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Active control of highway bridges subject to a variety of earthquake loads
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Abstract:  In this paper, a wavelet-fi ltered genetic-neuro-fuzzy (WGNF) control system design framework for response 
control of a highway bridge under various earthquake loads is discussed. The WGNF controller is developed by combining 
fuzzy logic, discrete wavelet transform, genetic algorithms, and neural networks for use as a control algorithm. To evaluate 
the performance of the WGNF algorithm, it is tested on a highway bridge equipped with hydraulic actuators. It controls the 
actuators installed on the abutments of the highway bridge structure.  Various earthquakes used as input signals include an 
artifi cial earthquake, the El-Centro, Kobe, North Palm Springs, Turkey Bolu, Chi-Chi, and Northridge earthquakes. It is 
proved that the WGNF control system is effective in mitigating the vibration of the highway bridge under a variety of seismic 
excitation.

Keywords: structural control; wavelet transform; genetic algorithm; fuzzy logic; neural network; active control; nonlinear 
highway bridges

Correspondence to: Yeesock Kim, Department of Civil and 
Environmental Engineering, 100 Institute Road, Worcester, 
MA 01609-2280, USA 
Tel: +1-508-831-5340 
E-mail: yeesock@wpi.edu

†Graduate Research Assistant; ‡Assistant Professor 
Supported by: MOF (Ministry of Oceans and Fisheries) and 

a Grant (12-RTIPB01) from Regional Technology Innovation 
Program funded by MOLIT (Ministry of Land, Infrastructure 
and Transport) of Korean government 

Received April 16, 2014; Accepted January 24, 2015

1   Introduction 

With the continued deterioration of infrastructure in 
the United States, the need for healthy structures able to 
maintain its strength and serviceability throughout the 
length of their design life has become very important in 
structural engineering (FEMA, 2008; Kim et al., 2014c). 
These events can vary greatly over time, creating 
a dynamic loading that cause large, time-varying 
displacements, velocities, and accelerations on the 
structure, which can impact the health of structures (Kim 
et al., 2013a; Chong et al., 2014). Due to large structural 
responses to the destructive forces, cracks can be created 
or increased and the overall and local strength also can 
be degraded, eventually leading to structural damage or 
collapse (Arsava et al., 2014). Hence control systems 
can often be employed as a part of a structure in order 
to help the bridge or building act against lateral forces 
such as strong wind and earthquake events (Spencer and 

Nagarajaiah, 2003).
Control systems are becoming increasingly 

researched and used on civil engineering structures to 
decrease a nd limit the responses of buildings or bridges 
during seismic events (Yao, 1972; Housner et al., 1997). 
Control systems utilize devices that apply a force to a 
structure that offsets internal forces, displacements, 
and accelerations that are created during seismic 
events (Spencer et al., 1999). Two common forms of 
control systems are passive and active control (Soong, 
1990; Soong and Reinhorn, 1993; Cha et al., 2012, 
2013). Typical passive control systems are viscous 
liquid dampers and base isolators. These devices are 
designed and installed on a structure during construction 
that implement a non-adaptable control force during 
dynamic loading events (Soong and Dargush, 1997). 
Because they are installed during construction, it is 
diffi cult and sometimes impossible to modify the device 
during the lifetime of a structure (Soong and Dargush, 
1997). The actuators used for active control systems 
consume a signifi cant amount of power. The control 
signal is calculated using active control algorithms 
based on measured structural responses. The active 
control algorithms can determine control forces in near-
real-time, depending on the required control force due 
to applied loadings on the structure (Spencer et al., 
1999;  Kim et al., 2010a, b, c; Cha and Agrawal, 2013). 
Therefore, it is important to develop an effective control 
model to implement the active controller for large civil 
structures. With this in mind, a new structural control 
strategy is proposed by integrating  wavelet transform 
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(WT), genetic algorithm (GA) based decentralized 
output feedback polynomial controls (DOFPC), and 
fuzzy logic theory and neural network (NN).  

The fi rst model used as a part of the integrated 
system is a fuzzy logic model. The fuzzy logic model 
has a main advantage of being used as a nonparametric 
method for system identifi cation, and has been 
previously researched (Zadeh, 1965; Kim et al., 2009a; 
Kim et al., 2011; Mitchell et al., 2012b; Kim et al., 
2015; Mohammadzadeh et al., 2015), as well as general 
studies on the uncertainties and complexities of the 
dynamic system (Langari, 1999; Kim et al., 2009b; Arsava 
et al., 2013; Arsava et al., 2015; Arsava and Kim, 2015). 
Using a Takagi-Sugeno (TS) model for fuzzy logic 
theory allows for a representation of complex nonlinear 
dynamic systems using fuzzy rules and linear system 
theory (Takagi and Sugeno, 1985; Yager and Filey, 1993; 
Johansen, 1994; Faravelli and Yao, 1996; Johansen and 
Babuška, 2003; Yan and Zhou, 2006; Chen et al., 2007; 
Du and Zhang, 2008; Kim et al., 2009a, 2009b; Kim 
et al., 2013b; Kim et al., 2014a, b). Therefore, fuzzy 
controllers, in particular, have been paid great attention 
from many investigators in the fi eld of structural 
vibration control. To implement such effective fuzzy 
controllers into large civil structures, a variety of the 
fuzzy control design frameworks have been proposed 
for hazard mitigation of structures, including trial and 
error methods (Subramaniam et al., 1996; Battaini et 
al., 1998; Symans and Kelly, 1999; Loh et al., 2003; 
Battaini et al., 2004), linear quadratic Gaussian-based 
learning approach (Al-Dawod et al., 2004), adaptation 
(Zhou et al., 2003), sliding mode (Kim et al., 2004; Alli 
and Yakut, 2005), among others. However, it would be 
diffi cult for all of the aforementioned methods to design 
a fuzzy controller using incomplete and incoherent 
measurements from large complex structures. Another 
disadvantage of using fuzzy logic as a model is that 
it needs a time consuming optimization process of 
the parameters; i.e., the optimization process can be 
complex and computationally intensive, leading itself to 
the inclusion of intelligent programming schemes such 
as GA and NN.

The use of a NN is to develop a learning mechanism 
that emulates that of the human brain, such that it 
creates a network of interlinked nodes. These nodes, 
being connected, compute an output from the input to 
the node, and create a series of links between all nodes. 
As previously mentioned, the use of a fuzzy inference 
system can be complex and diffi cult in computations. 
Using a NN in combination with a fuzzy inference system 
can create a model that is more effi cient. The NN adjusts 
parameters throughout the entirety of computation. 
The regulated parameters improve performances and 
decreases errors of the system. It is able to learn patterns 
and make adjustments as needed to further create a more 
improved model because it emulates the human brain 
and its cognitive mechanism. Faravelli and Yao (1996) 
and Faravelli and Rossi (2002) used NN to train fuzzy 

controllers for vibration control of a three-story building 
subject to earthquakes. Schurter and Roschke (2001) 
applied NN to optimal design of fuzzy logic-based 
controllers for seismic response control of a single story 
and four-story buildings. Tani et al. (1998) designed an 
active mass damper for vibration mitigation of a fi ve-
story building under earthquake inputs. The training 
effectiveness of NN has also been experimentally 
demonstrated using a fi ve-story ½-scaled steel frame 
structure (Hung et al., 2003). Ning et al. (2009) designed 
a fuzzy sliding mode controller for a seismically excited 
highway bridge. Ozbulut and Hurlebaus (2011) designed 
superelastic-friction base isolators using NN for seismic 
response control of highway bridges under earthquake 
loads. Mitchell et al. (2012) proposed the use of NN for 
optimal operation of a high-rise building equipped with 
an active tuned mass damper using a fuzzy controller. 
They also used discrete wavelet transform to fi lter 
unwanted data from original measurements to be used 
for training and validating the fuzzy controller. 

As another optimization scheme, GA has been 
adopted from structural engineers for hazard mitigation 
of large civil structures under earthquakes and/or strong 
wind loads. Ahlawat and Ramaswamy (2000; 2002; 2004) 
optimized the parameters of a fuzzy driven damping 
system using GA for buildings under earthquakes and 
wind loads. Wang and Lee (2002) designed a fuzzy 
sliding mode controller using GA for seismically excited 
buildings. Yan and Zhou (2006) proposed the use of 
GA for optimal design of fuzzy controllers for seismic 
response controls of buildings. Kim and Roschke (2006) 
used GA to design fuzzy logic controller for base isolated 
buildings subject to earthquake inputs. However, there 
is no study on the application of an advanced GA, an 
implicit redundant representation (IRR) GA (Cha and 
Agrawal, 2013) to the optimal adjustment of active fuzzy 
control forces for vibration control of highway bridge 
structures equipped with multiple active actuators. 

However, due to the complexities of training the 
fuzzy controller using NNs and GAs, computation 
times can become excessive. Therefore, WT is used in 
conjunction with the combined fuzzy logic controller, 
GA-based DOFPC, and NNs to compress input data and 
decrease computation times. WTs, combined with the 
genetic   neuro-fuzzy (GNF) model, leads to a wavelet-
based GNF model (WGNF). The WT can be used to 
fi lter out high or low frequency components from a time 
series. The WT improves upon previous methods due to 
its ability to incorporate an adjustable window function. 
It allows a user to analyze particular data points in a 
time series, rather than the entire time window, which is 
the case in Fourier transforms. Fast Fourier transforms 
(FFT) have been previously used for structural health 
monitoring and vibration controls, but require a fi xed 
time-window for the entire data set (Gurley and Kareem, 
1999). This limitation of the FFT can induce diffi culty 
when analyzing data for long periods of time, as in the 
case in structural health monitoring, and can lead to 
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missing key components, such as a particular damage 
point. The WT allows for an adjustable window, and 
therefore being able to look into any portion of a time 
series. WTs can also be used as a means of fi ltering, which 
is critical in the use of the WGNF model. As previously 
mentioned, the GNF system requires high computation 
times due to the stochastic learning mechanism of the 
GAs and NNs. Being able to decrease the amount of data 
points while still maintaining the important components 
allows for a reduced computational cost. The proposed 
model uses two levels of discrete WTs for compressing 
input data. 

As previously mentioned, fuzzy logic controllers and 
neuro-fuzzy controllers have been widely researched. 
However, these controllers need extensive computation 
times to achieve adequate performances. Therefore, the 
creation of the new WGNF system provides for decreased 
computation times while maintaining the performance. 
However, no integrated approach for fuzzy logic, neural 
network, wavelet transform and genetic algorithm has 
been proposed for full-scale highway bridges under a 
variety of earthquake loads such that a fuzzy controller 
is optimally designed while the computational load is 
minimized. Thus, the creation of the WGNF system for 
means of structural control is innovative in its application 
to control systems for mitigation of structural responses 
of large civil engineering structures. This proposed 
control algorithm also requires less feedback information 
while decreasing the structural responses from other 
control systems from the structure in comparison to full 
state feedback controllers. 

The organization of this paper is as follows: the 
WGNF algorithm is discussed in Section 2. Section 
3 explains the highway bridge fi nite element model, 
followed by the simulation results. Concluding remark 
is given in Section 4. 

2   Wavelet-fi ltered genetic neural fuzzy model 
     (WGNF) 

The WGNF is an integration model of the WT, GA-
based DOFPC, NN, and fuzzy system. A least squares 
estimator and NN are used to train the membership 
function (MF) and the associated consequent parameters 
of a fuzzy model, respectively. The GA and wavelet are 
used to optimize the control forces and fi lter undesirable 
signals, respectively. 

2.1 Takagi-Sugeno fuzzy model

The fuzzy modeling framework used in the WGNF 
model is as follows (Takagi and Sugeno, 1985; Kim et 
al., 2009a). 
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the consequent parameters of the fuzzy controller. 
Therefore, it is proposed to use NNs for effective 
optimization of the fuzzy control parameters.

2.2   Neural-fuzzy model

The confi guration of a neuro-fuzzy model is shown 
in Fig. 1. The node in the 1st layer is determined as 

 ,

1,
FZ FZi j

j i
PF u

                                
(3)

where, 

   
,

2 2
FZ 1 2exp 2

i j

i
P u u a a                       

(4)

where 1a  and 2a  are the user defi ned parameters. The 
node in the 2nd layer is calculated by 
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The 3rd layer normalizes the 2nd layer outputs
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The 4th layer integrates the consequent equation 
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with the normalized 3rd layer. 
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Then the system output is calculated using the 
following last layer. 
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In this algorithm, the number of iterations and the 
type and number of MF need to be optimized (Jang, 
1993; Yang and Lin, 2005). However, the neuro-fuzzy 
model requires a set of optimal control force signals. 
Such optimal signals are generated using an advanced 
GA-based DOFPC system. 

2.3   Advanced genetic algorithms 

The optimal signals obtained from the DOFPC are 
used for training the WGNF control systems. The output 
of the DOFPC is expressed as (Cha and Agrawal, 2013).

 2 3 2 3
0 1 2 3 0 1 2 3( ) ( )v e e x e x e x g g x g x g x           

 (9)

where x and x are the drift and velocity, respectively.  
0 1 2 3 0 1 2 3,  ,  ,  ,  ,  ,  ,  and e e e e g g g g  can be optimally 

determined. The optimal parameters of the DOFPC are 
determined using an IRR GA (Raich and Ghaboussi, 
2000) with advanced search ability and a powerful 
dynamic encoding policy, and SGA (Goldberg, 1989). 
The gene locators (GL) and redundant segments in 
binary string allow the fl exibility of the IRR, as shown 
in Fig. 2. 

In order to indicate the starting binary of a gene 
instance, the GL is used. The gene instance has encoded 
information of design variables, and redundant segments 
have non-encoded information for current generation, 
but they can be used as encoded gene instances in later 
generations by genetic operators. The procedure of the 
optimization is as follows

Step (1): Random generation of the initial population 
to provide the two polynomial equations with initial 
coeffi cients. 

Step (2): Response quantities of the structure are 
calculated by carrying out control analyses using the 
initial parameters. 

Step (3): Selections of well-adapted individual 
strings using binary tournament selection scheme. 

Step (4): New population as candidate solutions of 
the next generation is generated through crossover and 
mutation operator. 

Step (5): The convergence of the objective function 
or the predefi ned maximum number of populations is 
checked.

If the evaluation criteria are satisfi ed, the algorithm 
stops.  Otherwise, it goes back to Step (2). In order 
to search near optimal controller parameters, three 
different objective functions which were used at Step 
(3) in optimization procedure in previous paragraph are 
defi ned as peak base shear force ( 1C ), peak overturning 
moments ( 2C ), and the midspan peak displacement 
( 3C ) as shown in Table 1. The optimization objective 
function C  is formulated as 

1 2 3max( ) max( ) max( )C C C C              (10)

where the maximum value to all the earthquake responses 
is used as each criteria. However, the optimization of the 
GNF controller is computationally expensive. Hence the 
number of input and output data points is compressed by 
using discrete WTs. 

2.4   Wavelet transform

 A discrete wavelet transform (DWT) can be 
described (Thuillard, 2001)
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where l, s, and φ  are the location, scale, and mother 

function, respectively. The original signal, ( )x n , is 
recalculated from 
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To decompose the signals into both low and high 
frequency components, multi fi lter bank theory can be 
used (Taha et al., 2004). It not only fi lters undesirable 
signals from the original data, but also reduces the total 
number of data points. To implement the multi fi lter 
bank system, the scaling and wavelet functions are used

 2
, : 2 2s s
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(13)

 2
, : 2 2s s

l s t l  
                   

(14)

Figure 3 shows an example of such a decomposition 
process. The DWT-applied data sets are used for training 
the GNF control system. 

Gene locator (GL)
Redundant segment values

Encoded parameter values
Index Any variable Flag

Fig. 2   IRR GA representation
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2.5   Wavelet-based GNF controller

The DWT is effective in removing undesirable noises 
from the original signals. Daubechie wavelet-based 
fi ltered data are used as input signals to the GNF model. 
The confi guration of the WGNF controller is shown in 
Fig. 4.  The WGNF controller optimally determines the 
control force of an actuator within a highway bridge. 
Both acceleration and displacement responses are used as 
input signals of the GNF controller. To assess the control 
performance, extensive simulations were performed on 
a highway bridge under a variety of earthquake loads.

3   Example

The WGNF control system is tested on a benchmark 
highway bridge (Agrawal et al., 2009) equipped with 
sixteen active control actuators. The performances 
of the proposed WGNF system are compared with 
a benchmark controller to show its effectiveness in 
improving structural performance.

 3.1  Highway bridge

A benchmark bridge fi nite element model was 
developed based on an existing structure located at the 
crossing of the 91 and 5 highways in Orange County of 
California (Agrawal et al., 2009). A prestressed concrete 
box-girder is used with continuous two spans of 58.5 m. 
The deck has a width of 12.95 m and 15 m for the east 
and west spans, respectively. The bridge carries four 
lanes of traffi c on the top columns of 6.9 m in height. 
The location of the bridge is within 20 km of two faults, 
the Whittier-Ellsinore and Newport-Inglewood fault 
zones, showing a great need for structural control due 
to its susceptibility to seismic events. Figure 5 shows 
the bridge schematic. By assuming a bilinear stress-
strain relationship, the bridge pier model was developed 
such that it behaves linearly until the fi rst yielding point 
develops. It is also assumed that the bridge model has bi-
directional seismic behaviors. In order to investigate the 
performance of the proposed controller, six earthquake 
ground motions are used, including North Palm Springs 
(1986), TCU084 component of Chi-Chi earthquake, 
Taiwan (1999), El Centro component of Imperial Valley 
earthquake (1940), Rinaldi component of Northridge 
earthquake (1994), Bolu component of Duzce, Turkey 

 Table 1   Evaluation indices

Criteria Formulation Variables
Peak base shear force  i = 1, 2, for x and y directions, respectively.

b̂ ( )iF t  is the ith case base shear in the  controlled structure,  
and max

0bF̂  is the maximum of the base shears in x and y 
directions, respectively.

Peak overturning moments  i = 1, 2, for x and y directions, respectively.
b ( )iM t  is the overturning moment in the controlled 

structure for the ith case, and max
0bM  is the maximum of the 

overturning moments in both directions in the uncontrolled 
structure, respectively.

Peak displacement at the midspan
mˆ ( )iy t is the displacement at the midspan of the controlled 

structure for the ith case, and max
0bŷ  is the maximum 

of the midspan displacement in both directions in the 
uncontrolled structure, respectively.
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earthquake (1999), and Nishi-Akashi component of 
Kobe earthquake (1995). These earthquakes are all near-
fi eld earthquakes with soil-types from A to D based on 
NEHRP classifi cation. 

3.2   Control system design

Many simulations were performed to determine the 
best arrangement of control forces. It was determined 
that the computation of only two control forces are 
needed to calculate. This bridge is equipped with sixteen 
actuators in each x- and y-directions. The WGNF model 
was trained using the control signals of the DOFPC 
employing GA (Cha and Agrawal, 2013). It is assumed 
that the measurement noise is a zero mean Gaussian 
white noise with the signal to noise ratio of 10%. Four 
Gaussian membership functions are used for constructing 
the fuzzy sets. The total iteration of 30 was conducted. 
The training time for modeling the fuzzy controller 
results in 1368 s (i.e., 22.8 min). Figure 6 shows the 
initial (before training) and fi nal MFs (after training). As 
a benchmark control strategy, linear quadratic Gaussian 
(LQG) controller was considered. LQG control is an 
integration of linear quadratic regular, which is a full 
state feedback controller and Kalman estimator, which is 
able to reduce states to obtain comparable performance 
without needing full state feedback. 

As a means of validation and comparison, several 
evaluation indices are used. These indices compare 
structural responses and control outputs of the proposed 
WGNF system with those of the uncontrolled structure, 
showing how much each index is reduced. These indices 
are presented in Table 2 (Agrawal et al., 2009)  

   The  b̂iF t  is the shear force at the ith degree 
of freedom of the controlled structure, 0b,maxF̂  is the 
uncontrolled maximum shear force,  b

ˆ
iM t  is the 

overturning moment, 0b,maxM̂  is the uncontrolled 
maximum overturning moment,  mˆ iy t  is the midspan 
displacement, 0m,maxŷ is the uncontrolled maximum 
midspan displacement,  mˆ iy t

 
is the midspan 

acceleration, 0m,maxŷ  is the uncontrolled maximum 
acceleration,  bˆ iy t

 
is the abutment displacement, 0b,maxŷ  is the uncontrolled maximum abutment displacement, 

 î t  is the ductility, max̂  is the uncontrolled maximum 
ductility, ˆd iE  is the dissipated energy of curvature at the 
column, maxÊ is the uncontrolled maximum dissipated 
energy of the curvature at the column, c,dN̂  is the 
number of plastic connections of the control system, dN̂  
is the number of plastic connections of the uncontrolled 
system,  is the absolute value,  is the  normalized 
value,  l̂f t is the control force, Ŵ is the seismic weight 
of the system,  ˆ

ld t is the device stroke, 0m,maxx̂  is the 
uncontrolled maximum bearing deformation,  l̂P t is 
the instantaneous power required for the control device,  

0m,maxx̂  is the uncontrolled maximum velocity of bearing, 
and  c,kx̂  is the state.

Table 3 shows the simulation results of the proposed 
WGNF control systems compared to another active 
control system.  In Table 3, the evaluation results that 
are best performed values are highlighted in bold. Using 
these 21 evaluation indices, it is shown that the proposed 
WGNF controller’s performances are quite superior to 
those of the benchmark LQG control algorithm for all 
the El-Centro, Kobe, North Palm Springs, Turkey Bolu 
and Rinadi earthquakes. 

Note that the same number of control devices (J19) 
is used for implementing both the WGNF and LQG 
controllers. It is clear from Table 3 that the maximum 
peak responses of the WGNF control system are quite 
competitive with those for the LQG. In particular, the 
peak evaluation criteria J2, J3, J5–J11, and J13, J14, J16 and 
J18 are signifi cantly reduced during most of the ground 
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motions: the maximum of peak midspan displacement 
(J3), peak bearing deformation (J5), peak ductility 
(J6), peak displacement energy (J7) are decreased by 
approximately 6%, 15%, 6%, and 59%, respectively, 
over those by the LQG controller, although maximum 
midspan acceleration performance (J4) of the LQG 
controller is better than the proposed WGNF controller. 
It should be noted that structural displacement responses 
are directly related to safety of the bridge structures. 
Moreover, the maximum of the normed base shear (J9), 
normed overturning moment (J10), normed midspan 
displacement (J11),  normed bearing deformation (J13), 
normed ductility (J14), and peak stroke (J16) are reduced 
by approximately 5%, 7%, 4%, 21%, 15%, and 14% , 
respectively, compared to the LQG controller.

In summary, the WGNF is equal to or better, than the 
LQG in 15 of 21 evaluation indices for average values 
for all the six earthquake simulation cases. The WGNF 
is also equal to or better, than the LQG in 16 of 21 
evaluation indices for maximum responses. In particular, 
the WGNF is more effective than the LQG in reducing 
displacement responses, which is directly related to 
structural safety. Furthermore, it needs to be noted that 
the WGNF controller uses only 4 sensors while the LQG 
needs 12 sensors to implement the controllers (see J20). 
Plus, the WGNF needs 20 states to implement the fuzzy 
controller into the bridge model while 28 states are 
required for the LQG, which means that the WGNF uses 
less computational resources than the LQG.

4   Conclusions

This paper develops a wavelet-fi ltered genetic neuro-
fuzzy system (WGNF) as a means for vibration controls 
of highway bridges excited by various earthquake loads. 
The proposed WGNF system combines aspects of 
discrete wavelet transforms, genetic algorithm, neural 
networks, and fuzzy logic theory. The WGNF system is 
trained using an artifi cial earthquake, which combines 
the characteristics of various earthquake accelerations. 
To evaluate the control performance of the WGNF 
controller, a full-scale highway bridge benchmark control 
structure is investigated. The highway bridge benchmark 
control models considers bi-directional ground motions 
and uses bi-linear bridge pier model. It is shown from 
the simulation results that the WGNF system effectively 
mitigates structural responses of the highway bridge 
equipped with sixteen hydraulic actuators. The WGNF 
system reduces the power consumption, control force 
magnitude, and the required number of sensors installed 
on the highway bridge. The WGNF system also greatly 
reduces computation time of control forces in comparison 
with other control algorithms. The comparison based 
on 21 evaluation criteria with six historical ground 
motions classifi ed as near-fi eld earthquakes shows that 
the proposed controller is more effective to reduce the 
key damage indices such as peak displacement, which 

are directly related to the bridge collapse. Moreover, 
the WGNF control system uses less number of sensors 
compared to traditional LQG control system. It should be 
noted that the proposed control system is more reliable 
in real application based on using reduced number of 
sensors. 
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List of acronyms

Acronym Interpretation 
WGNF Wavelet-fi ltered genetic-neuro-fuzzy
WT Wavelet transform

GA Genetic algorithm
DOFPC Output feedback polynomial controls
TS Takagi-Sugeno
NN Neural network
IRR Implicit redundant representation
GNF Genetic neuro-fuzzy
FFT Fast Fourier transform
MF Membership functions
CWT Continuous wavelet transform
MRA Multi-resolution analysis
LQG Linear quadratic Gaussian 
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