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1   Introduction

Demonstrated by domestic and international 
earthquake damage experience of a number of factors 
(earthquake source, propagation medium and path, 
site conditions and local terrain) that impact the 
ground motion, local terrain is the key one to cause 
surface earthquake damage or ground motion. Thus, 
estimating the infl uence of local terrain on seismology 
is a growing concern, which has become one of the 
most important research subjects in seismology and 
earthquake engineering. The change pattern of terrain 
mainly involves canyons and hills. In recent decades, 
a certain amount of literatures on effects of ground 
motion by canyons or hills have been reported, which 
provided references for anti-seismic and antidetonation 
engineering. The wave function method is one of the 
most commonly used methods in SH-wave scattering 
analyses, by means of which, Trifunac (1992) solved 
plane SH-wave scattering of semi-cylindrical canyon; 
Yuan and Liao (1996) addressed plane SH-wave 
scattering by arbitrary arc shaped hill; Liang et al. (2005) 
derived an analytical solution for scattering of plane P 

wave by a semi-cylindrical hill; Zhang (2010) reported 
an analytical solution to the two-dimension stationary 
dynamic response of alluvial valley containing arbitrary 
number of circular-arc-shaped layers excited by incident 
Rayleigh waves; Liu et al. (2010) presented a theoretical 
study of multiple scattering of SH waves by two hills 
of different geometries (a triangle and a semicircle) on 
a solid half-space; the 2-D scattering and diffraction 
of plane SH waves induced by a non-symmetrical 
V-shaped canyon was examined (Zhang et al., 2012); 
combined with the methods of complex function and 
moving coordinate system, Qi et al. (2012) provided the 
analytical solution to the problem of scattering of SH-
wave induced by scalene triangular hill on a right-angle 
fi eld; Lee et al. (2004), Lee and Alongkorn (2013) 
focused on the two-dimensional scattering of anti-plane 
(SH) waves by a semi-cylindrical hill with a semi-
cylindrical concentric tunnel inside an elastic half-space, 
a shallow semi-elliptical hill on an elastic half-space; 
Chang et al. (2013) investigated the scattering of plane 
SH waves incident on a circular sectorial canyon . Since 
1995, in application of complex variables, Liu and Han 
(1990), Liu and Liu (1997), Cui et al. (1998), Liu et al. 
(1998), Cao et al. (2001), Qiu and Liu (2005), Liu and 
Wang (2006), Lu and Liu (2006), Liu and Liu (2007), Liu 
et al. (2008), Li et al. (2008), Du et al. (2009), Lu et al. 
(2009), Liu et al. (2010) and Zhang (2010) successively 
derived a series of solution for elastic wave scattering by 
distinct terrain such as a cylindrical canyon, a cylindrical 
hill of circular-arc cross section, semi-cylindrical hills, a 
cylindrical hill of arbitrary shape, an isosceles triangular 
hill, isosceles triangular and semi-circular hills, multiple 
semi-cylindrical hills, a semi-cylindrical hill and canyon, 
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an isosceles triangular hill above a subsurface cavity, a 
semi-cylindrical hill with a hole and multiple cavities, 
a subsurface cavity with a nearby semi-cylindrical hill 
as well as canyons with variable depth-to-width ratio; 
Nazaret et al. (2003) analyzed antiplane deformations 
around arbitrary-shaped canyons on a wedge-shape half 
space. Additionally, some other important approaches 
have also been carried out by many contributions. A 
hybrid method which combines the fi nite element and 
series expansion method was implemented to solve the 
response of surface motion inside and near an irregular 
area embedded into an elastic half-plane (Shyu and 
Teng, 2011). The problem of SH-waves diffracted by 
a semi-circular hill was revisited using the null-fi eld 
boundary integral equation method (BIEM) (Chen et al., 
2011). Tsaur and Hsu (2013) developed the region-point-
matching technique (RPMT) to study the scattering of 
SH-waves disturbed by a partially fi lled semi-elliptic 
alluvial valley.

In railway engineering, multiple mountains and river 
valleys are common, which will bring a considerable 
amount of inconvenience. This type of terrain can be 
simplifi ed as multiple triangular hills and canyons. 
However, few efforts were paid to this terrain owing 
to its complexity in boundary condition to date. The 
aim of the present paper is to investigate the scattering 
of two scalene triangular hills and a semi-cylindrical 
canyon by incident SH-waves based on “division” and 
“conjunction” technique which have been verifi ed in 
Liu et al.′s work.

2   Analytical model

Given as Fig. 1 is a half-space model of two scalene 
triangular hills and a semi-cylindrical canyon under 
incident SH-waves, where the horizontal surface is 
denoted by S , the acmes of the hills by O and 4O  
respectively, the triangle wedges′ gradients as 11: n ,

21: n ， 31: n  and 41: n , the bottom margins as 12R , the 
height of hills by 1h and 2h , the center of the semi-
cylindrical canyon with boundary 2D  as 2O and the 

associated radius as 2R . To solve this problem, the model 
is divided into three parts as shown in Fig. 2.  Domain 
I and II consist of scalene triangular hill and a semi-
cylindrical bottom respectively and Domain  II  involves 
a half space with three semi-cylindrical canyons. Arc 1D  
and 3D  stand for the interface between Domain I and II 
and Domain III and II, respectively, at which the stresses 
and displacements must be guaranteed to be continuous.

Supposing that the distance between 1O  and 2O  
( 3O and 2O ) are d1, the distance between 1O and 3O  
are 2d , and the projection of 1O O  and 3 4O O  on the 
bottom are Δ1 and Δ2, and 1 1.0R  , 2 0.5R  , then

               1 1 2d R R  ,  2 1 22 2d R R  ,

   1 2 1 2 1n n n n    ,    2 4 3 4 3n n n n   

3   Governing equation

In an isotropic medium, the scattering of SH-waves 
is the simplest problem among the scattering problems 
of elastic waves. Introducing complex variables 

i , iz x y z x y    , the SH-wave Helmholtz expansion 
turns to be

2
21 0

4
W k W

z z


 
 

                         (1)

where s= /k c , in which   represents the circular 
frequency of wave function,  sc    is the 
propagation velocity of the shear wave, and  and μ  
are the mass density and shear modulus of the medium, 
respectively.

In polar coordinates system, the corresponding 
stresses are given by

             i i i ie e , i e erz z
W W W W
z zz z
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(2)

Fig. 2   The division of the solution domain
Fig. 1  Analytical model of two triangle hills and a 
              semi-cylindrical canyon
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4   Problem statement

4.1 Standing waves in Domain I and III

In Domain I, the standing wave 1DW  should obey 
the stress free condition on the wedge as 

 
 

1 21

1 2

0 , 2

0 , 2
D
z

  

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(3)

In complex coordinates, the standing wave 1DW  
satisfying governing equation and boundary condition 
equation can be written as
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where, 0W denotes the displacement amplitude of 
standing wave,  1

mD and  2
mD  are  unknown coeffi cients, 

 1 1 2p     , and    
1 12 (2 1)J . , J .mp m p  

are Bessel 
functions with 12mp and 1(2 1)m p rank, respectively. 

Depicted by Fig. 1, Z can be turned into

1i
1 1( )e qZ Z b                          (5)

wherein,  1 2 1arctan arctan 2q n n   and 1 1 1b h i  .
Consequently, in the complex plane  1 1,Z Z , Eq. (4) 

transforms into
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Substitution of Eq. (4) into Eq. (2) yields the 
corresponding stress expression
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wherein, 
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Similarly to Domain I in derivation method, the 
standing wave of Domain III in the complex coordinate 
 3 3,Z Z  is swiftly deduced according to Eq. (6).
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The associated stresses  3

2
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r z Z Z  is obtained by 
substituting Eq. (8) into Eq. (2).
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4.2   Scattering waves in Domain II

Under incident SH-waves, the scattering waves in 
domain II generated by semi-cylindrical canyons (shown 
as Fig. 2), which should be free in stress on the horizontal 
surface, can be expressed in the complex planes ( , )i iZ Z
( i =1, 2, 3) as follows

 

.

.

.

.



572                                              EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                           Vol.13

 

   

   

2 2

11 1 1
0 2 1

0 1 1

(2 1) (2 1)

2 1 1
2 1 1

1 1

1 1 2 1 3 2

( , )

( , , ;  =1, 2, 3)

m m

S i i
i i m m S i

m i i

m m

i i
m m S i

i i

i

W Z Z W A H k

A H k

Z Z id Z id i 

 


 

 


 








  



                      
                  

  



 (10)

   

   

2 2

12 2 2
0 2 2

0 2 2

(2 1) (2 1)

2 2 2
2 1 2

2 2

2 1 1 2 3 1

( , )

( , , ;  =1, 2, 3)

m m

S i i
i i m m S i

m i i

m m

i i
m m S i

i i

i

W Z Z W B H k

B H k

Z id Z Z id i 

 


 

 


 








  



                      
                  

  



 
(11)

 

 

   

   

2 2

13 3 3
0 2 3

0 3 3

(2 1) (2 1)

2 3 3
2 1 3

3 3

3 1 2 2 1 3

( , )

( , , ;  =1, 2, 3)

m m

S i i
i i m m S i

m i i

m m

i i
m m S i

i i

i

W Z Z W C H k

C H k

Z id Z id Z i 

 


 

 


 








  



                      
                  

  



 (12)

Substituting above three expressions in Eq. (2), we 
have the expressions of the corresponding stresses as 
follows 
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4.3   Incident wave and refl ected wave

As shown in Fig. 1, SH-waves are incident into  X1Y1O1 
coordinate system with an angle , and subsequently, 
in complex coordinates  ,i iZ Z , the incident wave and 
refl ected wave can be written as
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(16)

Combined with Eq. (2), the related stresses 
 ,

i

i r
r z i iZ Z   can be derived. 
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5   Solutions

Based on the “conjunction” condition that demands 
continuous displacement and stress at the shared 
boundary of domain I and II (domain III and II),  a series 
of defi nite equations for solving unknown coeffi cients 

 j
mD ,  j

mE ,  j
mA ,  j

mB  and  j
mC  ( j  1, 2) can be deduced 

in combination with zero-stress condition on boundary 
edge of the semi-cylindrical canyon

.

.

.
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(18)
                                 
                              

After insertion of the corresponding displacement and stress expressions, above equations can be transformed into 
Fourier series

                    

         
(19)

           

 (20)

      where
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 Equations (19) and (20) were solved by utilizing 
the limitation truncation to satisfy the computation 
precision.

6   Displacement amplitudes

In Domain I and III, the total wave fi elds involve the 
standing waves 1DW and 2DW , respectively

1 2
II,D DW W W W                        (21)

In Domain II, the total wave fi eld includes four 
displacement fi elds

1 2 3i r S S SW W W W W
                   (22)

Equations (21) and (22) can be also expressed as 

 ie jt
j jW W  

        
    j  I, II, III            (23)

where, jW  is the displacement amplitude and j  the 
phase angle of jW

Im
arctan

Re
j

j
j

W
W


 

  
                         

(24)

7   Numerical results and discussions

As a numerical example, suppose that the districts 
are identical in material properties ( D S  , ,D S   

D Sk k ) and two scalene triangular hills in shape and 
height ( 1 3n n , 2 4n n , 1 2h h , 1 2  ), and the 

amplitude of incident wave 0 1.0W  . For convenience, 
1 1 1.0y R    is defi ned as the horizontal surface at 

the left hand side and 1 14 5y R   at the right hand 
side. Hence, 1 1 1.0y R   indicates the fi rst hill, 

1 11 2y R   the canyon, 1 12 4y R   the second 
hill and 1 1 1y R   the vertex of the fi rst triangular hill. 
Besides, the vertex angles of triangular hill are defi ned 
as 0 . Based on above theoretical derivation, antiplane 
response of two scalene triangular hills and a semi-
cylindrical canyon to incident SH-waves is investigated. 
The expressions of surface displacements | |W  are 
defi ned respectively by Eqs. (21) and (22).

In order to verify the computation precision of 
boundary condition and the analytical method used in 
this paper, the model is degenerated into one isosceles 
hill and the calculated results for hills with 0 60 ,    
90  and 120  under vertically incident SH-wave when 

0.5   are given in Fig. 3. By comparing with the 
results for the same numerical example obtained by 
Qiu and Liu (2005), the results shown in Fig. 3 can be 
demonstrated to be accurate.

y1/R1

Fig. 3  Variation of surface displacements |W| with  y1/R1 
               when η = 5

θ0 = 60º
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θ0 = 120º

η = 0.5
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Figures 4 to 8 are plotted to discuss the distribution 
of the surface displacement amplitudes infl uenced by 
different frequency  and incident angles in the case 
of 21 2 1 0      ,10 , 20 . The vertex angles of 
triangular hills are assumed to be 138.2  under incident 
SH-waves in 1 1 1X O Y  coordinate system.

Figure 4 intuitively shows that, for   0.1, the 
surface displacement amplitudes W  change slightly 
whatever the incident angle   and 21 vary, which 
denotes the quasi-static characteristic case, and the 
maximum amplitude max| | 2.05W  . From Figs. 5 to 8, it 
can be demonstrated that the dynamic characteristics of 
ground motion becomes more and more distinct and the 
surge of W  appears more and more evidently as well 
when   varies from 0.25 to 1.0. 

The strong dependence of the surface displacement 
amplitudes W  on incident angle   can be revealed in 
Fig. 5 through Fig. 8. With the increase of  , surface 
displacement amplitudes W  of horizontal surface 
at the left hand side increase and those of the canyon, 
the second hill and the horizontal surface at the right-
hand side decrease. It is just because SH-waves are 
incident into 1 1 1X O Y  coordinate system. The maximum 
displacement amplitude max| |W  always occurs at 

1 1 1y R   (the vertex of the fi rst triangular hill) when 
SH-waves incident vertically described in Fig. 5(a), 

Fig. 6(a), Fig. 7(a) and Fig. 8(a). For   1.0, 
max| |W = 2.28, 2.52 and 2.94 respectively when 21 0  

, 10 , and 20 .
Figure 8 illustrates that, in the range of 1 11 2y R  ， 

a valley value of surface displacements of the canyon 
always occurs at 1 1 1.5y R  and is getting larger with 
the increment of incident angle   when 1.0.   
Additionally, it can be also found that variation of 

21 impacts slightly on distribution of the surface 
displacement while the vertex angles of triangular hills 
are fi xed. Compared with other cases, the whole surface 
displacement amplitudes W  seem to be far smaller 
when 1.0  , as observed in Fig. 8. 

3D graphs are provided in Fig. 9 to show the 
displacement amplitudes W  versus 1 1y R  and vertex 
angle of the triangular hills 0  when frequency  =1.0. 
Dynamic response of ground motion of the canyon, the 
second hill and the right horizontal surface depends 
strongly on vertex angle of the triangular hills 0 , 
as shown in Fig. 9. Taking Fig. 9(c) for example, the 
results show that the stronger is dynamic characteristics, 
the greater become the displacement amplitudes when 
the vertex angle varies between 60 and 90 (120 and
150 ). Moreover, a valley value W =0.32 appears at 

1 1 3.0y R   when 0 100   . 
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Fig. 4   Variation of surface displacements |W| with  y1/R1 when η = 0.1
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Fig. 5   Continued 
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8   Conclusions

(1) “Division” and “conjunction” technique are 
developed in this paper to analyze antiplane response 
of two scalene triangular hills and a semi-cylindrical 
canyon under incident SH-waves based on the methods 
of wave function expansion, complex function and 
multi-polar coordinates.

(2) Based on above numerical results, it can be 
concluded that the parameters of the incident wave such 
as wave number and incident angle have considerable 
infl uence on the surface displacement amplitudes of 
multiple scalene triangular hills and a semi-cylindrical 
canyon. The dynamic characteristic of ground motion is 
increasingly obvious when the frequency   rises. The 
valley value of surface displacements of the canyon 
always occurs at 1 1 1.5y R   and increases by the 
increment of incident angle   when 1.0  .

(3) When SH-waves are incident vertically into  
X1Y1O1 coordinate plane, the maximum displacement 
amplitude max| |W  always occurs at 1 1 1y R   (the 
vertex of the fi rst triangular hill). Besides, the surface 
displacements nearby are impacted much more strongly 
by SH-waves than further fi eld. 

(4) The results in this paper can provide theory value 
for earthquake engineering and the methods used can be 
also branched out into the scattering problems of P-wave 
and SV-wave on multiple scalene triangular hills and 
semi-cylindrical canyons.
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