; (3) G21(X) ≤ 0; (4) G22(X) ≤ 0 and G23(X) ≤ 
0; (5) G31(X) ≤ 0; (6) G32(X) ≤ 0 and G33(X) ≤ 0. Two 
performance functions are incorporated in failure modes 
(4) and (6), implying that collapse is identifi ed with 
failure in at least one of the two performance functions 
included.

The functions that have as demand the maximum 
inter-story drift DISTM are used to consider the failure 
of non-structural elements. The remaining functions 
are used to consider the failure of structural elements. 
This division is used to study separately the resulting 
probabilities of failure at the optimum solution. 

5.5  Neural networks for reliability estimates

Within the bounds for the design parameters, and 
applying again experimental design, MC combinations 
of the design parameters xd are selected at random. 
The number of combinations must be suffi ciently 
large to cover the range in the design parameters, and 
the reliabilities associated with each combination are 
then calculated by simulation. These results are then 
represented by neural networks. A number MC = 180 
combinations permits the training of a network with 20 
neurons in one hidden layer, allowing for good accuracy 
in the neural network predictions. 

The sample size used in the simulations for the 
calculation of the reliability levels was variable, as the 
simulations used increasingly larger samples until the 
coeffi cient of variation COV in the calculated failure 
probability Pf satisfi ed COV ≤ 0.04. In most of the cases 
the sample sizes required were of the order of 106. The 

(15)

(
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(b) Other structural elements: fl oor slabs and 
foundations. These costs are assumed deterministic and 
approximately estimated on the basis of the total unit 
cost of the building ( 3570 $/m2 ) and, from experience, 
from the relative contribution from the structure to that 
total unit cost (28%) and, within it, from slabs (40%) and 
foundations (24%). In this example,  the cost associated 
with these other structural elements is then  
 

02 267264$C                         (18)

(c) Non-structural elements: these include in-fi ll 
masonry walls, fl oorings, doors and windows, fi nishings 
and installations, etc. From experience in Argentina, 
these costs amount 72% of the total building cost 
(the remainder 28% corresponding to the structural 
elements). Thus,

03 1073232$C                         (19)

(d) Contents, including furnishings and equipment. 
These are estimated on the basis of the number of 
workstations or offi ces in the building, with a unit cost 
of 14000 $/workstation. Assuming a total of 30 offi ces 
in the building, the cost of contents is then estimated at

     04 609000$C                          (20)

Finally, the total initial cost is obtained from
  

0 d 01 d 02 03 04( ) ( )C C C C C   x x          (21)

6.1.2 Repair costs
The repair costs, at present values, depend on 

the level of damage caused by the earthquakes, the 
uncertainty associated with their arrival, the number of 
earthquakes during the life TD of the structure and the 
interest rate available for a repair fund from the time of 
construction until the occurrence of the damages. 

If PR is a response used to quantify the damage to the 
structure, the non-structure elements and the contents, 
and if Cf(PR) is the cost of repairs required at a time t, 
the repair fund Cf0(PR) required at t = 0 (present value of 
the cost), assuming an interest rate r, is  
  

f 0 f(PR) (PR) exp( )C C r t               (22)

Under the assumption that the structure is repaired 
after each event, returning it to the original conditions, 
the expected cost Cd |PR (at present values and conditional 
on the response PR) becomes (Möller et al., 2012b):  
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(23)

in which υ is the mean arrival rate of the earthquakes, and 
n is the number of earthquake events in TD. In general, 
this cost increases with the number n, but the occurrence 
probability of n events in TD diminishes quite rapidly 
with n, resulting in Cd |PR from Eq. (23) approaching a 
fi nite value. In this work the summation in Eq. (23) was 
truncated when the relative contribution of a larger n is 
less than 0.001. In this example the interest rate r has 
been assumed to be 0.05.

(a) The damage to the structure is calculated in terms 
of the response parameter PR = DIES, the global damage 
index, according to the function shown in Fig. 5. It is 
assumed that for DIES < 0.10 no damage needs to  be 
repaired and that, for DIES > 0.40, the structure has 
sustained substantial non-repairable damage and must 
be completely rebuilt. The constant a1 = 1.20 introduces 
the cost of demolition and clean-up.  For damage indices 
less than 0.40 it is assumed that the costs refl ect only the 
damage to beams and columns, and that no repairs are 
needed for fl oor slabs or foundations. Finally, 

d12 d d12 DIESDIES
0

( ) (DIES) d(DIES)C C f


  x
      

(24)

in which fDIES(DIES) is the probability density function 
for the global damage index DIES. For a given set of 
design parameters xd, and with the help of the response 
neural network for DIES, a Monte Carlo simulation is 
used to obtain the mean value and standard deviation of  
DIES, from which the probability density in Eq. (24) is 
obtained from a Lognormal distribution assumption. In 
Eq. (24), the index 12 implies the inclusion of costs both 
from Eq. (17) and those from Eq. (18), under the costs 
for repairs Cf12 shown in Fig. 5.

Figure 5 assumes a linear dependency between 
damage index and costs, an assumption adopted here 
just to complete the example, but one that should be the 
topic of further research.

(b) The damage to the non-structural elements is 
calculated as a function of the maximum inter-story 
drift PR = DISTM, as shown in Fig. 6(a), in which 
the constant a2 = 0.30 represents the percentage of 
damaged elements. Furthermore, since a total building 
replacement is assumed when the global damage index 
DIES exceeds 0.40, as shown in Fig. 6(b), the cost also 
includes the clean-up factor a3 = 1.20. Thus, the cost for 

.
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repairs of non-structural elements can be expressed as
  

 

d3 d d3 DISTMDISTM
0
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(25)

in which fDISTM(DISTM) is the probability density 
function for DISTM, obtained in a similar manner as that 
previously described for  fDIES(DIES).

(c) The damage to the building contents is calculated 

in terms of the maximum fl oor acceleration PR = 
ACELM, as shown in Fig. 7(a), in which the constant 
a4 = 0.15 corresponds to an assumed percentage of 
damaged elements. It is also assumed that no contents 
can be recovered if the building totally collapses, or 
when the global damage index DIES exceeds 0.80, 
as shown in Fig. 7(b). Finally, the damage to building 
contents can be expressed as
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in which fACELMi(ACELMi) is the probability density 
function for the maximum fl oor acceleration ACELMi, 
obtained in a similar way as that previously described 
for fDIES(DIES). It is assumed that building contents are 
stored only in the upper two fl oors, and the coeffi cient 
0.5 assumes that the contents are distributed half on 
the fi rst fl oor and the other half on the second, with the 
damages estimated on the basis of the corresponding 
maximum fl oor accelerations. 

Finally, the total cost for repairs is obtained from the 
three contributions, 
  

d d d12 d d3 d d4 d( ) ( ) ( ) ( )C C C C  x x x x             (27)
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Fig. 6   Damage-Cost function for the non-structural elements
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It is to be noted that, even if the initial cost of non-
structural elements and of the contents are not functions 
of the design parameters xd, their corresponding repair 
costs are, as these depend on the respond parameters 
which quantify the damage in those elements. 
6.1.3  Social costs

Social costs depend on the societal context. For 
the example in this work, these costs are estimated in 
the context of Argentina. Costs that society must face, 
directly or indirectly, following an earthquake, could be 
classifi ed as follows:

(a) Costs of re-insertion into a normal routine. 
Even when the earthquake produces small damage, 
and the population is not affected by major material 
or human losses, there exists a cost in helping people 
to psychologically adjust again to a normal routine, 
overcoming the fear of a recurring earthquake. These 
costs are associated with sessions of psychological help 
or counselling, here estimated as one session per week 
over three months. At a unit cost of  $150 per session and 
per person, the total cost CRS is
  

RS 54000$C                           (28)

(b) Medical and rehabilitation costs for non-fatally 
injured victims. On the basis of overall medical services 
required over three months, on an average per person of 
$16710, and assuming that all 30 occupants will require 
medical attention, the cost CMR  is

MR 501300$C                       (29)

(c) Costs associated with loss of life.  It is, of course, 
more diffi cult to assess the economic losses due to 
fatalities. Here we assume only those costs that must 
be assumed by the owner, not by insurance companies. 
Labor law in Argentina requires compensation in the case 
of lay-off or a labor accident. At the same time, the law 
indicates that when the loss of life is due to an “act of God” 
and not from an accident, the compensation required is 
only 50% of the normal. Normal compensation is one 
month of salary for each year of service. Thus, assuming 
a monthly salary of $14000 and, on average, 10 years of 
service, the compensation for loss of life, per person, is 
$ 70000. Assuming that, in the case of a collapse, only 
half of the offi ce personnel would lose their life, the total 
cost CPVH becomes
  

PVH 1050000$C                  (30)

(d) Costs associated with loss of business or 
economic activity.  For the example in this work, it is 
assumed that the building is occupied by two companies, 
each with a normal monthly revenue of $ 200000. It is 
also assumed that the companies can return to business 

after two months from the date of the earthquake. The 
costs associated with loss of business must also include 
those related to the re-acquisition of offi ce equipment 
and supplies required for the busines. In this regard, a 
loss of $ 30000 is added here per company. Thus, over 
the assumed two months of inactivity, the cost CLCST is 

LCST 860000$C                        (31)

We have also considered the cost of rental of 
temporary business space during reconstruction, 
estimated as CALQ = $164506. Figure 8 shows the total 
social cost as a function of the global damage index for 
the structure. Here, the costs of re-insertion for survivors 
of a structural collapse have been doubled. 

Finally, the social costs corresponding to a set of 
design parameters xd are obtained by integration using 
the probability density function of the global damage 
index ,
  

S d S DIESDIES
0

( ) (DIES) d(DIES)C C f


  x           (32)

since the social costs are a function of the design 
parameters xd through the structural responses and the 
global damage index. 

6.2  Reliability target constraints

Table 3 shows upper bounds for target annual 
failure probabilities (and associated reliability indices) 
according to the work by Paulay and Priestley (1992). 
Assuming that the arrival of earthquakes obeys a Poisson 
distribution, and using a mean frequency  n = 0.20 for 
the city of Mendoza and magnitudes M ≥ 5, the annual 
failure probability can be related to the probability of 
failure PfE if an event occurs. Thus, 
  

  1
annual annual annualPf 1. exp Pf (Pf )E          (33)

PfE and Pfannual can be expressed in terms of the 
corresponding reliability indices b, providing the 

Fig. 8   Damage-social cost function
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minimum target reliability constraints for the different 
performance levels shown in Table 3.
  

d T( ) , 1, 3j j j  x
                   

(34)

6.3 Optimization algorithm

Möller et al. (2012b) presented a numerical 
optimization search algorithm, to minimize the objective 
function within the bounds for the design parameters xd, 
while at the same time satisfying the minimum reliability 
constraints for the different performance levels. The 
following is a short description of the steps in this 
algorithm, which are also schematically shown in Fig. 9.

(a) The search begins from an initial or anchor point 
xd0, which is the result of an initial design for the structure. 
The reliability levels corresponding to this point, bj(xd0), 
are calculated using the reliability neural networks, and 
the total cost is calculated as per Section 6.1. 

(b) If the preliminary design xd0 does not satisfy the 
reliability constraints from Eq. (34), then the procedure 
continues with steps c), d) o e). The fi rst combination 
found that satisfi es the constraints is then taken as the 
fi rst anchor point. 

(c) M1 combinations of the parameters in xd are 
obtained in the proximity of xd0 , randomly choosing 
a value for each of the design parameters, xdi,  within 
a search zone around  xd0. Thus, each parameter xdi  is 
modifi ed, in turn, according to Xd0i ± R1 (BUD( i )-BLD
( i )) , in which R1 is a constant and BUD( i ) and BLD
( i ) are, correspondingly, the upper and lower bounds 

for xdi. The reliability constraints are verifi ed for each 
of the M1 combinations. The cost is evaluated for those 
combinations which satisfy the constraints and, if the 
minimum cost among the M1 combinations is less than 
the cost at the anchor, the combination corresponding to 
that minimum is chosen as a new anchor point and the 
process re-started. 

(d) If, among the M1 combinations, none is found 
to correspond to a cost lower than that for the anchor, 
the search is densifi ed by choosing more combinations 
without exceeding a count M2. 

(e) If, even after step d), no combination has been 
found to have a cost lower than that for the anchor, the 
search zone is enlarged by changing R1 to R2 = R1 + 
DR. The process is repeated, adding m combinations of 
xd within the additional zone, with a maximum of M2. 
If no cost is found lower than that for the anchor, the 
search zone is enlarged again and the process repeated, 
up to a maximum of NAMP repetitions. The objective 
of this enlargement of the search zone is to reduce the 
possibility of converging to a local minimum for the 
cost. 

(f) The process is stopped when no combination has 
been found with a cost lower than that for the anchor, 
which is then taken as the optimum combination. 

The following values have been used for the example 
in this work: R1 = 0.15, DR = 0.05, M1 = 100, M2 = 400 
and NAMP = 3.

7   Numerical results and discussion

The results from the optimization are shown 
in Table 4. These results are presented either with or 
without inclusion of social costs. For each of these two 
options, results are also shown either including or leaving 
out the minimum reliability constraints. For all cases, the 
Table also shows the reliability levels achieved, for each 
performance level, at the optimum design.

Under the same conditions, consideration of social 
costs always increases the total optimum cost. However, 
as shown in Table 4, individual design parameters may 
show a decrease when social costs are taken into account. 
This occurs because there are multiple combinations of 
design parameters that lead to almost the same total 
cost (Möller et al., 2009a). Thus, for the case without 
reliability constraints, Table 4 shows that the column 
dimension hc reduces from 45.9 cm to 39.3 cm as social 
costs are introduced. This is compensated by an increase 
in column reinforcement ratio from 0.00856 to 0.01240. 

Table 3   Reliability constraints for different performance levels

Performance level Pf annual βj annual PfE βjT

Operational 2 × 10-2 2.054 0.10101 × 100 1.276
Life safety 2 × 10-3 2.878 0.10010 × 10-1 2.326
Collapse 2 ×1 0-4 3.540 0.10001 × 10-2 3.090

Fig. 9  Schematic representation, optimization search algorithm
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The differences are small when minimum reliability 
constraints are imposed, as the performance criterion 
of collapse dominates the optimum solution and this 
criterion is associated with reduced social costs. The 
differences increase when the reliability constraints are 
lifted, to the order of 7.5%, as in this case the optimum 
corresponds to lower reliabilities, with increases in 
damage and social costs. 

The reliability indices for the optimum solution 
are governed by the minimum reliability required 
for the collapse limit state, and are higher than those 
corresponding to the other performance levels. It can 
also be observed that higher reliabilities are achieved 
if social costs are included, clearly indicating that the 
optimum solution requires a lower failure probability in 
order to reduce the social costs.

Table 4 also presents the breakdown of costs 
associated with the optimum design. The differences 
in the initial cost C0(xd) is due to the contribution 
C01(xd) from the structure (beams and columns), as 
the cost C02(xd) of other structural elements, C03(xd) 
for non-structural elements, and C04(xd) for contents, 
are deterministic constants in this example and do not 
affect the optimum solution. The repair costs for damage 
to structural elements, Cd12(xd), and non-structural, 
Cd3(xd), increase when reliability constraints are not 

Table 4   Optimization results

Results
Without social costs With social costs

With reliability 
constraints 

Without reliability 
constraints 

With
reliability 
constraints 

Without 
reliability 
constraints

xd (1) = X (3) = hb   (cm) 53.1 33.4 54.0 36.7

xd (2) = X (5) = hc   (cm) 49.6 45.9 51.6 39.3

xd (3) = X (6) = ρb
0.01014 0.00798 0.00963 0.00638

xd (4) = X (7) = ρ′b 0.01045 0.01253 0.01054 0.01243

xd (5) = X (8) = ρc
0.02406 0.00856 0.02173 0.01240

Performance: operational β1(xd) 1.504 1.083 1.514 1.035
β2(xd) 1.678 1.214 1.683 1.226

Performance: life safety β3(xd) 2.580 1.960 2.589 1.883
β4(xd) 2.383 1.845 2.360 1.848

Performance: collapse β5(xd) 3.095 2.415 3.096 2.268
β6(xd) 3.106 2.292 3.101 2.362

C01(xd) initial cost, structure  [ $ ] 236600 163250 238570 158090
C0(xd) total initial cost  [ $ ] 2186060 2112710 2188030 2107550
Cd12(xd) repair costs, structure [ $ ] 110 482 218 6174
Cd12(xd) repair costs, non struc.[ $ ] 15944 38618 14990 33886
Cd12(xd) repair costs, contents  [ $ ] 33719 15930 33885 20516
CS(xd) social costs  [ $ ] 0 0 207960 213730
C(xd)  total cost [ $ ] 2335900 2167800 2445100 2381900

implemented,  given that the resulting structure is more 
fl exible. However, given this increased fl exibility, the 
maximum fl oor accelerations are smaller and result 
in smaller costs for damage to contents, Cd4(xd).  The 
incidence of the social costs is of the order of 10% of 
the total.

Figure 10 shows the results (without minimum 
reliability constraints) from the evolution of the 
total cost objective function during the optimization 
process, presented in correspondence with the 
calculated associated annual failure probability for each 
performance level The minimum cost is associated 
with an optimum annual failure probability at each 
performance level and, for this example, these optima 
are somewhat greater than those recommended by 
Paulay and Priestley (1992), with the largest difference 
corresponding to the collapse limit state. 

The lower envelope of the results in Fig. 10 (Pareto 
front) clearly shows that, up to a point, the total cost 
decreases as the annual failure probability increases. 
At small probabilities of failure, the total costs are 
controlled by the initial costs. These can be decreased 
if higher failure probabilities are accepted. Beyond the 
minimum point, increases in annual failure probability 
correspond to increases in costs, as a result of repair and 
social consequences becoming more dominant. 
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8    Sensitivity of the results to the magnitude of 
     the social costs

Since the results shown here incorporate social costs 
only in the context of Argentina, as described in Section 
6.1.3, a sensitivity analysis was performed to investigate 
the infl uence of those costs when their magnitude, from 
Eq. (28) through Eq. (31),  were increased by a factor 
of 2, 3 or 5. The analyses were performed without 
constraints for minimum reliabilities, to emphasize the 
effect of the social costs. The results are shown in Table 5. 

The initial structural cost, C01(xd), increases with 
the factor for social costs, but then slightly diminishes 
for a factor of 5.  The same tendency is shown by the 
repair cost, Cd(xd). The social costs CS(xd) for the 
optimal solutions also increase, but by factors which are 
somewhat less than those applied to the values from Eq. 
(28) through Eqs. (31).  

Given that different combinations of dimensions 
and reinforcement ratios can result in nearly the same 
minimum total cost, the different cost components do 
not follow the same tendency among themselves when 
the total cost factor is increased. This is more in evidence 
when the incidence of social costs is greater, as these 
costs start to dominate the solution at minimum cost. 

The incidence of the social costs in the optimal total 
cost increases from 9% (for the nominal case), to 15.2% 
(for a factor of 2), 18.4% (for a factor of 3) to 29.1% (for 
a factor of 5). Of course, although these results show a 
general tendency, specifi c contributions would depend 
on the relative weight of the different cost components.  

The results in Table 5 show that the procedure 
outlined here permits the estimation of the infl uence of 
social costs on the achieved reliability levels at each of 
the required performance levels. 
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9    Conclusions

This work has presented a general framework for 
the performance-based design optimization of a building 
under seismic demands, for minimum total cost with 
minimum reliability levels at each of three performance 
levels. This framework, instead of using the usual fragility 
approach, works directly with the set of structural and 
ground motion variables. This, plus neural network 
representation for responses and achieved reliabilities in 
the different limit states, permits the performance-based 
design optimization for the chosen design parameters 
like dimensions and amounts of reinforcement, at a 
minimum total cost. 

The framework has been illustrated using the case 
of a three-story offi ce building, with the seismicity 
corresponding to the city of Mendoza, Argentina. 
The optimization for minimum total cost has taken 
into account the initial costs of the structure, the non-
structural elements and the contents, as well as a way 
for considering the repair costs following earthquakes 
during the life cycle of the building and the associated 
social costs. 

The calculations are effi ciently divided into different 
independent blocks: the dynamic structural responses, 
reliability calculations for each performance level and, 
fi nally, the optimization itself. The use of neural networks 
for the representation of dynamic responses makes 
effi cient the calculation of reliabilities via simulation. 
Further, the use of neural networks to represent the 
reliability levels as functions of the design parameters, 
makes effi cient both the optimization and the verifi cation 
of whether minimum reliability constraints were being 
satisfi ed. 

The numerical results obtained are coherent and show 

the importance of considering, in the total, not only the 
initial cost of the structure but also those associated with 
future repairs and social costs related to the earthquake 
event. For the example studied, the incidence of the 
social costs in the optimum solutions was in the order 
of 10% of the total. When the optimization is carried 
out without imposing minimum reliability constraints, 
the optimum probabilities of failure corresponding to 
the minimum cost resulted, for the example shown, in 
values somewhat greater than those levels recommended 
in the literature.

A sensitivity analysis has shown that the optimal 
total cost is quite dependent on the magnitude on the 
assumed social costs, implying that careful consideration 
of the latter, in relation to the other cost components, is a 
requirement for a realistic optimization or performance-
based design of the structure.  Generally, the framework 
presented is a useful tool to aid decisions related to total 
cost and risks in earthquake engineering.
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