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A whole-space transform formula of cylindrical wave functions for 
scattering problems
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Abstract: The theory of elastic wave scattering is a fundamental concept in the study of elastic dynamics and wave 
motion, and the wave function expansion technique has been widely used in many subjects. To supply the essential tools for 
solving wave scattering problems induced by an eccentric source or multi-sources as well as multi-scatters, a whole-space 
transform formula of cylindrical wave functions is presented and its applicability to some simple cases is demonstrated 
in this study. The transforms of wave functions in cylindrical coordinates can be classifi ed into two basic types: interior 
transform and exterior transform, and the existing Graf’s addition theorem is only suitable for the former. By performing 
a new replacement between the two coordinates, the exterior transform formula is fi rst deduced. It is then combined with 
Graf’s addition theorem to establish a whole-space transform formula. By using the whole-space transform formula, the 
scattering solutions by the sources outside and inside a cylindrical cavity are constructed as examples of its application. The 
effectiveness and advantages of the whole-space transform formula is illustrated by comparison with the approximate model 
based on a large cycle method. The whole-space transform formula presented herein can be used to perform the transform 
between two different cylindrical coordinates in the whole space. In addition, its concept and principle are universal and can 
be further extended to establish the coordinate transform formula of wave functions in other coordinate systems.
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1   Introduction 

The elastic wave scattering theory is the foundation 
of research on elastic dynamics and wave motion. 
Although existing numerical methods are powerful 
for use in solving complicated problems, analytical 
solutions for simple confi gurations are still needed to 
provide insight into the physical aspects of the problem 
and to check the accuracy of approximate solutions as 
a benchmark. Therefore, the wave functions expansion 
technique has been widely used in the research on many 
subjects such as local site effects of seismic waves, 
wave scattering and diffraction, dynamic soil-structure 
interaction, dynamic stress concentration, etc. (Trifunac, 
1973; Eringen and Suhubi, 1975; Cao and Lee, 1989; 
Yuan, 1994; Fang, 1995; Liang et al., 2002; Hayir et al., 
2004; He et al.., 2004; Li and Zhao, 2004; Zhang, 2010; 
Gao et al., 2012; Zhang et al., 2012).

Although many scattering problems have been 

solved by the wave functions expansion technique, the 
target in the past has mostly been limited to cases of a 
single scatter which are concentric with the cylindrical 
coordinates. As research progresses, questions related 
to an eccentric source or multi-sources and multi-
scatters have been investigated, and in these cases, the 
transforms of wave functions between two or more 
cylindrical coordinates have become essential tools in 
obtaining solutions for a variety of problems. However, 
the currently available methods are only suitable 
for interior transform problems and cannot meet the 
demands of many other types of problems.

2   Two basic types of transform problems

In terms of the relation between the boundary of 
the scattering problem to be solved and the region 
surrounded by the two cylindrical centers to be 
transformed, the transforms of wave functions between 
two cylindrical coordinates are defi ned as either interior 
or exterior in this study. A boundary located in the inner 
region of the circle formed by the two origins is called 
the interior transform problem, and when a boundary is 
located in the outer region of the circle, it is called an 
exterior transform problem. 

The vibration of a cylindrical cavity due to excitation 
of the harmonic line source outside the cavity is shown 
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in Fig. 1, representing the scattering of the harmonic 
waves by the circle cavity at origin O1 with a distance 
of h to the line source outside the cavity. When the 
wave function expansion technique is used to solve the 
problem, the wave functions at origin O1 in the polar 
coordinate system (r1,θ1) should be transformed fi rst 
to that at origin O in the polar coordinate system (r,θ), 
and then the constants to be determined can be obtained 
according to the boundary condition of the cavity. In 
this case, the boundary of the cavity is within the circle 
region at origin O with radius h, which belongs to the 
interior transform problem, and the transform from O1 to 
O can be called an interior transform.

By contrast, the vibration of a cylindrical cavity due 
to the harmonic line source inside a cavity is shown 
in Fig. 2, representing the scattering of the harmonic 
waves by the circle cavity at origin O1 with a distance 
of h to the line source inside the cavity. Similarly, when 
the wave function expansion technique is used to solve 
the problem, the wave functions at origin O1 in the 
coordinate system (r1,θ1) should be transformed fi rst to 
the expressions at origin O in the coordinate system (r,θ), 
and then the constants to be determined can be obtained 
according to the boundary condition of the cavity. In 
this case, the boundary of the cavity is outside the circle 
region at origin O with radius h, which belongs to the 
exterior transform problem, and the transform from O1 
to O can be called an exterior transform.

According to the above analysis, if the relation 
between the boundary in which the stress or displacement 

conditions need to be satisfi ed and the circle region 
surrounded by the cylindrical centers is taken as the 
division criterion, the transforms of wave functions 
between the two cylindrical coordinates can actually be 
divided into two basic types, i.e., the interior transform 
and the exterior transform.

3  Graf’s addition theorem

If Z, W,  ,  and   are real values of variables, 
angle    can be defi ned as shown in Fig. 3 and 
expressed by

Z W− =cos cos                         (1)
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Equation (3) identically holds when Cn(x) is taken as the 
fi rst kind Bessel functions Jn(x) and holds for W<Z when 
Cn(x) is taken as the fi rst kind Hankel functions Hn x( ) ( )1 . 

Equation (3) is exactly the Graf’s addition theorem 
(Yuan, 1994). Note that when Cn(x) is taken as Hn x( ) ( )1 , 
Eq. (3) holds within the circle region with radius Z for 
W<Z as shown in Fig. 3. Therefore, Graf’s addition 
theorem can be regarded as the interior transform 
formula for Hn x( ) ( )1  between the coordinates ( ,  ) 
and (W,  ) with a distance of Z and as a result, to solve 
scattering models in the whole or half space, the theorem 
itself is only suitable for the interior transform.

Equation (3) can be directly applied to the interior 
transform between the coordinates (r1, θ1) and (r, θ) 
within the circular  region Ω as shown in Fig. 4 by a 
simple alteration as follows:

    = = − = =r Z h W r1 1, , , ,  =           (4)

Then, Eqs. (1) and (2) are satisfi ed and inserting Eq. (4) 
into Eq. (3) leads to

Fig. 2  Schematic of exterior transform problem
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Equation (5) identically holds for Cn(x)=Jn(x) and 
holds for Cn(x)= Hn x( ) ( )1  in Ω. Equation (5) can be further 
expressed by a general form as follows:
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Especially for Cn(x)= Hn x( ) ( )1 , Eq. (5) yields
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where ε0 = 1, εn = 2, for n = 1, 2, 3,…….
As the specifi c expression of Graf’s addition 

theorem, Eq. (7) is currently the basic tool for transform 
of cylindrical wave functions for scattering problems 
in a cylindrical coordinate system. Equation (7) can 
be directly applied to the interior transform problem 
as shown in Fig. 1, but cannot be used for the exterior 
transform problem as shown in Fig. 2; thus, a new 
transform formula is needed.

4    Exterior transform formula

The exterior transform formula is presented fi rst. 
As shown in Fig. 5, the region R represents the exterior 
space, i.e., the remaining part when a circular cylinder 
of radius h is removed from the whole space, and the 
scattering solution is concerned within the exterior 
region R. To perform a transform between the two 
coordinates (r1, θ1) and (r, θ) in R, the variables in Eqs. 
(1) and (2) can be replaced by

     = = − = = =r Z r W h1 1, , , ,        (8)

Then, from the coordinate relations in Fig. 5, Eqs. (1) 
and (2) are satisfi ed and substituting Eq. (8) into Eq. (3) 
results in
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Fig. 5  Transform in the exterior region R
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Equation (5) always holds for Cn(x)=Jn(x) and holds 
for Cn(x)= Hn x( ) ( )1  in R. Equation (9) can be expressed by 
the following general form
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Especially for the cases of Cn(x)= Hn x( ) ( )1 , Eq. (10) 
can be written as
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Note that Eq. (11) is obviously different from Eq. 
(7) in the region of interest and Eq. (11) can be used in 
outer region R. Thus, Eq. (11) can be called the exterior 
transform formula.

5    Whole-space transform formula
    

Combining Graf’s addition theorem with the exterior 
transform formula presented by the author, a whole-
space transform formula is developed in this study. For a 
scattering model in a whole or half space, the total region 
can be divided into two regions as shown in Fig. 6, 

Fig. 4  Transform in the interior region Ω
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i.e., the interior region Ω and the exterior region R, 
corresponding to inner and outer parts of the circle at 
origin O with radius h, respectively. By combining Eq. (7) 
with Eq. (11) a complete-region transform formula for 
Hn x( ) ( )1 can be established as follows:
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where ε0 = 1, εn = 2, for n = 1, 2, 3,…….
Note that the parts, Jm(r) and Hm

(1)(r), for the 
interior region Ω and the exterior region R in Eq. 
(12), respectively, correspond to the expressions of 
wave functions for the interior and exterior scattering 
problems, respectively. Moreover, the regions Ω and R  
complement each other and both of them just cover the 
whole space. Therefore, Eq. (12) can be called as the 
whole-space transform formula and can be employed 
in performing any transform between two different 
cylindrical coordinates in the whole space.

Thus, the idea of dividing the transform of wave 
functions into the two types of interior and exterior 
regions is fi nally expressed by the whole-space transform 
formula, Eq. (12).

6   Example applications of the derived formulas

6.1 Scattering of the line source outside a cavity

The solution for the scattering of the line source 
outside a cavity as shown in Fig. 1 can be obtained based 

on Eq. (12). 
The harmonic waves of the line source at origin O1 

can be written as

   ( ) ( )i tr= ( ) −
0 0

1
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where σ0 and β represent the stress amplitude and wave 
number of the incident waves, respectively.

To satisfy the traction-free boundary condition on 
the cavity, the key point is to transform Eq. (13) into 
the corresponding expression in coordinate (r, θ) by 
using the complete-region transform formula, Eq. (12). 
Substituting Eq. (12) into Eq. (13) results in
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where Am are constants to be determined. The radius 
of the cavity is taken as a. The traction-free boundary 
condition on the cavity, i.e., σ(i)+ σ(d)=0, leads to
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The solution for scattering of the line source outside the 
cavity can then be obtained as
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6.2   Scattering of the line source inside a cavity

The solution for the scattering of the line source 
inside a cavity with radius a shown in Fig. 2 can also be 
obtained based on Eq. (12). The harmonic waves of the 
line source at origin O1can be written as

   ( ) ( )i tr= ( ) −
0 0

1
1H e i                      (18)

Similarly, transforming Eq. (13) in coordinate (r1, θ1) 
into that in coordinate (r, θ) by using Eq. (12), and then 
inserting Eq. (12) into Eq. (18) leads to
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The scattering fi eld to be determined can be given by
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Satisfying the traction-free boundary condition in the 
cavity gives

A hm m m= − J ( )
                           

(21)

The radius of the cavity is again assumed to be a. 
The solution for scattering of the line source inside a 

Fig. 6  Complete-region transform
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cavity can be then given by

 
 


  ( ) ( )( )

( )
cosd m m

m
m

t

m

a
a

r m= ( ) −

=

∞

∑0
1

0

J
H

H e i      (22)

6.3 Solution for out-plane motion of a circular canyon 
      in a half-space

The scattering model of the plane SH waves by an 
arbitrary circular canyon in a half-space is illustrated 
in Fig. 7. The key point to obtain the exact solution is 
that the origin O1 of the scattering fi eld that satisfi es a 
traction-free boundary condition on the surface of the 
half-space is an eccentric source to the canyon center 
O. In order to let the scattering fi eld satisfy the stress 
condition on the surface of the circular canyon, the wave 
fi eld at origin Ol should be transformed into that at origin 
O of the canyon cycle so that the transform is effective in 
the exterior region, i.e., the remaining space from which 
the circle shown in Fig. 7 is removed.

If Graf’s addition theorem, Eq. (11), is employed 
to conduct the above transform, the transformed wave 
fi eld from Ol to O only holds within the cycle in Fig. 7 
and the stress condition on the canyon surface cannot be 
satisfi ed. Because of this limitation, many researchers 
have employed an approximate model by a large cycle 
method as shown in Fig. 8, in which the fl at surface 
is replaced by a large circular arc. In terms of the 
assumption of the large cycle, the approximate solution 
for out-of-plane motion of a circular canyon on the 
ground surface is obtained (Cao and Lee, 1989). 

As shown in Fig. 8, by using the large circle model, 
the wave fi eld at origin Ol that satisfi es the stress 
condition on the surface of the large circle can be 
transformed to that at origin O of the canyon center. In 
this case, the surface of the circular canyon is located 
within the circle at origin O with radius OO1 and Graf’s 
addition theorem can be directly employed.

However, the ratio of the radius of the large circle 
to the radius of the canyon shown in Fig. 8 depends on 
the study purpose. If the ratio is taken as a small value, 
the fl at surface in the exact model in Fig. 7 cannot 
be simulated well, and the multiple refl ections of the 

waves inside the large circle as well as between the 
canyon and the large circle would result in a signifi cant 
energy concentration near the canyon. As a result, larger 
displacements appear in some observation points on the 
ground surface. Contrarily, if a large ratio is selected, 
the conversion of the solution is hard to guarantee 
because of the obvious diffi culties in the calculation 
of the special functions with large arguments and high 
orders. Meanwhile, from a physical point of view, the 
scattering fi eld resulting from a local site should mainly 
refl ect in the near-fi eld with a fi nite region near the site. 
The performance of transforming the scattering source 
far away from the local site into the near-fi eld is always 
in contradiction to the physical nature of the problem 
in a certain sense. Therefore, the reason for using the 
approximate model of a large cycle is mainly due to 
the limitation of the coordinate transform methods that 
are currently available and is not consistent with the 
mechanical characteristics of the problem.

If the whole-space transform formula is employed in 
the model as shown in Fig. 7, the exact solution will be 
easily obtained. Based on Eq. (12), the assumption of a 
large circle can be removed and the key problem for out-
plane motion of a circular canyon on the ground surface 
is then solved (Yuan and Liao, 1994). Moreover, one of 
the key problems (Yuan, 1994) in obtaining the solution 
for the dynamic response of an arc-layered alluvial 
valley under the incidence of plane SH waves can also 
be solved by Eq. (12).

6.4  Other issues

Although the research target here is to investigate 
the transforms of the Bessel functions in cylindrical 
coordinates, the division of the transform types, the 
concept of complete region and the principle of forming 
the new formula herein are universal and may be 
easily extended to establish the coordinate transform 
formula of wave functions in other coordinates such as 
ellipsoidal coordinates. This means that in addition to 
the application to different kinds of circular scatters, the 
principle of the whole-space formula presented herein 
may be useful in the study of corresponding scattering 

Fig. 7 Exact model for scattering of plane SH waves by 
surface canyon with arbitrary circular-cross-section 
in a half space

Fig. 8  Approximate model by a large cycle
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and diffraction problems by the scatters with more 
complex shapes.

7    Conclusions

With regard to wave function expansion techniques 
in elastic wave scattering problems, two basic types of 
wave function transforms in cylindrical coordinates are 
distinguished and the whole-space transform formula 
is developed herein. Applications of the new formulas 
are demonstrated and prospects for their further use are 
briefl y discussed. The main results are as follows:

(1) According to the relation between the boundary 
in which the stress or displacement conditions need to 
be satisfi ed and the circular region surrounded by the 
cylindrical centers, the transforms of wave functions 
between the two cylindrical coordinates can usually be 
divided into two types: the interior transform and the 
exterior transform, while the existing Graf’s addition 
theorem is only suitable for the interior transform.

(2) The idea about division of wave function 
transforms into the above two types can be expressed 
by the whole-space transform formula presented herein, 
which eliminates the limitations in existing formulas and 
can meet the need to perform the transform between two 
different cylindrical coordinates in the whole space.

(3) By using the whole-space transform formula, 
the diffraction solutions by sources outside and inside a 
cylindrical cavity are obtained and a comparison is made 
for scattering of plane SH waves by a circular canyon 
in a half-space by using an approximate model with a 
large circular arc. Based on these, the effectiveness and 
advantage of the new formulas are verifi ed 

(4) The division of the transform types, the concept 
of complete region and the principle of forming the new 
formulas here are universal and may be further extended 
to construct a coordinate transform formula of wave 
functions in other coordinate systems.
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