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Dynamic properties analysis of a stay cable-damper system in 
consideration of design and construction factors
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Abstract: A numerical solution based on the Steffensen stable point iterative method is proposed to resolve the 
transcendental frequency equation of a stay cable-damper system. The frequency equation, which considers clamped supports 
and fl exural rigidity of the cable, is intended to investigate the infl uence of the parameters of the cable damper system on 
its dynamic characteristics. Two factors involved in the design and construction phases, the damping coeffi cient induced by 
external dampers and the cable tension, are the focus of this study. Their impact on modal frequencies and damping ratios 
in these two phases of cable-damper systems are investigated by resolving the equation with the proposed solution. It is 
shown that the damping coeffi cient and cable tension exert more noticeable effects on the modal damping ratios than on the 
modal frequencies of stay cable-damper systems, and the two factors can serve as design variables in the design phase and as 
adjustment factors in the construction phase. On the basis of the results, a roadmap for system-level optimal design of stay 
cable-damper systems that can achieve global optimal vibration suppression for the entire bridge is proposed and discussed.
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1   Background 

Vibrations on long cables that become an increasingly 
serious problem as the spans of cable-stayed bridges 
expand. Excessive cable oscillation diminishes pedestrian 
perceptions of safety, reduces driver and passenger 
comfort, and causes fatigue coupled with corrosion and 
erosion in the strings of cable and anchorage zones. 
These defects decrease durability and endanger the 
overall safety of bridges. The most extensively applied 
vibration suppression measurement is the installation of 
external dampers at the end of stay cables to increase 
low-order modal damping ratios and reduce oscillation 

amplitude (Irvine, 1981). Damper installation changes 
the dynamic characteristics of cable-damper systems in 
three ways: modal shape, modal frequency, and modal 
damping. The extent and mechanism of infl uence of 
these factors are related to the parameters of the cable 
and the damper; those for the latter include damper 
category, damper coeffi cient, and manner of installation. 
Investigating the vibration suppression effect of external 
dampers necessitates exploring the dynamic properties 
of cable-damper systems.

The effects of dampers on the dynamic properties 
of stay cables are well documented. Using a numerical 
method, Pacheco et al. (1993) investigated the vibration 
of taut strings with intermediate dampers. Krenk re-
studied this string-cable system by using an analytical 
method in 2000. The author extended his investigation 
with Krenk and Nielsen (2002) and Krenk (2004), 
considering the effects of sag on the dynamic properties 
of cables and accordingly modifying the aforementioned 
analytical method. Main and Jones (2002a, b) studied 
the dynamic properties of a taut string damper system 
under free vibration. A subsequent study by Main and 
Jones (2007a, b) covers the foundation of a cable-
damper system, for which clamped end conditions were 
considered and a frequency characteristic equation was 
established. The dynamic properties of cable-damper 
systems, including fi fth-order complex frequency and 
complex trace, as well as modal shape, have been 
studied under various installation positions of dampers.  
However, the vibration suppression effect is infl uenced 
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not only by installation position, but also by other 
factors related to dampers and cables. Moreover, 
the target of vibration suppression is not limited to 
a few low-order modes. Under different design and 
construction conditions, the dynamic properties of stay 
cables after damper installation remain unclear and 
therefore require further study.

In this study, the cable tension is proven to have a 
marked infl uence on the systematic dynamic properties 
of a stay cable-damper system; it can be utilized in the 
design phase by selecting reasonable design cable 
tension to obtain an appropriate vibration suppression 
effect. Thus, in this study, both of the infl uences of 
the damping coeffi cient of laterally attached external 
dampers and cable tension on the systematic dynamic 
properties of a stay cable-damper system are examined. 
The investigation is based on the transcendental 
frequency equation formulated by Main and Jones 
(2007a, b), as well as on bending rigidity and clamped 
supports. A systematic technology roadmap of the 
design and construction of cable-damper systems is 
proposed. This roadmap makes it possible to transfer 
the target of vibration suppression to high-order modes 
and achieve an optimal suppression effect for the entire 
bridge system.

2  Numerical solution of the transcendental      
frequency equation of a cable-damper    
system consideing clamped supports and       
fl exural rigidity 

2.1  Frequency function for the cable-damper system 

Consider the design and construction phases of 
an actual cable-damper system (see Fig. 1, where c is 
the damper coeffi cient, β is the nonlinear coeffi cient, 
kd is the damper stiffness and ks is the damper support 
stiffness). These phases are divided into three distinct 
steps: the tension, clamped, and damper installation. 
After the fi rst step is completed, the mechanical model 
of the cable can be regarded as a taut cable with double-
pinned boundary conditions. At this stage, bending 
rigidity is also considered. In the second step, both 
anchorage zones of the cable are clamped, after which 
the cable model can be considered subjected to rigid-
jointed boundary conditions. In the third step, a cable-
damper system is formed and can be modeled as a taut 
cable-damper system with double-clamped boundary 
conditions. In such a model, the inner damping of the 

cable is disregarded.
The oscillatory differential equation of a cable–damper 

system, in which the effect of cable sag is disregarded,  
can be written as follows:
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where xj is the axial coordinate of the jth segment and j = 0, 
1, 2, corresponding to the entire cable before installation. 
The short segment of a cable-girder joint points toward the 
damper location, where as the long segment points from 
the damper to the cable-pylon anchorage zone. u (xj ,t) is 
the transverse defl ection in time t and coordinate. xj is the 
cable tension, m denotes the mass per unit length, E is the 
Young's modulus, and I is the moment of cable inertia.

In reference to the cable-damper system shown in 
Fig. 1  and Eq. (1), Main and Jones (2002a, b) presented a 
transcendental frequency equation, in which the bending 
rigidity of the damper and its frame are disregarded . In the 
current work, a re-formulated expression of this frequency 
equation is provided for convenience:
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The frequency equation of a taut cable with a double-
pinned boundary is
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, and l0, l1, l2 are 
the length of each segment of the cable parameters of the 
cable-damper system, l0 = l1+l2 , μj = lj / l0. c is the damping 
coeffi cient of the damper. ω denotes the general complex 
frequency, with its real part refl ecting the frequency of 
damped oscillation and its imaginary part refl ecting the 
rate of decay.

Let    l l l E I m c T0 1 2, , , , , , ,  denote the basic 
parameters of the cable-damper system. Equation (3) 
defi nes the implicit function of θ as
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When c = 0, Eq. (2) can be simplifi ed into
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Fig. 1   Schematic of a stay cable-damper system
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in which Eq. (9) defi nes the following implicit function:
  

   n hCC                                     (10)
In the general situation c ≠ 0, Eq. (2) defi nes the 

following implicit function:
  

n gCDC                                   (11)
Given the existence of damping in Eqs. (8) and (11), 

n
CDC derived by Eq. (11) is generally complex. Modal 

frequencies and damping ratios can be easily derived 
using the following relationship:
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When modeling the cable-damper system by taut 
string, the corresponding nth modal frequency can be 
given as follows
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The infl uence ratio of the frequency induced by the 
different construction conditions of the cable-damper 
system can be defi ned as
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where n
PP CC is the infl uence ratio of the clamped 

boundary condition in Step 2. n
CC CDC represents 

the infl uence ratio of the damper in Step 3. n
PP CDC

corresponds to the total infl uence ratio of the construction 
conditions; this ratio is equal to the sum of the fi rst two 
infl uence ratios.

2.2 Numerical solution of the frequency equation,  
    derived by the Steffensen fi xed point iteration          
       method

Despite the considerable difference in complexity of 
the implicit equations, their zero roots can be solved in 
a similar numerical manner; i.e., the secant or iteration 
method. Considering the most complicated implicit 
equations (Eqs. (2) and (11)), an iteration expression is 
presented to solve their zero roots in the complex fi eld.

Substituting  Eqs. (4)–(6) into Eq. (2) yields the 
simplifi ed expression 
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Considering the periodicity of the trigonometric 
function on the right side of Eq. (15), a transformed 
expression can be obtained:
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On the basis of Eq. (16), the iteration expression 

derived by using the Steffensen fi xed point method can 
be constructed as
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From  Eq. (7), 
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The iterations are repeated until q satisfi es the 
requirements for accuracy. Then, q is substituted into 
Eq. (18) to obtain the solution of the numerical circular 
frequency of the cable-damper system.

3 Dynamic property analysis of the cable    
     damper system

Under complicated real-world conditions, the 
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dynamic properties of cable-damper systems exhibit 
distinct discrepancies from those of taut string damper 
systems. These discrepancies occur in both low- and 
high-frequency ranges. Observation data (e.g., long-term 
records collected from the health monitoring systems 
installed in actual bridges) show that the vibration 
energies excited by natural vibration sources are more 
dominant at high rather than low-frequency modes; see 
Main and Jones (2002a, b). Extreme vibration cases 
also indicate that the fi rst fi ve lower frequency modes 
maintain low-level vibration energies that are drowned 
out by noise over the long term in bridge service. As 
wind speed increases, the dominant modes shift from 
a low-frequency to a considerably higher frequency 
range. Current passive cable damper system design 
theory is directed toward low-order modes, and the 
dampers installed in cables provide high damping ratios 
only for such modes, as reported by Weber et al. (2009a, 
b, c) and Weber and Boston (2011). Certain aspects of 
the vibration suppression effects induced by high-order 
modes and the dynamic properties of a cable-damper 
system at high frequencies are not well understood. This 
situation necessitates more comprehensive studies on 
these effects and properties.

In the design and construction phases of actual cable-
stayed bridges, the design and selection of dampers are 
often a secondary priority. The upper connected points 
of dampers to cables are fi xed to a certain height in order 
to be both aesthetically pleasing as well as practical. 
Although the damper position is a crucial parameter for 
adjusting the dynamic characteristics (Weber et al. 2007, 
2009a, b, c), in practice, it can only be adjusted within a 
limited  range. In these stages, only two factors — cable 
tension and damping coeffi cient — are valid adjustable 
parameters. Existing research focuses primarily on the 
infl uence of dampers on the dynamic characteristics 
of cables, with such infl uence determined on the basis 
of damper installation position, cable bending rigidity, 
and sag. For example, Boston et al. (2011) investigated 
numerically and experimentally optimal semi-active 
damping of a cable with fl exural rigidity and clamped 
boundary conditions. In this study, a cable-damper 
system is considered as a whole and fl exible rigidity and 
clamped boundary conditions are taken into account. 
The infl uence of the two adjustable factors (involved 
in the construction phase) on the modal frequencies 
and damping ratio of the cable-damper system are 
investigated by the numerical rooting method of the 
frequency equation presented in Eqs. (8), (10), and (11). 
The cable-damper system of a cable-stayed bridge in 
Shanghai's Changjiang Bridge is selected as an example. 

Its basic parameters are shown in Table 1.
For convenient comparison, an approximate 

damping ratio derived from an asymptotic damper 
design model that corresponds to ataut string damper 
system is presented (Krenk, 2000):
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where κn is a commonly used dimensionless design 
parameter in linear damper design theory. This parameter 
is directly proportional to the damper coeffi cient and 
inversely proportional to the square root of the cable 
tension. It can be expressed as follows:
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3.1 Infl uence of damper coeffi cient on the dynamic 
       characteristic of cables

In general construction procedures, the damper is 
installed behind the cable. In this stage, the landscape 
of the entire bridge requires a fi xed damper installation 
position. To obtain an optimal vibration suppression 
effect, therefore, the damping coeffi cient generated by 
the intermediate damper becomes the only effective 
optional adjustable factor. To investigate the infl uence 
of this factor on the dynamic properties of the cable-
damper system, the damping coeffi cients listed in Table 1 
are treated as variables, with scopes continuously 
varying from 10,000 N s/m to 106 N.s/m. Cable tension 
is set to 3×106 N, and the values indicated in Table 1 
are retained for all other parameters. Each combination 
of parameters defi nes a scenario for the cable-damper 
system and yields a numerical frequency equation. 
Resolving the zero roots of the equations and repeatedly 
using the numerical methods proposed in Eqs. (12) , 
(14), and (19) yield the modal frequency, modal damping 
ratio, and infl uence ratio of frequency respectively. 

The curve that refl ects the relationship between the 
non-dimensional damper parameter and the infl uence 
ratios of the 1st to 11th frequency modes before and 
after the installation of dampers are illustrated in Fig. 2. 
Damper installation slightly increases the frequencies 
of all modes to 2%. The frequencies of all modes tend 
to increase as the damping coeffi cient rises. A tendency 
toward linear increases is observed at a κ of less than 
0.3–0.4, but this tendency occurs at a gradual pace and 
then continuously increases when  κ exceeds 0.3–0.4. In 
Fig. 2, the curves of odd and even modes are indicated 

Table 1   Basic parameters of the stay cable-damper system

Length Modulus Moment of 
inertia

Density per 
length Area Inclined 

angle*
Damping coeffi cient

 of damper
Relative installation 
position of damper

97.6 m 2×1011 Pa 8.04×10-6 m4 96.85 m 0.0124 m2 0° 4×104 N.s/m 0.02

      *Inclined angle refer to the angle between horizon direction and chord 
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in different colors: the dark red curves denote even anti-
symmetric modes, whereas the blue curves denote odd 
symmetric modes. The increasing damping coeffi cient 
affects modal frequency in different ways. The damping 
coeffi cient imposes a stronger effect on even modes 
than on odd modes. At a constant damping coeffi cient, 
the infl uence ratio of even frequency modes gradually 
increases as order increases. By contrast, the infl uence 
ratio of odd frequency modes rapidly decreases as order 
increases.

The frequency infl uence ratios in different 
construction stages are compared in Fig. 3, where Figs. 
3(a) and 3(b) correspond to damping coeffi cients of 
105 and 5×105 N.s/m, respectively. Operation clamping 
enhances the frequency of each mode to about 1.6%. 
Damper installation also increases modal frequencies 
to different extents, and the increase in amplitude of 
higher order modes are greater than the lower order 
modes. Furthermore, the higher the damping coeffi cient 
produced by the damper, the higher the increase in all 
mode frequencies. In contrast to the same order in a taut 
string system, that the enhancement in frequency of the 
cable-damper system reaches 3.72%, which is a value 
that should be considered in analysis.

The infl uence of the damping coeffi cient on the 
modal damping ratios of the fi rst 10 frequency modes is 
illustrated in Fig. 4, where the x axis represents a non-
dimensional damper parameter and they axis represents 
the damping ratio (n ) of the cable-damper system. The 
curve of the approximate damping ratio derived from the 

damper design and analytical model is also drawn in the 
same plot.

Figure 4 shows an obvious difference between the 
damping ratios derived by the model of a taut string 
damper system with pinned boundary conditions and 
by the adaptive model of the cable-damper system with 
clamped boundary conditions. With regard to the taut 
string damper system, the curves corresponding to each 
mode coincide and peak at n

s ≈ =1 0 10232π .  , where 
the optimum damping ratio of all modes (n

s = 0 00998. )
approaches half of the numerical relative damper 
installation position. When fl exible rigidity and clamped 
boundary conditions are simultaneously considered in 
the mechanic model, the curves that correspond to each 
mode are scattered, with the highest degree of scatter 
occurring near the peaks of the curves. As the damping 
coeffi cient increases, all the modal damping ratios 
rapidly increase; after the ratios reach their peaks, they 
exhibit a mild decreasing tendency.

Further examination of the peak value of the 10th 
damping ratio indicates a remarkable discrepancy 
between the two models; i.e., in the asymptotic model, the 
peaks belonging to each mode overlap, but in the cable-
damper system model, all the scattered peaks are lower 
than those of the asymptotic model, and the peaks move 
to the large side of the x axis. To extract the peak values 
from Fig. 4 and plot them against the mode orders shown 
in Fig. 5, the complicated behavior of peak values can be 
clarifi ed by varying the discrepancy in the peak values 
of each mode in accordance with mode orders; that is, 
odd modes exhibit an increasing tendency, whereas even 
modes exhibit the opposite. If the peak value is defi ned 
as the optimal damping ratio and x ordinates (κ ), where 
the peak value derived is the optimal non-dimensional 
damper parameter, it can be concluded that the optimal 
damping ratios derived by the asymptotic damper design 
model visibly loses precision.

The relative error of the optimal damping ratio is 
defi ned as

       100 n n n
CDC s s/                        (21)

The relative error of the optimal non-dimensional 
damper parameter is defi ned as 
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Table 2  presents a comparison of the optimal damping 

ratios and optimal non-dimensional damper parameters 
of the asymptotic and cable-damper system models. The 
optimal damping ratios of the fi rst 10 frequency modes 
derived by the cable–damper system model are smaller 
than those obtained by the asymptotic damper design 
model. The largest discrepancy is 27.5%, obtained at 
the 7th mode, and the average discrepancy is 11.74%. 
The optimal non-dimensional damper parameters (of all 
the modes) obtained by the cable-damper system model 
are larger than those obtained by the asymptotic damper 
design model, with the largest discrepancy at 133.3% 
and the average discrepancy at 94.786%. These results 

indicate that using the asymptotic damper design model 
to choose and design dampers does not yield an optimal 
damping effect.

3.2 Infl uence of cable tension on the dynamic   
        properties of cable-damper systems

As an integral force-bearing capacity system, 
cables have geometric and mechanical parameters 
that inevitably exert a direct infl uence on the dynamic 
properties of a system. Although factors such as cable 
sag, fl exural rigidity, and clamped boundary conditions 
have been investigated and discussed in theoretical work, 
the general design procedures and concepts have not 
been fully considered. Damper parameters are optimally 
designed on the basis of these factors. In other words, 
fi xed factors do not provide an adjustable function 
for identifying the optimal vibration damping effect. 
However, cable force can be adjusted to a relatively 
wider scope during construction. Cable tension can 
affect the fi nal dynamic properties of a cable-damper 
system in the construction stage. 

Let the cable tension vary at a scope of (3×105, 
3×107 N), and the test parameters be fi xed to a set of 
rational values in practice (Table 1). Note that the chosen 
variation range of the cable tension provides a possible 
scope for use in the design and construction stage. Once 
the design scheme is determined, it does not represent 
a realistic force variation range as it can occur due to 
live and dead loads and temperature. The frequency 
equations are numerically and repeatedly solved. The 
modal frequencies and damping ratios are calculated 
and their variation rules in relation to cable tension are 
investigated. 

The infl uence curve of cable tension on the ultimate 
frequency infl uence ratio n

CC CDC that corresponds to 
odd and even modes are illustrated in Figs. 6(a) and 6(b). 
All the curves of the odd modes peak at about 2790 kN. 
Below this value, the frequency infl uence ratios rapidly 
increase from a negative value; beyond this peak, a slow 
decreasing tendency occurs. As cable tension increases, 
the frequencies of the even modes also increase and the 
peaks of the curves are not as obvious as those of the odd 

Table 2   Comparison of the optimal modal damping ratios and non-dimensional damper parameters

Optimal damping ratio Optimal non-dimensional damper parameter
Modes n

CDC    n
s   (%) n

CDC n
s nd =  (%)

1 0.0089 0.0100 –10.6 0.202 0.101 100
2 0.0090 0.0100     –9.92 0.202 0.105        92.86
3 0.0087 0.0100 –12.8 0.202 0.101 100
4 0.0091 0.0100     –8.74 0.209 0.105 100
5 0.0083 0.0100 –16.6 0.187 0.093 100
6 0.0093 0.0099     –6.34 0.202 0.112  80
7 0.0078 0.0100 –21.9 0.183 0.105 75
8 0.0096 0.0099   –3.2 0.209 0.09    133.3
9 0.0072 0.0100 –27.5 0.168 0.101        66.67
10 0.0100 0.0099       –0.227 0.224 0.112 100

Mean value 0.0088   0.00998    –11.74   0.1997 0.1023          94.786
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modes. However, a somewhat decreasing trend in the 
ultimate frequency infl uence ratio is observed. Although 
the behaviors exhibited in this work are determined 
by a case study, a general conclusion can be drawn: 
cable tension distinctly affects modal frequency and 
the manner by which this infl uence is imposed differs 
depending on whether odd modes or even modes are 
considered.

The infl uence of cable tension on ultimate system 
damping ratios is also investigated. Figure 7(a) 
demonstrates the effect of cable force expressed with 
non-dimensional damper parameter κ on the damping 
ratio, where κ is inversely proportional to the square 
root of cable tension, and the blue curve corresponds to 
the curve of the asymptotic damper design model. When 
cable tension varies but other parameters are fi xed, the 
variation rules of the fi nal system damping ratio differ 
from those of the asymptotic damper design model. As 
cable tension increases, the peaks of the system damping 
ratio alternately occur at low to high vibration modes; 
under a high asymmetric mode, peaks do not occur and 
a continuous increasing trend takes place. Figure 7(b) 
illustrates the direct effect of cable force on the damping 
ratios of the cable-damper system. Similar conclusions 
can be drawn. The dotted box in the fi gure denotes the 
adjustment range of cable tension in the design and 
construction stages; the numerically adjusted cable 
tension is (1.5×106, 3.5×106), expressed in units of N. 
The damping ratios of each mode of the cable-damper 

system have a suffi cient adjustment margin in this range, 
and the optimal damping ratios of important modes 
occur within this range.

The optimal damping ratios and the adjustable range 
of such ratios can be derived through the adjustment of 
cable force. The specifi c numerical results are provided 
in Table 3. Here, damping effi ciency is defi ned as the 
percentage of the peak value of the damping ratio 
obtained by the cable-damper system model compared 
with that obtained by the asymptotic damper design 
model, i.e.,100× n n

CDC s/  where n
s  0 01.  and is about 

half of the relative installation position of a damper. In 
engineering applications, adjusting cable tension within 
a feasible adjustment range markedly affects the fi nal 
values of the systematic damping ratio. The extent of 
this effect differs from mode to mode. Among the modes 
investigated in this case study, the effects of the 5th, 7th,  
and 9th modes are the most dominant, with damping 
effi ciencies of 54.6%, 66%, and 72.4%, respectively. 
The adjustable ranges of the damping ratio reach 
0.00068, 0.00063, and 0.00149, respectively.

4 Design and construction factors for the  
systematic-level design of cable-damper  
systems

Three problems in the design of cable-damper 
systems are currently investigated (Weber, 2009a, b, c; 
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Huang and Jones, 2011; Fujino and Hoang, 2008). First, 
in practical engineering applications, the installation 
position of the dampers cannot be randomly chosen 
because of certain design constraints (for example, 
landscape demands). As a design variable, therefore, 
installation position cannot provide suffi cient scope 
for adjustment and cannot facilitate the maximization 
of the damping effect in design. Second, in basic 
design methodologies, damper design is relegated 
to a secondary priority. Consequently, the range of 
design factors is restricted by cable parameters that are 
fi xed in advance. The interaction between cables and 
dampers, as well as the optimal system-level design 
of dampers, is disregarded. Finally, as cable length 
increases, cable fl exibility accordingly expands. As a 
result, vibration energy is distributed at high frequency 
ranges under ordinary excitation conditions. Current 
design methodologies do not consider high frequency 
modes and contradict the actual vibration behavior of 
cables. The working range of damper frequency should 
be tuned to higher modes, and the dynamic properties 
of the higher modes of cable-damper systems should be 
extensively investigated.  

The discussion in the preceding sections indicates 
that the dynamic properties of cable-damper systems 
are infl uenced by both the parameters of dampers 
and cables. The ultimate damping effect pertains 
to the interaction of all the factors of a system. In 
designing dampers, according cables a position of equal 
importance to that of dampers, as well as achieving the 
optimal vibration suppression effect in bridges, is a 
worthwhile consideration. More specifi cally, the three 
levels of interactive design should be integrated. This 
integrationis formulated as follows.  

Level one involves the design of an entire force-
bearing cable system. After the basic design parameters 
are completed, maximizing the damping ratio of each 
cable attached with dampers should be set as one of 
the targets of optimal design. Adjusting cable tension 
in design and construction procedures enables the 
cable tension distribution in the cable group to match 
bridge confi gurations and rational distribution of inner 
force. This adjustment also enables the requirements for 
maximizing the vibration suppression of cable groups to 
be satisfi ed. 

As illustrated in Fig. 8, determining the target 
damping ratio of a cable-damper system is incorporated 
into the adjustment of the cable system of an entire 
bridge. The adjustable damping ratio range can be 
determined by the adjustable range of cable tensions in 
the design and construction stages in accordance with 
the method proposed above. Then, the fi nal target cable 
tension during bridge completion can be established on 
the basis of the maximum damping ratio range. Finally, 
automated cable tension adjustment enables the easy 
realization of the fi nal target cable tension of each 
cable. Cable tension determined in this manner can be 
considered the synthesized optimal cable tension, which 
simultaneously takes vibration suppression, bridge 
confi guration, and inner force distribution into account.

Level two involves the optimal design of a cable-
damper system with the prerequisite basic cable design 
parameters and synthesized optimal cable tension. 
This level entails identifying a suitable installation 
position and selecting the optimal damper size or 
damping coeffi cient, with the aim of achieving the 
best vibration suppression effect. The case study shows 
that the fi nal optimal damping ratios obtained by the 
cable-damper system deviates from that derived by the 
asymptotic damper design model; the optimal damping 
ratios at different modes also differ from one another. 
Accordingly, an individual design method for each 
cable is proposed on the basis of the numerical equation 
rooting method.

The third level revolves around determining the 
target vibration modes for a certain damper. The law 
of energy distribution on different vibration modes and 
frequencies should be analyzed and investigated on the 
basis of historical records and onsite data measurements, 
as well as on cable parameters and statistical data on the 
wind loads of local areas. For any typical cable, the mode 
whose vibration energy dominates throughout a year 
should be chosen as the candidate mode for vibration 
control. Other modes can also be considered to attain 
multi-mode vibration control. In doing so, the statistical 
law of energy distribution of the different modes in 
typical cables should be determined from the historical 
data collected from the acceleration sensors installed on 
cables. This law can serve as a design reference for new 
cable-damper systems located in the same area. 

Table 3   Infl uence of tunable cable tension on the fi rst 10 orders of optimal modal damping ratios

Mode Optimal damping ratio Optimal cable tension 
(×106 N)

Damping effi ciency
(%)

Adjustable range of
damping ratio

1 0.00131 1.83 13.1 [0.00130, 0.00142]
2 0.00259 1.71 25.9 [0.00232, 0.00259]
3 0.00369 2.07 36.9 [0.00333, 0.00369]
4 0.00490 1.53 49.0 [0.00431, 0.00490]
5 0.00546 2.58 54.6 [0.00478, 0.00549]
6 /* / / [0.00610, 0.00667]
7 0.00659 3.6 66.0 [0.00580, 0.00643]
8 /* / / [0.00812, 0.00847]
9 0.00723 6.01 72.4 [0.00583, 0.00732]
10 /* / / [0.00912, 0.00965]

             * The peaks of modes 6th, 8th, and 10th are beyond the adjustable range of cable tension.
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The numerical rooting method for determining the 
frequency equation of a cable-damper system is easily 
implementable by software or simplifi ed computing 
programs. Therefore, individual design of cable-damper 
systems under general engineering conditions that are 
intended to achieve the best vibration control effect is 
feasible. The proposed method can compensate for the 
drawbacks of current damper design methods. 

systems; that is, individual design methodologies should 
be considered to realize the best vibration suppression 
effect on cable groups in entire bridges. Three other 
aspects should be taken into account: the adjustment 
of cable tension, the selection of optimal damper size 
guided by the numerical equation rooting method, and 
the rational selection of vibration modes for suppression 
guided by the statistical law determined from historical 
data on cables in similar conditions.
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