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Abstract: The present study is aimed to investigate the ability of different intensity measures (IMs), including response 
spectral acceleration at the fundamental period of the structure, Sa(T1), as a common scalar IM and twelve vector-valued 
IMs for seismic collapse assessment of structures. The vector-valued IMs consist of two components, with Sa(T1)  as the fi rst 
component and different parameters that are ratios of scalar IMs, as well as the spectral shape proxies εSa and Np, as the second 
component. After investigating the properties of an optimal IM, a new vector-valued IM that includes the ratio of  Sa(T1) to 
the displacement spectrum intensity (DSI) as the second component is proposed. The new IM is more effi cient than other IMs 
for predicting the collapse capacity of structures. It is also suffi cient with respect to magnitude, source-to-site distance, and 
scale factor for collapse capacity prediction of structures. To satisfy the predictability criterion, a ground motion prediction 
equation (GMPE) is determined for Sa(T1)/DSI  by using the existing GMPEs. Furthermore, an empirical equation is proposed 
for obtaining the correlation between the components of the proposed IM. The results of this study show that using the new 
vector-valued IM leads to a more reliable seismic collapse assessment of structures.
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 1   Introduction

Nonlinear dynamic analysis is one of the methods for 
evaluating the demands on structures under earthquake 
excitations. When using this method for seismic 
performance assessment, it is necessary to investigate 
the properties of ground motions that are strongly related 
to the structural response. A parameter that describes the 
strength of a ground motion and quantifi es its effect on 
structures is called intensity measure (IM). In seismic 
performance assessment of structures, IMs link the 
ground motion hazard with the structural response; 
therefore, using an appropriate IM plays an important 
role in the prediction of structural response or capacity. 
Studies continue to classify the existing IMs, and to 
propose new optimal IMs (e.g., Baker and Cornell, 2005; 
Bojórquez and Iervolino, 2010 and 2011; Bojórquez et al., 

2012; Tsantaki and Adam, 2013). In the performance-
based earthquake engineering (PBEE) framework, the 
properties of an optimal IM are as follows: effi ciency, 
that is, the ability of an IM to predict the response or 
capacity of a structure subjected to ground motion 
records with small dispersion; suffi ciency, which is 
the ability of an IM to render the structural response or 
capacity conditionally independent of ground motion 
characteristics other than the IM; scaling robustness, 
which represents suffi ciency with respect to scale factor 
when the records are linearly scaled to perform structural 
analyses; and predictability, that is, having a reliable 
ground motion prediction equation (GMPE) (Bradley 
et al., 2010). 

In the past, time-domain peak parameters, such as 
peak ground acceleration (PGA), peak ground velocity 
(PGV), and peak ground displacement (PGD), were 
common as scalar IMs. Currently, the elastic spectral 
acceleration at the fundamental period of the structure, 
Sa(T1), is the most common scalar IM. In recent 
researches on increasing the effi ciency and suffi ciency of 
IMs, vector-valued IMs have been proposed (e.g., Baker, 
2005; Vamvatsikos and Cornell, 2005; Bojórquez and 
Iervolino, 2011), which mostly include two parameters 
but may have more. The reason for the increased 
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effi ciency and suffi ciency of these IMs in comparison 
with scalar IMs is that a scalar IM represents a signifi cant 
simplifi cation of a ground motion. Vector-valued IMs 
contain more information about the ground motions; 
thus, their use may be more desirable for assessing 
the severity of a ground motion. Gehl et al. (2013) 
showed that some parameters that have little effect on 
the structural response when considered alone as an 
IM can have better performance when combined with 
a second IM in a vector-valued IM. The most common 
vector-valued IMs include Sa(T1) as the fi rst component 
and spectral shape proxies, which imply the shape of 
the elastic response spectrum of a ground motion, as 
the second component. Two well-known spectral shape 
proxies are εSa (Baker, 2005; Baker and Cornell, 2005) 
and NP, as proposed by Bojórquez and Iervolino (2011). 

Severe earthquakes may cause the collapse of 
structures and therefore can result in considerable loss 
of life (e.g., Sezen et al., 2000; Wang, 2008). Collapse 
prevention of structures has been the most important 
objective of building codes since their establishment. 
In the past, due to lack of proper analytical tools, 
quantitative assessment of structural collapse risk was 
impractical. Nowadays, with advances in PBEE and 
analytical tools, quantitative assessment of collapse risk 
of structures is becoming increasingly attractive (Eads 
et al., 2013). Collapse capacity prediction of a structure 
is one of the key steps in assessing its collapse risk. 
For more information about the analytical methods that 
are currently available to assess the seismic collapse 
capacity of building structures, the reader is referred 
to the comprehensive literature review carried out by 
Villaverde (2007). 

The present study is aimed to investigate the effi ciency 
and suffi ciency of vector-valued IMs for collapse 
capacity prediction of structures. The idea of adding 
the ratio of two scalar IMs as the second component 
to Sa(T1) is applied to develop new vector-valued IMs. 
Additionally, the vectors (Sa(T1), εSa) and  (Sa(T1), NP) are 
also considered as well-known vector-valued IMs. After 
investigating the desirable features of an optimal IM 
described above, an optimal vector-valued IM, (Sa(T1),  
Sa(T1)/DSI), is proposed for seismic collapse assessment 
of structures. Displacement spectrum intensity (DSI) 
is a scalar IM that captures the severity of the long-
period content of ground motions (Bradley, 2011a). 
To satisfy the predictability criterion for the proposed 
vector-valued IM, a GMPE is determined for its second 
component by using the existing GMPEs. Furthermore, 
the probabilistic characterization of a ground motion 
with the use of vector-valued IMs must account for the 
fact that the individual components of a vector-valued 
IM may be correlated. Therefore, to be able to use the 
new IM in vector-valued probabilistic seismic hazard 
analysis (VPSHA) (Bazzurro and Cornell, 2002), an 
empirical equation is proposed for calculating the 
correlation between its components.

2   Intensity measures

2.1 Well-known vector-valued intensity measures

Recently, some advanced vector-valued IMs 
have been proposed to overcome the shortcomings of 
traditional IMs. Baker (2005) proposed the epsilon 
value of a ground motion at the fundamental period 
of the structure (εSa) as a spectral shape indicator. The 
parameter εSa is defi ned as:
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where ln Sa(T1) is the natural logarithm of Sa(T1) in 
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predicted mean and standard deviation of ln Sa(T1), 
respectively. Thus, the parameter εSa is the number of 
standard deviations by which the observed ln Sa(T1) 
differs from the predicted mean. Baker (2005) found that 
the response of a structure to an earthquake is correlated 
with εSa, and the collapse capacity of the structure 
increases with increasing εSa of ground motion records 
used for collapse simulations. Other researchers (e.g., 
Haselton and Baker, 2006; Zareian, 2006; Goulet et al., 
2007; Haselton et al., 2011) also investigated the effect 
of εSa on the collapse capacity of structures. Due to the 
key effect of εSa on the dynamic response of structures, 
Baker and Cornell (2005) proposed (Sa(T1), εSa) as a 
vector-valued IM; thus, the effect of εSa on the structural 
response can be accounted for by using this IM. 

Another advanced vector-valued IM is (Sa(T1), NP), 
which was proposed by Bojórquez and Iervolino (2011) 
as a spectral-shape-based IM. The parameter NP is 
defi ned as:
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where Saavg

 (T1...TN) is the geometric mean of spectral 
accelerations over the period range of T1–TN (TN = 2T1). 
In fact, NP is the average (geometric mean) of spectral 
accelerations over the specifi ed period range normalized 
by Sa(T1). Based on the results of the study performed 
by Bojórquez and Iervolino (2011), the vector (Sa(T1), 
NP) is more effi cient than (Sa(T1), εSa) for predicting the 
nonlinear response of structures.

2.2 Considered intensity measures

In this study, in addition to Sa(T1) as a common scalar 
IM and the well-known vector-valued IMs mentioned in 
Section 2.1, ten other vector-valued IMs are considered. 
These IMs include two components, with Sa(T1) as the 
fi rst component (IM1) and the ratios of different scalar 
IMs as the second component (IM2). The scalar IMs that 
their ratios were used as the second component of the ten 
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Table 1  Scalar and vector-valued IMs considered in this study
Considered IMs

Defi nition Developer Indicator of
 IM No. IM Type

1 Sa(T1) Scalar Bradley (2011a) Long-period severity 
2 (Sa(T1), Sa(T1)/DSI) Vector
3 (Sa(T1), Sa(T1)/SI) Vector Housner (1952, 1963) Moderate-period severity
4 (Sa(T1), Sa(T1)/ASI) Vector

5 (Sa(T1), NP) Vector Von Thun et al. (1988) Short-period severity
6 (Sa(T1), εSa) Vector
7 (Sa(T1), Sa(T1)/PGA) Vector Arias (1970) Energy content
8 (Sa(T1), Sa(T1)/PGV) Vector
9 (Sa(T1), Sa(T1)/PGD) Vector Baker (2005) Spectral shape
10 (Sa(T1), PGA/PGV) Vector
11 (Sa(T1), PGA/PGD) Vector

  

Bojórquez and 
Iervolino (2011)

Spectral shape
12 (Sa(T1), PGV/PGD) Vector
13 (Sa(T1), Sa(T1)

2/AI) Vector

Sd(T,5%), Sv(T,5%), and Sa(T,5%) are the 5% damped displacement, pseudo-velocity, and pseudo-acceleration response spectra, 
respectively. a(t) is the amplitude of the acceleration at time t and tmax is the total duration of the ground motion record. 

vector-valued IMs are as follows: Sa(T1), displacement 
spectrum intensity (DSI), spectrum intensity (SI), 
acceleration spectrum intensity (ASI), the peak IMs (i.e., 
PGA, PGV, and PGD), and Arias intensity (AI).

DSI, SI, and ASI are the integrals of the 5% damped 
displacement, pseudo-velocity, and pseudo-acceleration 
response spectra, over the period ranges presented in 
Table 1, respectively. These integral-based IMs, that 
is, DSI, SI, and ASI, indicate the severity of the long-, 
moderate-, and short-period content of ground motions, 
respectively. Therefore, they can be used as proxies 
for long-, moderate-, and short-period ground motion 
amplitudes. AI is an instrumental IM that can incorporate 
the cumulative effects of ground motion duration and 
intensity on the structural response. In fact, it represents 
the energy content of ground motions. Table 1 presents a 
summary of the defi nitions of AI and the aforementioned 
integral-based IMs.

GMPEs for DSI, SI, and ASI can be obtained from 
the GMPEs for spectral acceleration (Bradley et al., 2009b; 
Bradley, 2010a, 2011a). Additionally, the technical 
literature includes some GMPEs for predicting AI (e.g., 
Campbell and Bozorgnia, 2012). Therefore, in choosing 
these IMs, their predictability was considered. Table 1 
shows the vector-valued IMs considered in this study; 
it should be noted that all of these vector-valued IMs 
have unscalable IM2 parameters. For instance, in the 
vector (Sa(T1), Sa(T1)

2/AI), the term Sa(T1)
2 was used 

as the numerator of the second component to make it 
unscalable.

3   The structures, ground motions, and method 
    used for analyses

To investigate the ability of the considered IMs 

for seismic collapse assessment of structures, fi ve 
reinforced concrete special moment resisting frames 
designed by Haselton and Deierlein (2008) were used. 
Table 2 presents the design ID numbers and fundamental 
periods of the structures. As mentioned by Haselton 
and Deierlein (2008), the fundamental periods of these 
structures are higher than some may expect, especially 
for low-rise buildings. This partially comes from the 
element stiffness model (Haselton et al., 2008), which 
includes the effects of cracking, shear deformations, 
and bond-slip; this model is calibrated to represent the 
secant stiffness of an element at 40% of yielding. These 
longer periods also partially come from the fact that 
the stiffness of nonstructural components is neglected. 
The structural models were created with the OpenSees 
software (2006).

To analyze the structures, 67 ground motion records 
with a minimum usable frequency less than 0.2 Hz were 
extracted from the ground motion set used by Haselton 
and Deierlein (2008), which contains 78 ground motion 
records. The selected ground motion set consists of strong 
motions that may cause the structural collapse of modern 
buildings. The ground motion records were taken from 
the PEER NGA database (2008). The Campbell and 
Bozorgnia (2007) GMPE was used for the calculation 
of εSa values. This GMPE was developed as part of 
the Next Generation Attenuation of Ground Motions 
(NGA) project. The NGA models are considerably more 
complicated than previous GMPEs and require several 
more input parameters. The framework proposed by 
Kaklamanos et al. (2011) was applied for estimating the 
unknown parameters required for the GMPE.

One of the methods for seismic performance 
assessment of structures by using a vector-valued IM, 
(IM1, IM2), is to perform incremental dynamic analysis 

5

2
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(IDA) (Vamvatsikos and Cornell, 2002). The IDA curves 
of the structural response show the engineering demand 
parameter (EDP), considered to be the maximum 
interstory drift ratio, versus the IM1 level. To perform 
IDA, IM1 should be increased until the IM1 capacity 
(IM1Cap) associated with the target EDP level is reached 
for each ground motion record. Then, it is possible to 
determine the effects of IM2 on the distribution of IM1Cap 
values. IM2 can explain part of the variation of IM1Cap, 
thus, the probability of exceeding the IM1Cap associated 
with the target EDP level can be expressed in terms of 
a conditional distribution of IM1Cap given IM2 (Baker, 
2005). Assuming the conditional distribution of ln IM1Cap 
to be linearly dependent on ln IM2 (ln represents the 
natural logarithm), Eq. (3) can be used to fi nd the 
conditional mean of ln IM1Cap given IM2.

1Cap 2 2 0 1 2ln IM IM im ln IM    
               

(3)
                                                                                                                                              

                                         where 0  and 1  are coeffi cients to be estimated from 
linear regression. Note that when εSa is used as IM2, the 
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conditional standard deviation of ln IM1Cap given IM2 
(
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deviation of the regression residuals as follows:
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                                                                                                                  where ln IM1Capi
 is the natural logarithm of the  

IM1Capvalue obtained for the ground motion record i, and
ln IM1Capi

is the conditional mean of ln IM1Cap given IM2 
that can be obtained by Eq. (3) for each ground motion 
record. 

In this study, the collapse of structures was 
considered as the target EDP level, and Sa(T1) was used 
as IM1 for the scaling of records. Therefore, the collapse 
capacity (Sacol

) is identical to the IM1Cap 
associated 

with collapse. To obtain the collapse capacities of the 
structures, IDAs were performed by using the selected 
ground motion set. The amplitude of each record in the 
set, Sa(T1), was scaled to an increasing intensity until 
it causes collapse. Collapse was assumed to take place 
when dynamic instability occurs and the IDA curve 

becomes fl at (Villaverde, 2007). Thus, the collapse 
capacity corresponding to each ground motion record 
(Sacol

) was obtained. In the IDA approach, the hunt and 
fi ll algorithm (Vamvatsikos and Cornell, 2002) was used 
to obtain the collapse capacities corresponding to all of 
the ground motion records. Figure 1 presents the results 
of the IDAs for the 12-story structure. 

To validate the linear relation assumed in Eq. (3), the 
p-values from the F-test (Ang and Tang, 1975) for the 
regression coeffi cient ( 1 ) were calculated considering 
all of the IM2 parameters presented in Table 1. The 
results indicated that all of the p-values were less than 
0.05, which implies the statistical signifi cance of 1  and 
confi rms the validity of this assumption (e.g., see the 
p-values for different IM2 parameters presented in Fig. 2).

According to Baker (2005), the method described in 
this section, which is recognized as the capacity method, 
and other methods (e.g., stripe and cloud methods) can 
be used for seismic collapse assessment of structures; 
he found that the stripe and capacity methods produced 
approximately equivalent results. As pointed out by 
Baker (2005) and Rajeev et al. (2008), the capacity 
method requires reduced computational effort compared 
with the stripe method and avoids the need to treat 
separately the records that cause collapse. 

4 Effi ciency of the IMs for collapse capacity 
    prediction

When using a scalar IM to estimate the IM capacity 
values by the IDA approach, the observed capacity 
dispersion is closely connected to the IM used (e.g., 
PGA or Sa(T1)). A scalar IM is more effi cient for 
IM capacity (e.g., collapse capacity) prediction if it 
indicates lower dispersion of the IM capacity values 
(Vamvatsikos and Cornell, 2005; Tothong and Luco, 
2007; Iervolino and Manfredi, 2008). Therefore, it can 
be inferred that when using a vector-valued IM for 
collapse capacity prediction, the effi ciency of the vector-
valued IM is gauged by the degree of scatter about the 
regression in Eq. (3). The scatter about the regression 

Table 2   Design ID numbers and fundamental periods of the 
                structures

Number of stories Design ID Fundamental period (s)

2 2064 0.66
4 1003 1.12
8 1011 1.71
12 1013 2.01
20 1021 2.36
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Fig. 1   IDA curves obtained for the 12-story structure

IDA curve
Collapse point
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fi t can be quantifi ed by using Eq. (4). In other words, a 
vector-valued IM, which includes Sa(T1) as IM1, is more 
effi cient for collapse capacity prediction, if it causes a 
lower conditional standard deviation of  ln Sacol (σ ln Sacol|IM2

). 
Having a low scatter about the regression (of ln Sacol

 
on ln IM2) fi t means that ln Sacol

 and ln IM2 are highly 
correlated. Therefore, the size of correlation can be an 
index of the effi ciency of a vector-valued IM for collapse 
capacity prediction. The correlation coeffi cient between 
two random variables, the natural logarithm of the 
structural collapse capacity (ln Sacol

) and ln IM2 can be 

calculated as follows:

col

col 2

2

ln ln IM

cov(ln , ln IM )a

Sa

S


 


                    
(5)

where cov()  represents the covariance between two 
random variables; σ ln Sacol

 and σ ln IM2
 and are the standard 

deviations of ln Sacol
 and ln IM2, respectively.

Figure 2 shows the correlation between ln Sacol
 and  

ln IM2 considering different IM2 parameters for the 
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4-story structure. As shown in this fi gure, using the ratio 
of two scalar IMs as the second component of a vector-
valued IM can result in more effi cient vector-valued IMs 
for predicting the structural collapse capacity, such as 
(Sa(T1), Sa(T1)/DSI), (Sa(T1), Sa(T1)/PGV), and (Sa(T1), 
Sa(T1)/PGD), in comparison with the well-known vector-
valued IMs (i.e., (Sa(T1), NP) and (Sa(T1), εSa)). Gehl et al. 
(2013) also mentioned that, to obtain an effi cient IM, the 
ratio of two scalar IMs can be used as a component in a 
vector-valued IM.

Table 3 presents the correlation coeffi cients between 
the values of ln Sacol

 obtained for the structures and the 
corresponding ln IM2  values of the vector-valued IMs. 
It should be noted that when εSa was used as IM2, the 
correlation coeffi cient was obtained between the values 
of ln Sacol

 and the corresponding εSa values. As shown in 
this table, Sa(T1)/DSI as IM2 has higher correlation with 
the collapse capacity of the structures when compared 
with the other IM2 parameters. According to the results, 
in addition to the vector (Sa(T1), Sa(T1)/DSI) that is the 
most effi cient IM, using the vector (Sa(T1), Sa(T1)/PGD) 
can also cause acceptable effi ciency for collapse capacity 
prediction of the structures. It should be noted that the 
effi ciency of (Sa(T1), NP) for collapse capacity prediction 
increases with increasing structural height. The results 
also indicate that using the vector (Sa(T1), Sa(T1)

2/AI), 
which accounts for the energy content of ground motion 
records, does not result in considerable effi ciency for 
collapse capacity prediction of the structures.

To compare the effi ciency of the vector-valued IMs 
graphically, the values of σ ln Sacol|IM2

 obtained for the 
structures, considering different vector-valued IMs, 
are presented in Figure 3. The values of σ ln Sacol

 are also 
presented in this fi gure to ease a good comparison. It 
can be seen that the minimum value of σ ln Sacol|IM2

 was 
achieved by using the vector (Sa(T1), Sa(T1)/DSI) for all 
of the structures. Consequently, the higher correlation 
coeffi cient for Sa(T1)/DSI represents a lower σ ln Sacol|IM2

 

and hence a more effi cient vector-valued IM for collapse 
capacity prediction.

The use of an effi cient vector-valued IM in seismic 
performance assessment of structures increases the 
reliability of the assessment. In other words, using an 
effi cient IM can considerably reduce the number of 
analyses required for the estimation of structural response 
or capacity with a given accuracy. By applying a vector-
valued IM that includes Sa(T1) as the fi rst component, 
the conditional standard deviation of ln Sacol

 (σ ln Sacol|IM2
) 

can be obtained. Then, the standard error of the collapse 
capacity associated with a sample of size ns can be 
expressed as:

2colln IM

s

SE
Sa

n




                            
(6)

According to Eq. (6), by applying a more effi cient 
IM, the sample size, ns, can be reduced while the 
standard error remains the same, which means that 
lower effort and computational expense are needed for 
collapse assessment. When using Sa(T1) as a scalar IM, 

Table 3   Correlation coeffi cients between the values of ln Sacol obtained for the structures and the corresponding  ln IM2 values

IM2 2-Story 4-Story 8-Story 12-Story 20-Story
Sa(T1)/DSI 0.895 0.918 0.882 0.862 0.857
Sa(T1)/SI 0.882 0.803 0.543 0.497 0.387

Sa(T1)/ASI 0.215 0.326 0.325 0.316 0.284
NP -0.691 -0.737 -0.778 -0.812 -0.837
εSa 0.547 0.551 0.630 0.632 0.606

Sa(T1)/PGA 0.271 0.379 0.344 0.334 0.285
Sa(T1)/PGV 0.793 0.810 0.772 0.772 0.646
Sa(T1)/PGD 0.776 0.775 0.816 0.846 0.823
PGA/PGV 0.452 0.291 0.278 0.330 0.225
PGA/PGD 0.605 0.443 0.431 0.442 0.423
PGV/PGD 0.588 0.464 0.457 0.430 0.488
Sa(T1)

2/AI 0.607 0.607 0.487 0.510 0.463

0.5
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Fig. 3   Values of σ ln Sacol | IM2  obtained for the structures con-
sidering different vector-valued IMs
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the term σ ln Sacol|IM2
 in Eq. (6) should be replaced with the 

standard deviation of ln Sacol
 (σln Sacol

).
As an example of the effect of IM effi ciency on 

increasing the reliability of the analyses, in the case of 
the 8-story structure, the use of Sa(T1) as a scalar IM led 
to a σ ln Sacol 

value of 0.454, whereas using the vectors 
(Sa(T1), NP) and (Sa(T1), Sa(T1)/DSI) led to σ ln Sacol|IM2 values of 0.287 and 0.216, respectively. Thus, according 
to Eq. (6), considering the same standard error, the 
number of required analyses can be decreased about 
4.4 times with the use of the vector (Sa(T1), Sa(T1)/DSI) 
instead of Sa(T1) . Also, by using the vector (Sa(T1), NP) 
instead of Sa(T1), the number of required analyses can be 
decreased about 2.5 times. According to Haselton et al. 
(2011) and Haselton and Deierlein (2008), the obtained 
logarithmic standard deviation of the collapse capacity 
(σ ln Sacol

) for the 8-story structure was equal to 0.45, which 
confi rms the value obtained in this study. 

In other performance levels, such as life safety, in 
which the response of the structure becomes moderately 
nonlinear, the effi ciency of IMs may vary. To investigate 
this issue, the IM1Cap values associated with the life 
safety target EDP level (Sals

) were obtained for all of the 
structures. The life safety target EDP level was defi ned 
as a maximum interstory drift ratio of 2% for reinforced 
concrete moment resisting frames (ASCE 41-06, 2007). 
Table 4 presents the results of the analyses carried 
out for the life safety performance level. As indicated 
in this table, NP , which has moderate effi ciency for 
collapse capacity prediction in comparison with the 
other IM2 parameters, is more effi cient than Sa(T1)/DSI 
for predicting Sals

 in most of the structures. Therefore, 
it can be inferred that in performance levels related to 
moderate levels of nonlinearity, such as life safety, the 
vector (Sa(T1), NP) may be more effi cient than (Sa(T1), 
Sa(T1)/DSI) for predicting the IM1Cap values. Actually, 
the effi ciency of an IM is dependent on the severity 
of the nonlinear response, and one IM that is the most 
effi cient in different performance levels cannot be found. 

Although the vector (Sa(T1), Sa(T1)/DSI) is not the most 
effi cient IM in the life safety performance level, it is the 
most effi cient one for collapse capacity prediction and 
has acceptable effi ciency in the life safety performance 
level.  

5   Suffi ciency of the IMs for collapse capacity 
     prediction

5.1 Suffi ciency with respect to magnitude and 
        source-to-site distance

A suffi cient IM produces the same distribution of 
demands and capacities independently of the ground 
motion selection (Vamvatsikos and Cornell, 2005; 
Tothong and Luco, 2007). The suffi ciency of a scalar 
IM for collapse capacity prediction means that the 
distribution of collapse capacity obtained by using the 
IM is independent of ground motion characteristics, 
such as earthquake magnitude (M) and source-to-
site distance (R). Because the distribution of collapse 
capacity is obtained from the results of a fi nite number 
of IDAs, suffi ciency is one of the important properties 
of an optimal IM. Thus, if this distribution is dependent 
on the M and R values of the ground motions used, then 
the distribution will be biased if the distribution of the 
M and R of the ground mot  ions used in the IDAs is not 
the same as that of the ground motions that will occur at 
the site in the future (Bradley et al., 2010). As pointed 
out by Bojórquez and Iervolino (2011), suffi ciency of 
an IM is important because a suffi cient IM can be used 
in probabilistic structural assessment decoupling the 
hazard and structural analysis.

To examine the suffi ciency of Sa(T1) as a scalar 
IM with respect to M and R for predicting the collapse 
capacity of structures, linear regression can be performed 
between these properties of ground motions and the 
observed collapse capacities from the IDAs by using the 

Table 4   Correlation coeffi cients between the values of ln Sals
 obtained for the structures and the corresponding ln IM2 values

IM2 2-Story 4-Story 8-Story 12-Story 20-Story
Sa(T1)/DSI 0.583 0.625 0.793 0.788 0.810
Sa(T1)/SI 0.800 0.833 0.557 0.512 0.335

Sa(T1)/ASI 0.216 0.386 0.312 0.287 0.241
NP -0.792 -0.757 -0.771 -0.799 -0.812
εSa 0.339 0.374 0.543 0.569 0.520

Sa(T1)/PGA 0.309 0.452 0.361 0.319 0.266
Sa(T1)/PGV 0.711 0.746 0.755 0.773 0.657
Sa(T1)/PGD 0.564 0.572 0.701 0.730 0.780
PGA/PGV 0.334 0.133 0.236 0.353 0.266
PGA/PGD 0.376 0.208 0.320 0.357 0.404
PGV/PGD 0.320 0.222 0.314 0.275 0.424
Sa(T1)

2/AI 0.4071 0.5241 0.4240 0.4562 0.3706
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following equation: 

ln 0 1colSa x                                   (7)

where μ ln Sacol
 is the expected value of  ln Sacol

; 0  and 1  
are coeffi cients to be estimated from linear regression; 
and x  is one of the parameters M or the natural 
logarithm of R (lnR). Because the linear regression is 
based on a fi nite number of observations, it is essential 
to use statistical tests to determine the signifi cance of 
the coeffi cient 1 . Assuming a Student-t distribution for 
the coeffi cient 1 , the F-test can be used to determine 
the statistical signifi cance of 1  (Ang and Tang, 1975). 
In general, a p-value less than 0.05 obtained from the 
F-test indicates that the slope of the linear regression ( 1 ) 
is a statistically signifi cant value, which represents the 
insuffi ciency of  Sa(T1) with respect to x . To examine the 
suffi ciency of the vector-valued IMs for collapse capacity 
prediction, the residuals of the collapse capacities, 
obtained considering the linear regression on the second 
component of each vector-valued IM (Eq. (3)), were 
used in Eq. (7) instead of the collapse capacities. Other 
researchers (e.g., Luco and Cornell, 2007; Baker and 
Cornell, 2008a; Tothong and Cornell, 2008; Bradley et 
al., 2009a) also applied structural response residuals to 
test the suffi ciency of different IMs.

Figure 4 shows the results of testing the suffi ciency 
of Sa(T1) as a scalar IM with respect to M and R for 
collapse capacity prediction of the 4-story structure. As 
shown in this fi gure, Sa(T1) is insuffi cient with respect 
to M because the p-value obtained from the F-test is 
less than 0.05, whereas it is suffi cient with respect to 
R because the corresponding p-value is greater than 
0.05. In other words, Sa(T1) is unable to fully account 
for the effect of magnitude and thus for reliable seismic 
collapse assessment of this structure by using Sa(T1) as 
a scalar IM, the magnitude of ground motions should 
be considered in the ground motion selection process. 
However, the source-to-site distance of ground motions 
does not need to be considered as a determining factor 

in ground motion selection. As an alternative, the use 
of a suffi cient IM with respect to M can eliminate the 
need to consider magnitude as an important criterion in 
the ground motion selection for seismic analyses. Table 
5 presents the results of investigating the suffi ciency 
of  Sa(T1) with respect to M and R for collapse capacity 
prediction of the structures. As shown in this table, 
Sa(T1) is insuffi cient with respect to M, whereas it is 
suffi cient with respect to R. The effect of magnitude may 
be accounted for by adding a proper parameter to Sa(T1) 
and developing a vector-valued IM. 

Figure 5 compares the suffi ciency of the vectors 
(Sa(T1), Sa(T1)/DSI) and (Sa(T1), NP) with respect to M 
for collapse capacity prediction of the 4-story structure. 
It can be seen that for predicting the collapse capacity 
of the 4-story structure, (Sa(T1), Sa(T1)/DSI) is suffi cient 
with respect to M, whereas (Sa(T1), NP) is insuffi cient. 
Table 6 presents the results of investigating the 
suffi ciency of the vector-valued IMs with respect to M 
for collapse capacity prediction of the structures. The 
results show that Sa(T1)/DSI as the second component of 
the vector (Sa(T1), Sa(T1)/DSI) is able to account for the 
effect of magnitude for collapse capacity prediction of 
the structures. The other IM2 parameters, except PGA/
PGD and PGV/PGD, are unable to account for the effect 
of magnitude for predicting the collapse capacity of 
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ρ = -0.32
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)
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 = -0.024 lnR + 0.328

p-value = 0.7565
ρ = -0.04

Fig. 4   Testing the suffi ciency of  Sa(T1) with respect to M and R for collapse capacity prediction of the 4-story structure: (a) M and (b) R

Table 5   P-values obtained from investigating the suffi ciency of  
     Sa(T1) with respect to magnitude, source-to-site 
     distance, and scale factor for collapse capacity 
       prediction of the structures (p-values > 0.05 are 
               marked in bold)

Structure
Suffi ciency with respect to

M R Scale factor

2-Story 0.045 0.607 0.001

4-Story 0.008 0.756 0.002

8-Story 0.003 0.787 0.001

12-Story 0.009 0.774 0.032

20-Story 0.005 0.635 0.013
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some or all of the structures. As an example, the vector 
(Sa(T1), Sa(T1)/PGD), which has acceptable effi ciency, 
is not suffi cient with respect to M when applied for the 
2-story structure. It should be noted that the vectors 
(Sa(T1), PGA/PGD) and (Sa(T1), PGV/PGD), which are 
suffi cient with respect to M, do not have considerable 
effi ciency for collapse capacity prediction. The results 
also indicate that the degree of suffi ciency of some of 
the vector-valued IMs with respect to M varies with the 
dynamic characteristics of the structures. For example, 
the vector (Sa(T1), NP) has lower suffi ciency for the 
low- to mid-rise structures in comparison with the taller 
structures. 

Another parameter with respect to which an optimal 
IM should be suffi cient is the source-to-site distance (R) 
of the ground motion. As shown in Fig. 4 and Table 5, 
Sa(T1) is suffi cient with respect to R for collapse capacity 
prediction of the structures. Hence, investigating the 
suffi ciency with respect to R is not necessary for vector-
valued IMs in which the fi rst component is Sa(T1). 

5.2  Suffi ciency with respect to scale factor

One of the desirable features of an optimal IM is 
scaling robustness, which represents suffi ciency with 
respect to scale factor. A number of researchers (e.g., 
Baker, 2005; Bradley et al., 2010) have recently studied 
the scaling robustness of different IMs. As described 
previously, to obtain the collapse capacities through the 
IDA approach, the records should be scaled to increasing 
Sa(T1) levels until the collapse occurs. Therefore, the 
suffi ciency of the considered IMs with respect to scale 
factor for collapse capacity prediction is an important 
issue because it removes the potential bias due to scaling 
in the prediction of structural collapse capacity. To 
investigate the suffi ciency of the IMs with respect to 
scale factor for collapse capacity prediction, the method 
described in Section 5.1 was applied by replacing the 
parameter x  in Eq. (7) with the natural logarithm of 
scale factor (lnSF). Figure 6 shows that Sa(T1) is not 
suffi cient with respect to scale factor for predicting 
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Fig. 5   Testing the suffi ciency of vector-valued IMs with respect to M for collapse capacity prediction of the 4-story structure: 
                  (a)  (Sa(T1),  Sa(T1) /DSI) and (b) (Sa(T1), Np)
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Table 6  P-values obtained from investigating the suffi ciency of the vector-valued IMs with respect to magnitude for collapse 
                capacity prediction of the structures (p-values > 0.05 are marked in bold)

 Vector-valued IM 2-Story 4-Story 8-Story 12-Story 20-Story
(Sa(T1), Sa(T1)/DSI) 0.108 0.696 0.859 0.981 0.864
(Sa(T1), Sa(T1)/SI) 0.008 0.000 0.000 0.000 0.000

(Sa(T1), Sa(T1)/ASI) 0.023 0.001 0.000 0.001 0.000
(Sa(T1), NP) 0.065 0.002 0.079 0.176 0.698
(Sa(T1), εSa) 0.015 0.006 0.004 0.007 0.005

(Sa(T1), Sa(T1)/PGA) 0.030 0.002 0.000 0.001 0.001
(Sa(T1), Sa(T1)/PGV) 0.703 0.207 0.014 0.002 0.002
(Sa(T1), Sa(T1)/PGD) 0.046 0.270 0.321 0.224 0.506
(Sa(T1), PGA/PGV) 0.458 0.064 0.025 0.092 0.029
(Sa(T1), PGA/PGD) 0.476 0.412 0.220 0.452 0.284
(Sa(T1), PGV/PGD) 0.501 0.492 0.281 0.445 0.453
(Sa(T1), Sa(T1)

2/AI) 0.015 0.000 0.000 0.000 0.000
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the collapse capacities of the 4- and 8-story structures, 
having p-values of less than 0.05. 

Table 5 presents the results of investigating the 
suffi ciency of Sa(T1) with respect to scale factor for 
collapse capacity prediction of the structures. The 
fi ndings show that Sa(T1) as a scalar IM is not suffi cient 
with respect to scale factor. Table 7 presents the results 
of investigating the suffi ciency of the vector-valued 
IMs with respect to scale factor for collapse capacity 
prediction of the structures. As shown in this table, 
the vector (Sa(T1), Sa(T1)/DSI) is suffi cient with respect 
to scale factor for collapse capacity prediction of the 
structures; the vector (Sa(T1), NP) is not suffi cient with 
respect to scale factor for predicting the collapse capacity 
of the 2-story structure, but it is suffi cient for the taller 
structures. Furthermore, the vector (Sa(T1), Sa(T1)/PGD), 
which is not suffi cient with respect to scale factor for 
collapse capacity prediction of the low-rise structures, is 
suffi cient for the mid- to high-rise structures. 

6  Predicting the probability of collapse 
        through logistic regression

Logistic regression (Kutner et al., 2005) is a 
commonly used tool for analyzing binary data (e.g., 
collapse/non-collapse). Given a specifi c value for the 
fi rst component of a vector-valued IM (IM1), logistic 
regression can be used to predict the probability of 
collapse as a function of IM2. In this procedure, the 
records are scaled to a specifi c level of IM1, and the 
response of the structure (e.g., maximum interstory drift 
ratio) is divided into two groups of collapse and non-
collapse responses. Then, noting that each record has a 
value of IM2, which can be used as the predictor variable, 
the probability of collapse (PC) can be calculated through 
logistic regression. Using the indicator variable C to 
designate the occurrence of collapse (C equals 1 if the 
record causes collapse and 0 otherwise), the following 
functional form is fi tted (Baker, 2005; Baker and Cornell, 
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Fig.  6   Testing the suffi ciency of  Sa(T1) with respect to scale factor for collapse capacity prediction of: (a) the 4-story structure and 
                 (b) the 8-story structure

0.6                                                                           6                                            
                                       Scale factor

ln Sacol
 = 0.366lnSF - 0.81

p-value = 0.0013
ρ = 0.38

Table 7   P-values obtained from investigating the suffi ciency of the vector-valued IMs with respect to scale factor for collapse  
                 capacity prediction of the structures (p-values > 0.05 are marked in bold)

Vector-valued IM 2-Story 4-Story 8-Story 12-Story 20-Story
(Sa(T1), Sa(T1)/DSI) 0.146 0.995 0.302 0.174 0.196
(Sa(T1), Sa(T1)/SI) 0.003 0.000 0.000 0.000 0.000

(Sa(T1), Sa(T1)/ASI) 0.000 0.000 0.000 0.000 0.000
(Sa(T1), NP) 0.006 0.205 0.862 0.500 0.383
(Sa(T1), εSa) 0.000 0.000 0.000 0.000 0.000

(Sa(T1), Sa(T1)/PGA) 0.000 0.000 0.000 0.000 0.000
(Sa(T1), Sa(T1)/PGV) 0.000 0.000 0.000 0.000 0.000
(Sa(T1), Sa(T1)/PGD) 0.001 0.009 0.054 0.362 0.120
(Sa(T1), PGA/PGV) 0.102 0.063 0.082 0.724 0.199
(Sa(T1), PGA/PGD) 0.116 0.133 0.300 0.781 0.960
(Sa(T1), PGV/PGD) 0.008 0.030 0.108 0.671 0.829
(Sa(T1), Sa(T1)

2/AI) 0.000 0.000 0.000 0.000 0.000
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2008b):

2

2

im

C 1 1 2 2 im

e( IM im , IM im )
1 e

a b

a bP P C


   
    

(8)

where a and b are coeffi cients to be estimated from the 
logistic regression on a data set that contains C values 
indicating the collapse and non-collapse cases, and the 
corresponding IM2 values. Due to the scaling of records 
to have a specifi c value of IM1= im1, the coeffi cients 
a and b are implicitly dependent on IM1. Thus, the 
fragility curve obtained from the logistic regression is 
a function of the fi rst and second components of the 
considered vector-valued IM. For a given level of IM1, 
the effi ciency of IM2 for seismic collapse assessment 
can be investigated by the shape of the fragility curve 
obtained from the logistic regression. A fl at fragility 
curve indicates that IM2 does not add any signifi cant 
information to the collapse assessment, whereas a steep 
fragility curve indicates that IM2 is effi cient for seismic 
collapse assessment (Bojórquez et al., 2012). Figure 7 
presents the collapse fragility curves obtained for the 
4-story structure through logistic regression, at Sa(T1) = 1.2 g, 
considering different vector-valued IMs. As illustrated 
in this fi gure, the steep shape of the fragility curve 
obtained using Sa(T1)/DSI as the second component of 
the vector (Sa(T1), Sa(T1)/DSI), indicates that Sa(T1)/DSI is 
more effi cient than the other IM2 parameters for seismic 
collapse assessment of the structure. 

7   Collapse fragility surfaces

The use of collapse fragility curves to assess the 
collapse safety of structures has recently become a 
common practice (e.g., Zareian, 2006; Haselton and 
Deierlein, 2008; Tang et al., 2011; Eads et al., 2013). 
The collapse fragility curve obtained by using a scalar 
IM shows how the probability of collapse of a structure 
increases with increasing IM level. In the case of 
vector-valued IMs, the collapse fragility surface can be 
obtained instead of the collapse fragility curve (Seyedi 
et al., 2010). In fact, one of the advantages of using 
vector-valued IMs is that the variation of the probability 
of collapse with respect to both components of a vector-
valued IM can be obtained.

As pointed out by Baker (2005), if the conditional 
distribution of ln IM1Cap given IM2 is assumed to be 
Gaussian, then the conditional mean (μln IM1Cap|IM2 = im2

) 
and standard deviation (

1Cap 2ln IM IM ) obtained from Eqs. (3) and 
(4) can defi ne the conditional distribution of ln IM1Cap
for a given EDP level y. Therefore, the cumulative 
distribution function (CDF) of this conditional 
distribution can be calculated as:

1Cap 2 2

1Cap 2

1Cap 1 2 2

1 ln IM IM im

ln IM IM

(IM im EDP , IM im )

ln im

P y







   

 
 
 
        

(9)

1.0

0.8

0.6

0.4

0.2

0

P C

0                            5                             10                            15
                                   Sa(T1)/DSI (s-3)

1.0

0.8

0.6

0.4

0.2

0

P C

1.0

0.8

0.6

0.4

0.2

0

P C

1.0

0.8

0.6

0.4

0.2

0

P C

0.2              0.4             0.6             0.8              1.0             1.2
                                              NP

-2               -1                0                 1               2                    3
                                               εSa

0                4                8                12            16                20
                                   Sa(T1)/PGV (s-1)

Fig. 7   Collapse fragility curves obtained for the 4-story structure through logistic regression at Sa(T1) = 1.2 g considering 
               different vector-valued IMs
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where ()  is the CDF of the standard Gaussian 
distribution. Assuming EDP = y as the response level 
associated with collapse, and Sa(T1) as IM1, Eq. (9) will 
be converted to Eq. (10). Thus, the collapse fragility 
surfaces considering different IM2 parameters can be 
obtained as follows:

col

col 2 2

col 2

2 2

ln IM im

ln IM

( collapse, IM im )

ln
a a

a Sa

Sa

P S S

S 




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 
 
 
         

(10)

where μln Sacol|IM2 = im2
 and σ ln Sacol|IM2

 are the conditional 
mean and standard deviation of ln Sacol

, respectively. 
Figure 8 presents the collapse fragility surfaces obtained 
for the 4-story structure considering different vector-
valued IMs. As illustrated in this fi gure, the use of the 
vector (Sa(T1), Sa(T1)/DSI), which is more effi cient than 
the other IMs, leads to a steeper fragility surface in 
comparison with the use of the other IMs. Furthermore, 
the collapse fragility surface corresponding to a less 
effi cient IM (e.g., (Sa(T1), εSa)) is fl atter than those 
corresponding to more effi cient IMs. Comparing the 
variation of the probability of collapse in the fragility 

surfaces with respect to IM2 reveals that the largest 
variation exists in the fragility surface obtained by using  
(Sa(T1), Sa(T1)/DSI) as a vector-valued IM. In other 
words, the probability of collapse is more sensitive to  
Sa(T1)/DSI than to the other IM2 parameters.

As mentioned by Gehl et al. (2013) and Seyedi 
et al. (2010), if two components of a vector-valued 
IM are highly correlated, then caution must be taken 
in the construction of the fragility surface and its 
interpretation. In fact, because of the high correlation 
between IM1 and IM2, the data points do not cover 
the whole 2D space defi ned by IM1 and IM2; thus, the 
defi nition of the fragility model for extreme values (e.g., 
low IM1 and high IM2) is questionable. In the case of 
uncorrelated components, performance assessment can 
be carried out in the whole 2D space defi ned by IM1 and 
IM2, even in the corners that contain high values of one 
parameter and low values of the second. Figure 9 shows 
the correlation between Sa(T1 = 1.12) (T1 = 1.12 is the 
fundamental period of the 4-story structure) and the IM2 
parameters presented in Fig. 8, considering the ground 
motion set used in the structural analyses. It can be 
seen that Sa(T1) and Sa(T1)/DSI have a relatively weak 
correlation (correlation coeffi cient of 0.45). Therefore, it 
can be assumed that the data points can cover the whole 
2D space defi ned by Sa(T1) and Sa(T1)/DSI.
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Fig. 8   Collapse fragility surfaces obtained for the 4-story structure considering different vector-valued IMs
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According to the results presented in Sections 4 to 
7, the vector (Sa(T1), Sa(T1)/DSI) can be proposed as an 
optimal vector-valued IM for seismic collapse assessment 
of structures. Thus, to satisfy the predictability criterion 
for the proposed IM, a GMPE for its second component 
and the correlation between its components are provided 
in Section 8. It should be noted that further research can 
be carried out to investigate the performance of  (Sa(T1), 
Sa(T1)/DSI) for seismic collapse assessment of different 
types of structures (e.g., stiff low-rise or super-tall 
buildings).

8   Predictability of the proposed vector-valued IM

To perform VPSHA with the use of the proposed 
vector-valued IM, (Sa(T1), Sa(T1)/DSI), both components 
of the IM should be predictable, and the correlation 
between ln  Sa(T1) and ln  (Sa(T1)/DSI) should be determined. 

8.1   Ground motion prediction equation for Sa(T)/DSI 

One of the features of an optimal IM is predictability; 
thus, to use (Sa(T1), Sa(T1)/DSI) as an optimal vector-
valued IM, the parameter Sa(T)/DSI should have a GMPE. 
Assuming Sa(T)/DSI to be lognormally distributed, it can 
be predicted based on the GMPEs currently available for 

Sa(T) and DSI (the appropriateness of this assumption 
is verifi ed in Section 8.2). Thus, the logarithmic mean 
and standard deviation of Sa(T)/DSI can be calculated 
as follows:

ln( ( ) / DSI) ln ( ) ln DSISa T Sa T   
                  

(11)

2 2
ln( ( ) / DSI) ln ( ) ln DSI ln ( ),ln DSI ln ( ) ln DSI( ) ( ) 2Sa T Sa T Sa T Sa T         

(12)

where ln ( )Sa T  and ln ( )Sa T
 
are the mean and standard 

deviation of ln Sa(T), respectively; μln DSI and σln DSI are 
the mean and standard deviation of ln DSI, respectively; 
and ln ( ),ln DSISa T  is the correlation between ln Sa(T) and  
ln DSI that can be obtained by using the relationship 
proposed by Bradley (2011a), as follows:

ln ( ),ln DSI

1

tanh[ ln( / )]
2 2

n n n n
Sa T n n

n n

a b a b
d T c

e T e





 
 

  (13)

where tanh[]  is the hyperbolic tangent function; na , nb , 
nc , and nd  are empirical constants used for piece-wise 
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Fig. 9    Correlation between Sa(T1 = 1.12)  and different IM2 parameters considering the ground motion set used in the structural analyses: 
             (a) Sa(T1)/DSI  , (b) NP , (c) εSa , and (d)  Sa(T1)/PGV
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segment n; and ne  defi nes the period range for each of 
the piece-wise segments. Table 8 provides the numerical 
values of the parameters in Eq. (13) for obtaining the 
correlation between ln  Sa(T) and ln DSI.

8.2  Obtaining the correlation between ln Sa(T) and 
        ln (Sa(T)/DSI)  
       

According to the method proposed by Bazzurro 
and Cornell (2002), when using (Sa(T1), Sa(T1)/DSI) 
in VPSHA, the correlation between ln  Sa(T1) and 
ln (Sa(T1)/DSI) should be determined. In this study, a 
set containing 350 horizontal ground motion records 
(including the 67 records used for the analysis of the 
structures) related to shallow crustal earthquakes was 
selected for obtaining the correlation between ln Sa(T) 
and ln (Sa(T)/DSI) in different periods. Baker (2005) 
used a ground motion set to investigate the correlation 
of response spectral values. Some of the criteria 
considered in the selection of this ground motion set 
were as follows: the ground motions were recorded in 
sites with shear wave velocities between 180–750 m/s, 
the magnitude of earthquakes was greater than 5.5, and 
the source-to-site distance was less than 100 km. The 
ground motion set that was selected by Baker contained 
267 pairs of horizontal records. In this study, 23 pairs 
from the 267 pairs of records, which were excluded 
from the NGA database, were omitted (these 23 pairs 
include records from the Taiwan SMART1(40) and 
SMART1(45) earthquakes). In addition, records with 
a minimum usable frequency greater than 0.2 Hz were 
also omitted. Thus, 350 ground motion records from the 
ground motion set used by Baker (2005) and the ground 
motion set used by Haselton and Deierlein (2008) with 
a minimum usable frequency ≤ 0.2 Hz were selected. 
The ground motion records come from various active 
shallow crustal tectonic regions throughout the world 
(e.g., California, Turkey, Italy, Japan, Taiwan, and Iran), 
and are related to earthquakes with magnitudes of 5.5–
7.6.

Having a GMPE for an IM, the epsilon for that IM 
(εIM) can be calculated as follows: 

ln IM
IM

ln IM

ln IM 






                       

(14) 

where ln IM is the natural logarithm of the IM observed 
in a particular ground motion; μln IM 

and σ ln IM 
are the 

predicted mean and standard deviation of ln IM,
respectively. In other words, εIM is the number of standard 
deviations by which an observed ln IM differs from 
the predicted mean (μln IM). As pointed out by Bradley 
(2011b and 2012), due to the linear relationship between 
ln IM and εIM, the correlation between the logarithms 
of two IMs for a given earthquake rupture is equal to 
the correlation between their epsilons. Hence, to obtain 
the correlation between ln Sa(T) and ln (Sa(T)/DSI),
ρln Sa(T), ln (Sa(T)/DSI), the correlation between  εSa and εSa/DSI, 

DSI,Sa Sa/  , was calculated. The Campbell and Bozorgnia 
(2007) GMPE was applied for the calculation of εSa  
values. Furthermore, the model presented in Section 8.1 
was used to calculate εSa/DSI values. To use this model, 
the Campbell and Bozorgnia GMPE and the method 
proposed by Bradley (2011a) were applied for obtaining 
the means and standard deviations required in Eqs. (11) 
and (12). Figure 10 presents the correlation coeffi cients 
between εSa and εSa/DSI in different periods, obtained by 
using the selected ground motion set (which contains 
350 records). By applying a third-order polynomial 
regression on the correlation coeffi cients in different 
periods, an equation was proposed to obtain ρln Sa(T), ln (Sa(T)/DSI) 
as a function of period as follows:

DSI

3 2
ln ( ),ln( ( ) / DSI) ,

0.008, 0.021, 0.093, 0.614
Sa Sa/Sa T Sa T aT bT cT d

a b c d
      

     
(15)

After calculating the εSa/DSI values in different periods 
for the 350 ground motion records by using the model 
presented in Section 8.1, the Kolmogorov-Smirnov 
(KS) test (Hogg and Ledolter, 1987) was applied to 
examine the distribution of εSa/DSI. The results of the KS 
tests confi rmed the normal distribution of εSa/DSI values 
in different periods. Figure 11 illustrates the empirical 
and normal CDFs of εSa/DSI in periods of 1.0 and 1.5 s. 
As shown in this fi gure, the empirical distributions of  εSa/DSI 
in both periods are well approximated by the normal 
distribution. Therefore, the assumption of a lognormal 
distribution for Sa(T1)/DSI is reasonable.  

Table 8  Parameters in Eq. (13) defi ning the piece-wise 
          variation of the correlation between ln Sa(T)  and 
                    ln DSI   (ρln Sa(T), ln DSI)

n en an bn cn dn

0 0.01 - - - -
1 0.15 0.39 0.265 0.04 1.8
2 3.40 0.19 1.200 1.20 0.6

3 10.0 0.98 0.820 6.10 3.0
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9   Discussion and future work

The results of this study show that using the ratio 
of two scalar IMs as the second component of a vector-
valued IM may lead to great effi ciency for predicting 
the collapse capacity of structures. Among the ratios 
of scalar IMs considered as IM2 parameters, some 
have acceptable correlation with the structural collapse 
capacity; nevertheless, because they do not satisfy the 
suffi ciency criteria for some or all of the structures, 
they cannot be considered as the second component of 
an optimal vector-valued IM. For instance, Sa(T1)/PGD, 
which has relatively high correlation with the structural 
collapse capacity, does not satisfy the suffi ciency 
criteria for the low-rise structures. It should be noted 
that the vector (Sa(T1), Sa(T1)/PGD) can be used for 
reliable seismic collapse assessment of mid- to high-rise 
structures.  

Procedures for selecting and scaling ground motion 
records for a specifi c hazard level have been the subject 
of much research in recent years (e.g., Iervolino and 
Manfredi, 2008; Kalkan and Chopra, 2010). As an 
alternative to the direct use of a vector-valued IM, ground 
motion records can be selected based on one component 
of the vector-valued IM, and then the seismic assessment 
can be performed by using the other component (i.e., IM1). 
For example, as mentioned by Baker (2005), instead of 
using (Sa(T1), εSa) as a vector-valued IM in the analyses, 
one can select ground motion records based on the target 
εSa and then perform the analyses by using Sa(T1) as a 
scalar IM. The target εSa for a specifi c seismic hazard 
level is obtained from seismic hazard disaggregation 
(McGuire, 1995; Bazzurro and Cornell, 1999). Similarly, 
instead of using (Sa(T1), Sa(T1)/DSI) as a vector-valued 
IM, ground motion selection for a specifi c seismic 
hazard level can be performed based on the target value 
of Sa(T1)/DSI. To obtain the target Sa(T1)/DSI, the GMPE 
for Sa(T)/DSI, the correlation between ln Sa(T) and 
ln (Sa(T)/DSI) proposed in Section 8, and the target  εSa  
are needed. Then, the method used by Bradley (2010b) 

can be employed to determine the target Sa(T1)/DSI . After 
the selection of records based on the target Sa(T1)/DSI, 
seismic analyses can be performed by using Sa(T1) as a 
scalar IM.

It is worth noting that the technical literature 
includes some scalar and vector-valued IMs with 
variable parameters, which can be optimized based 
on the structural characteristics (e.g., the IMs used by 
Vamvatsikos and Cornell, 2005). Therefore, optimizing 
these IMs and performing a comprehensive comparison 
between the IM proposed in this study and the optimized 
scalar and vector-valued IMs can be an interesting open 
fi eld for future studies.

10   Conclusions

In this study, different IMs were considered for 
seismic collapse assessment of low- to high-rise 
structures. The considered IMs include Sa(T1) as a scalar 
IM and twelve vector-valued IMs consisting of two 
components. After investigating the desirable features 
of an optimal IM, the vector (Sa(T1), Sa(T1)/DSI) was 
proposed as an optimal vector-valued IM for seismic 
collapse assessment of structures.

The results show that the vector (Sa(T1), Sa(T1)/DSI) is 
more effi cient than the other IMs for collapse capacity 
prediction of the structures. As an example, in the case 
of an 8-story structure, the use of this vector-valued 
IM was found to cause more than 50% reduction in the 
estimated dispersion of collapse capacity in comparison 
with the use of Sa(T1) as a scalar IM. Thus, by using 
this vector-valued IM, the number of required analyses 
can be reduced more than four times while the standard 
error remains the same. Further, the results show that 
Sa(T1) as a scalar IM is not suffi cient with respect 
to magnitude and scale factor for collapse capacity 
prediction. This insuffi ciency can be improved by 
adding a proper parameter as the second component to 
Sa(T1) and developing a vector-valued IM. Among the 
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second components of the considered vector-valued 
IMs, the use of the parameter Sa(T1)/DSI was found to 
lead to signifi cant suffi ciency with respect to magnitude 
for collapse capacity prediction of the structures. Due 
to the suffi ciency of Sa(T1) with respect to source-to-
site distance, the proposed vector-valued IM containing  
Sa(T1) as the fi rst component is also suffi cient with respect 
to source-to-site distance. Furthermore, the new IM 
satisfi es the scaling robustness criterion (suffi ciency with 
respect to scale factor) for collapse capacity prediction 
of the structures. In fact, the considerable effi ciency and 
suffi ciency of the proposed IM increases the reliability of 
seismic collapse assessment by reducing the dispersion 
and bias in the prediction of structural collapse capacity.

To satisfy the predictability criterion for (Sa(T1), 
Sa(T1)/DSI), a GMPE was determined for Sa(T1)/DSI by 
applying the existing GMPEs. Furthermore, an empirical 
equation was proposed for obtaining the correlation 
between ln  Sa(T) and ln (Sa(T)/DSI) as a function of 
period.
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